
International Journal of Academic Information Systems Research (IJAISR) 
ISSN: 2000-002X   

Vol. 2 Issue 3, March – 2018, Pages: 19-34 

 

 
www.ijeais.org/ijaisr 

19 

Intelligent Multi-Language Plagiarism Detection System 
Mohran H. Al-Bayed, Samy S. Abu-Naser 

Information Technology Department, Faculty of Engineering and Information Technology,  

Al-Azhar University, Gaza, Palestine 

 

Abstract: Plagiarism detection is the process of finding similarities on electronic based documents. Recently, this process is highly 

required because of the large number of available documents on the internet and the ability to copy and paste the text of relevant 

documents with simply Control+C and Control+V commands.  

The proposed solution is to investigate and develop an easy, fast, and multi-language support plagiarism detector with the easy of 

one click to detect the document plagiarism. This process will be done with the support of intelligent system that can learn, change 

and adapt to the input document and make a cross-fast search for the content on the local repository and the online repository and 

link the content of the file with the matching content everywhere found. 

Furthermore, the supported document type that we will use is word, text and in some cases, the pdf files –where is the text can be 

extracting from them- and this made possible by using the DLL file from Word application that Microsoft provided on OS. The 

using of DLL will let us to not constrain on how to get the text from files; and will help us to apply the file on our Delphi project 

and walk throw our methodology and read the file word by word to grantee the best working scenarios for the calculation. 

In the result, this process will help in uprising the documents quality and enhance the writer experience related to his work and will 

save the copyrights for the official writer of the documents by providing a new alternative tool for plagiarism detection problem for 

easy and fast use to the concerned Institutions for free. 

Keywords: Plagiarism Detection, Intelligent System.  

1. INTRODUCTION 

Early in the 17th century, The word Plagiarius 

recorded; Plagiarius is the Latin source of the word 

plagiarism; it is defined as “The exercise of taking somebody 

else's effort or thoughts and passing them as his/her own” 

[1]. Furthermore, this word comes from Latin plagiarius 

„kidnapping’. 

In this Era, the huge and fast evolution on the technology‟s 

and the new data available is increasing every day. That‟s 

meaning in the simplest way of this fact we will have 

millions of documents that are available online and this lead 

to the possibility to take some parts –or whole maybe- form 

any documents of them and the ability to copy and paste the 

text of relevant documents with simply Control+C and 

Control+V commands. Therefore, copying from others 

sources, statements or even talks in your document without 

notifying that parts are from others is called Plagiarism. 

Meanwhile with these different sources of information and 

documents, this process of detection is very important and 

get very harder every day, regarding to the highly impact of 

this process in the educational level. Therefore, we need to 

find a solution that make the educational institution 

guarantee that work is not belong to others and save rights of 

original author and source.  

1.1 Plagiarism Detection 
This complicated process increasing over time even in the 

higher levels of education. Hence, we always need to find 

and detect this case within the document as described in 

Figure 1.1 and this can be done with this detection 

techniques:  

 
 

Figure 1.1 i: the simple procedure of the Plagiarism 

Detection 

1.2 Intrinsic Plagiarism Detection 

If no reference of the document available how can we check 

the plagiarism? This recent method of detecting is used to 

detect the text pieces, sentences or even a block of text 

copied as whole part even without any external knowledge. 

This process can be made by detecting changes 

inconsistencies within a given document [2]. Another 

solution is by using Vector Space Models [3] that use a few 

subjects independent stylometric characteristics from which 

a vector space model for every sentence of a suspicious 

document is built, or even by using Complexity Analysis [4] 

that use Kolmogorov Complexity measures as a method of 

digging out structural data from the manuscripts for Intrinsic 

Plagiarism Detection. 
 

1.3 Extrinsic Plagiarism Detection 

When we have knowledge about the suspicious references of 

the files that the author maybe plagiarized from, we use this 

method with highly dependent of the suspicious and check if 



International Journal of Academic Information Systems Research (IJAISR) 
ISSN: 2000-002X   

Vol. 2 Issue 3, March – 2018, Pages: 19-34 

 

 
www.ijeais.org/ijaisr 

20 

we found matches in keywords, sentences or even whole 

blocks. This process can be made by using Fuzzy Semantic 

Based tokenization [5] of the string similarity and search in a 

list of suspected documents and find their similarity. Another 

solution is by using cross-language semantic textual 

similarity detection [6] by using the Cross-Language 

Character N-Gram [7] typically by configuring the document 

and tokenizing the sentences which break words at spaces, 

downcast them and remove diacritics (  َ  َ  َ  َ  َ  َ  َ  َ ) to 

identify sentence boundaries to improve accuracy. 

Alternatively, by using the Cross-Language Conceptual 

Thesaurus-based [8] that measures the distance between 

sentences and the possible translation of each word in them, 

and evaluated to each sentences possible translation. In the 

same way, the Cross-Language Alignment-based Similarity 

Analysis [9] that are aims to find the similarity between 

sentences and the translation that are found in bilingual 

unigram dictionary which contains translations pairs (and 

their probabilities) [10] that are already generated by using 

high performance computers. Another possible solution is by 

using the Cross-Language Explicit Semantic Analysis [11] 

that compare the documents by using interpretation vectors 

that are a weighted vectors of concepts based from the 

translation derived directly from the Wikipedia. 

1.4 Research Objectives  

This research explores the available methodology to detect 

plagiarism on the documents, especially on the field of 

science. 

In general, the way to detect plagiarism on document is to 

tokenize the files into a number of tokens, search for them 

on other files, and find the matching among them.  

The fundamental issues are examining any document 

carefully:  

 Find best plagiarism detection method to use.  

 Improve detection through multiple experiments 

with the help of real documents and users. 

 Search the same file with relative plagiarism 

system to find the best match.  

 Provide a full indexed reference of the parts that 

were plagiarized. 

 Provide the Multilanguage support of mean of use 

for English and Arabic documents. 

 Provide a full reference for the researcher how to 

get the best result when use our system for 

detecting plagiarism. 

 Introduce the system to our university for free to 

help to enhance the research quality in our 

universities. 

Moreover, this lead us to our main objective, which is 

providing a new alternative tool for plagiarism detection 

problem by providing a new alternative tool for easy and fast 

use to the concerned Institutions for free. 

1.5 Research Limitations  

We need to pre-process the file to remove any unwanted text 

from it such as Punctuation marks and Diacritics from the 

text. In the other hand, we cannot search more than one file 

per time to take the full advantage of the speed search that 

can be solved by using parallel computing, and the last one is 

the problem of changing techniques on the web search and 

their search engine optimization over time that required 

some minor modifications in the code. This can be possible 

by letting the user to modify the syntax of the document to 

be the same as the site. 

1.6 Problem Statement 

For efficient and fair plagiarism detection, we need to check 

the document with the existence documents published online 

over the web. A recent research published from the 

University of Ottawa [12] have shown that approx. 2.5 

million of science published documents that are relevant to a 

lot of topics with a mainly 4-5% increasing each year. How 

can we make an efficient way to find the matching with 

millions of documents that are publishing each year? 

If we assume each file will make about 1 Megabyte then we 

have 2.5 million of Megabyte, i.e. 20 Terabyte of increasing 

storage per year. How can we handle the huge repository size 

of documents during plagiarism detection? Do we need to 

store this file for future search?  

Our system will introduce a solution for these problems with 

the intelligent feature that can learn and optimize the 

detection to its minimum cost and the highly quality result. 

This will be possible by searching the document using 

different search engines like Google [13], DuckDuckGo [14] 

or any search engine that provide a flexible search feature 

without the need to store this files on our local storage. This 

made us very motivated to find a new way to detect 

plagiarism with the help of external detection mechanism. 

1.7 The Methodology 

Our system methodology consists of the following: 

1. Pre-processing the file and remove any 

Punctuation marks, Diacritics and remove any 

special character like character formation in 

Arabic Language. 

2. Read text word by word, this will be using the 

help of mathematical Regex and Tokenize the 

words based on a fixed sliding window of text that 

can be changing by the user. 

3. Search for the token-sliding window- over the 

web; download the result and extract the exact 

result for the search and calculate the token 

plagiarism percentage. 

4. Generate the suspected list to enhance result 

gathering. 

5. Loop throw tokens until final token as same 

before. 

6. Calculate the major token plagiarism percentage 

for the whole file and prepare the report with 

feedback needed to the researcher or university 

assistance. 



International Journal of Academic Information Systems Research (IJAISR) 
ISSN: 2000-002X   

Vol. 2 Issue 3, March – 2018, Pages: 19-34 

 

 
www.ijeais.org/ijaisr 

21 

2. LITERATURE REVIEW  

This section summarizes the most relevant literate review 

about the recent research on the field of plagiarism in a 

simple meaning. As we see in the past years, many systems 

have been developed to check the plagiarism on the basic of 

searching and matching the tokens with other files. In our 

literature review, we will be reviewing papers that are related 

to our works and have the top most techniques; and dived 

them into the following categories [15]: 

2.1 INTRINSIC PLAGIARISM DETECTION 

There are many ways to detect the text pieces, sentences or 

even a block of text copied as whole part even without any 

external knowledge; but because our scope of the research is 

to use extrinsic methods, we will summarize some of them to 

herby understanding of the others works like: 

2.1.1 Stylistic Consistency Analysis 

If one author writes the document, we expect the style 

change function to remain relatively stable without a notable 

change. Stamatatos, E. [2] presented a method that find the 

different style inside the document using the n-grams 

profiles the group  of character  n-gram (normalized 

frequencies of a text) associated to the dissimilar style on the 

originally suggested style for the author identification. These 

differences will be used with a group of heuristic rules 

proposed by the system to minimize the value of the 

irrelevant style changes within a document, and decide 

automatically if the document is free from plagiarism or not 

by measuring the standard deviation (S) that are lower than 

the predefined threshold (t) using the following formula: 

    √
   

 
  ̅      ( 1 ) 

                                ( 2 ) 

Stamatatos, E. proposed the following methodology: 

 Each word in the document transformed to 

lowercase. 

 Remove every character that contains any not 

acceptable characters (the accepted are only a-z or 

any lowercase character of foreign languages) from 

all document. 

 Define a sliding window over the text length and 

compare the text in the window with the whole 

document and that give us the function that 

calculate the style changes inside the document. 

Figure 2.1 illustrate the change in the style change 

function. 

 Use the peaks of the function to detect the 

plagiarism inside the document. (Compare sliding 

window to the whole document). 

 

 
Figure 2.1 ii: the style change function of the plagiarism-free 

(a false positive). 

2.1.2 Term Occurrence Analysis 

However, if we use the style change function to check the 

file, the speed cost will be high regards to the cost of 

precision. Zechner, M., et al. [3] presented a method that use 

a few subjects  independent stylometric characteristics from 

which a vector space model for every sentence of a 

suspicious document is built. The proposed intrinsic 

plagiarism detection algorithm is the following: 

 Craft a conceptually modest space partitioning 

method to attain search times in the number of 

reference documents. 

 Calculate the document‟s mean vector using the 

following formula: 

      
 

 
   

 
     ( 3 ) 

 Build a vector space model for every sentence of a 

doubtful document. 

 Find the outlier sentences based on the document‟s 

mean vector. 

 Discover plagiarism using outlier analysis which is 

relative to the document mean vector. 

 Assembles the outlier sentences that marked as 

polarized and made continues blocks of text.  

2.1.3 Complexity Analysis 

Moreover, can we use the machine learning for optimizing 

results? Seaward, L. and S. Matwin [4] introduce the 

Complexity Analysis that use Kolmogorov Complexity 

measures to detect and extract the structural information 

from document with a small amount of text to be analyzed, 

this extraction is so important  for Intrinsic Plagiarism 

Detection and can detect if the document is plagiarized  or 

not. They proposed this solution because we can view any 

sentences as a binary representation. Suppose we represent 

the noun with 1 and non-noun with 0, then we can construct 

the binary representation for each word and sentence in the 

text. We can use this in the calculation since any two 

sentences might have very similar sense for a specific feature 

but the distribution can be dissimilar on every one. The 

proposed algorithm for complexity is the following: 

Sliding
Window

0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 1 0 1 1 0 0

0

0.2

0.4

0.6

SL IDING WINDOW POSIT ION  

Sliding Window



International Journal of Academic Information Systems Research (IJAISR) 
ISSN: 2000-002X   

Vol. 2 Issue 3, March – 2018, Pages: 19-34 

 

 
www.ijeais.org/ijaisr 

22 

 Segment each of the text and build the distribution 

X related to the word categories. i.e. a 1 for every 

noun word and a 0 for every non-noun word. 

 Use an algorithm to compress the string and this 

represented by C(X). i.e. The segment A will be 

compressed and transformed to B, which has shorter 

text and can be back by decompression to A again. 

 That will be used for describing the complexity or 

degree of randomness of the segment. 

 Calculate the Kolmogorov complexity of the binary 

string using the following formula: 

  ( )  
        ( )

       ( )
    ( 4 ) 

 Determine if the document is plagiarized or not by 

checking each passage is more than our selected 

threshold. 

2.2 EXTRINSIC PLAGIARISM DETECTION 

When we have references of the files that the author maybe 

plagiarized from, the process of the plagiarism will be more 

helpful. Many of researchers have developed a set of tools 

used in external textual automatic detection like: 

2.2.1 Syntactic Analysis 

Alzahrani, S. and N. Salim [5] provided an approach that is 

using Fuzzy Semantic Based tokenization of the string 

similarity and search in a list of suspected documents and 

find their similarity. This approach made by calculating the 

computation of fuzzy degree of similarity between two 

sentences i.e. 0 for different sentences and 1 for identical 

sentences and others are ranged from 0..1. 

The proposed algorithm for syntactic analysis is the 

following: 

 Pre-processing that includes tokenization, 
stemming and stop words removing from the 
document. 

 Retrieving a list of suspicions documents for each 
document using shingling and Jaccard coefficient 
using the following formula: 

        (   )  
|             |    |             |

|             |    |             |
 ( 5 ) 

 Comparing sentence by sentence with the 
associated candidate documents i.e. they are 
marked plagiarized if they gain a fuzzy similar 
above a certain threshold. Figure 2.2 illustrated the 
accepted threshold of the fuzzy similar. 

 Rejoining consecutive sentences to form single 
paragraphs/sections of text that is plagiarized. 

 

 

Figure 2.2 iii : fuzzy degree of similarity 

2.2.2 Word N-Grammar Based Analysis 

Ferrero, J., et al. [6] deeply investigate the different methods 

of Cross-Language Plagiarism Detection Methods and stated 

that if a method is efficient for a specific language, then it 

will be similarly efficient on any other language as long as 

enough lexical resources added for these languages. That has 

lead us to study Mcnamee, P. and J. Mayfield [7] that 

introduced a solution by using cross-language semantic 

textual similarity detection which using the Cross-Language 

Character N-Gram–just for European language text retrieval. 

This typically done by configuring the document and 

tokenizing the sentences which break words at spaces, 

downcast them and remove diacritics to identify sentence 

boundaries to improve accuracy.  

The proposed algorithm for text retrieval and analysis is the 

following: 

 Break words at spaces, downcast them and remove 
any diacritics. 

 Identify sentence boundaries by punctuation and 
then removed. 

 Remove English stop phrases from queries –phrase 
saved and updated over time-. In addition, they are 
able to be removing from any quires. 

 Remove any non-English word to improve 
accuracy. 

 Translated the sentences into the other supported 
languages using various machine translation 
systems. 

 Comparison with n-grams, each subsequence of 
length n will generated as an n-gram; any text with 
less n-2 characters are ignored in the n-grams i.e. 
they choose 3-grams; sequence of 3 characters.  

 Transformed into term frequency–inverse 
document frequency (TFIDF) vectors [16] of 
character 3-grams. 

 Calculating the similarity between two sentences 
by metric and compare two vectors is the cosine 
similarity. 



International Journal of Academic Information Systems Research (IJAISR) 
ISSN: 2000-002X   

Vol. 2 Issue 3, March – 2018, Pages: 19-34 

 

 
www.ijeais.org/ijaisr 

23 

2.2.3 Translating Based Analysis 

What about taking a document and do a native translation 

and republish the document? For this problem Pataki, M. [8] 

introduced a new way for detecting this situation of 

plagiarism by using the Cross-Language Conceptual 

Thesaurus-based that measures the distance between 

sentences and the possible translation of each word in them, 

and evaluated each sentence possible translation. The author 

introduced a solution especially between Hungarian and 

English documents. The developed algorithm was based on 

the following: 

 Search space reduction by removing any stop words 

and their translating from text. 

 Get the language independent form of the text, 

which we can compare. 

 Calculate the distance function between sentences. 

 Evaluate document in multiple with a fast candidate 

search and a precise comparison between possible 

translations and there distance. 

 Define thresholds of similarity: SimX (Sx) and SimY 

(Sy) where Sx < Sy. 

 Choose dMax and lMin that represent the maximum 

distance and the minimum length of the words in 

the sentence. 

 Calculate the similarity between sentences by 

calculating the number of common words in 

different languages using the following formula: 

    (     )      (  |     |    |
   

  
|    |     |  

  |
   

  
|)  ( 6 ) 

 Selecting the value for α to be 2 and β to be 1, 

meaning matching words are adding 2 points while 

not matching words are subtracting 1. 

 Calculate the document overall similarity metric by 

joining the sum of all Sim on the sentences.  

 Order Documents by their SIM values. 

In the same way, Barrón-Cedeno, A., et al. [9] used the 

Cross-Language Alignment-based Similarity Analysis with 

the help of statistical models that are aims to find the 

similarity between sentences and the translation that are 

found in bilingual unigram dictionary [10] which contains 

translations pairs -and their probabilities- that are already 

generated by using high performance computers. The 

problem of this approach is the order of the words are not 

important, but this assumption is not realistic; there is a huge 

different of the meaning and cannot be called plagiarism for 

this matching.  

2.2.4 Cross-Language Explicit Semantic Analysis  

What if we can use a huge dataset like Wikipedia to solve 

the problem of defining the dictionary? Gabrilovich, E. and 

S. Markovitch [11] introduced the ability to use the Cross-

Language Explicit Semantic Analysis with a high-

dimensional space of concepts based on the translation 

derived directly from the Wikipedia articles - which were 

defined by humans themselves- compare to the interpretation 

vectors that are weighted vectors from the original text. This 

will allow using the new data that will be added over time 

without worrying of the storage needed and that are available 

in dozens of languages. 

 Fragment the text into pieces; plain text like 

Wikipedia articles.  

 Represent by using the TFIDF [16] vector scheme. 

 Get the Wikipedia concepts and sort them by 

relevance to the text piece by using conventional 

text classification algorithms. 

 Iterate over the text words by using the semantic 

interpreter that can use Wikipedia concepts directly, 

without any need for deep language understanding 

or pre-cataloged common-sense knowledge. 

 Get the similarity by using the inverted index. 

 Group connected similar pieces into weighted 

vector of concept. 

 Compute semantic relatedness by using cosine 

metric. 

2.3 OTHER SYSTEMS PLAGIARISM ANALYSIS 

There is an increasing request of using this knowledge in a 

working program over time, for the researcher and the 

institution that will publish any new paper. Further, we will 

discuss some of existing programs that are published in the 

field of plagiarism. 

Kang et al. [17] present PPChecker for plagiarism pattern 

checking system that are  used to identify and produce more 

precise result in extracting copy detection with changing for 

synonyms. Their main comparison is sentences, which can 

be good in detecting plagiarism on sentences, the paragraph 

or the whole documents. The architecture of PPChecke 

contains main three components: 

 The Query document component that detect the 

sentences and prepare them for search. 

 The plagiarism unit that search and find similarity 

on the local and inside the document. 

 The local document Database that will be used for 

any future search on this program. 

Meanwhile, Jiffriya et al. [18] presented AntiPlag, another 

way for detection using optimizing and enhancement 

through the clustering. This enhanced made the AntiPlag fast 

and capable of comparing all plagiarized pairs of sentences 

automatically at once.   

On the other hand, the field of the Arabic Plagiarism are 

rising in the same way; Bensalem et al. [19] presented 

plagiarism on Arabic textual documents with Stylysis tool 

using a group of initial experiments on intrinsic plagiarism 

discovery in Arabic text and discovered  that vocabulary is 

the main problem in Arabic plagiarism. 

Furthermore, Menai, M.E.B. [20] presented APlag that are 

capable to detect the sentence structure change and synonym 

replacement on Arabic documents. The architecture of APlag 

contains main four components: 

 Preprocessing the document: tokenize the text, 

remove any stop-word and replace synonym. 

 Fingerprinting: by using of n-grams, where n is 



International Journal of Academic Information Systems Research (IJAISR) 
ISSN: 2000-002X   

Vol. 2 Issue 3, March – 2018, Pages: 19-34 

 

 
www.ijeais.org/ijaisr 

24 

chosen by the user. 

 Document representation: represent the internal 

structure of the document by using the tree 

algorithms for each document. 

 Similarity metric: find the longest match of the two 

hashed strings 

Alternatively, Turnitin [21] a highly famous detection tool is 

capable to search for plagiarism and used for detecting text 

coping over their own database of papers [15]. Dahl, S. [22] 

Published an exploratory study that examines how students 

use the Turnitin and what are their feedback about such 

system. The majority of the students in this study were 

mostly optimistic about Turnitin. Some of the student sample 

favor to use electronic program instead of the old way to 

give it to the designated office for checking, and are 

positively want to decrease the plagiarism ratio in their 

submissions. Dahl, S. found that the student dived into two 

categories; one is know how to make a quote correctly and 

are happy to check with such programs to avoid plagiarism. 

In the other hand, the other students who are less happy for 

such program because of their limitation of quote correctly 

that meaning of plagiarism. As a result, introducing such 

programs and make a student use them easily will help and 

have a major change in the view of the students.  

3. RESEARCH METHODOLOGY  

This section summarizes the methodology that used to detect 

the plagiarism on the electronic files in an intelligent way. 

Artificial intelligence means creating software that emulates 

the characteristics of human intelligent [42-90]. Therefore, 

we can discuss the methodology in clear terms we need to 

talk about the following: 

a. Tools Help in the Methodology  

Before we talk about our methodology in detail, we need to 

talk about some tools that made this work possible is: 

 Delphi 

Delphi [23] is an IDE that help to build programs with fast 

and easy way. This program was selected for its feature like 

cross platform native application that can generate from the 

same source. The main programming language is the 

Modern Object Pascal language. On the same hand, the high 

resources in the component that written and founded easily 

in Delphi and we can use it very easily. 

We select Delphi 2010 for the purpose of development 

because it is the main language we use in some of the 

university programs and this will help to adapt the program 

later whenever any new update are found. 

 MS Office DLL 

Microsoft Office [24] is suite of programs that Microsoft 

present to help for different purpose like Word, Excel and 

PowerPoint. 

We will use the provided DLL in the windows that Microsoft 

provide using the OLE (Object Linking and Embedding) 

[25] that will open a word or pdf document and extract the 

source of the file and get the text only to help us in the 

process of plagiarism detection.  

 DuckDuckGo 

DuckDuckGo [14]  is a search engine which  doesn't keep 

track of you on the Internet is a search engine that is 

concerned about the user privacy in searches and provide 

results from a variety of 100 sources like: Wikipedia [26], 

Wikia [27], CrunchBase [28], GitHub [29], WikiHow [30], 

The Free Dictionary [31] – over 100 in total [32]. This made 

this site rank and use go higher every day.  

We select DuckDuckGo because they provide API that 

serves over 10,000,000 queries per day. In addition, we can 

use deferent customization inside the search process like 

SITE , quoting and so more [33]. 

 HTML 

HTML is the regular markup language for generating Web 

pages [34]. This language describe the web page that one 

access all the times on the internet. 

 DIHtmlParser 

DIHtmlParser [35] is a component suite that developed for 

Delphi that can parse, analyze, extract information from, and 

generate HTML, XHTML, and XML documents from web. 

We select DIHtmlParser because it provides a full Unicode 

support that meaning support for any language and for the 

capability of extended easily by using TDIHtmlParserPlugin 

interface. 

 DIDuckDuckGoReader 

DIDuckDuckGoReader is our developed version of the 

TDIHtmlParserPlugin that DIHtmlParser provide. With this 

customized reader, we can easily give them the HTML 

document and they parse it. 

 SuperObject 

A fast Delphi JSON (JavaScript Object Notation) [36] parser 

that provided on the GitHub [37] and can parse JSON easily 

for the result of DuckDuckGo API requested. 

 Regex ~ Regular Expression 

Regex [38] is an expression that we can build from finite sets 

of strings using the operations of union, concatenation, and 

Kleene star. For example, see the text below: 

p:444-555-1234 f:246.555.8888 m:1235554567 

 After using this regex, it  can be used to detect number in 

the string like the following formula: 

   〈 〉,  -   〈 〉,  -   〈 〉    ( 7 ) 

The result will be: 

p:444-555-1234 f:246.555.8888 m:1235554567 

The part   〈 〉 describe that should select 3 decimal. 

Followed by ,  -  meaning they can have connective „-‟ or 

„.‟ or nothing. Then another 3 decimal. Then „-‟ or „.‟ or 

nothing. Then 4 decimal. Yes regex looks that Easy!  

This expressing mainly used usually with string searching 

algorithms to find or replace operations on set of strings. 



International Journal of Academic Information Systems Research (IJAISR) 
ISSN: 2000-002X   

Vol. 2 Issue 3, March – 2018, Pages: 19-34 

 

 
www.ijeais.org/ijaisr 

25 

1. PerlRegEx 

PerlRegEx [39]  is a set of free to use classes that build for 

use Regex in Delphi. This library is perform the regex 

searching algorithm in the given text. 

b. Proposed Methodology  

 

Figure 3.1iv: the Overall Methodology of Proposed 

Framework 

 

Figure 3.1 illustrate our modified framework that will consist 

of the following: 

1. Pre-processing the file and remove any 

Punctuation marks and Diacritics from the text 

and remove any special character like character 

formation in Arabic Language. 

o This will be using the help of 

mathematical Regex: 

 The first regex will be the main 

Arabic and English letters with 

Numeric characters. That will 

help remove any others letter. 

 The second regex will be the 

main Arabic Diacritics and 

remove them from the words. 

Furthermore, Read text word by word, this will be using 

the help of mathematical Regex: 

o The regex will divide the string word by 

word to make a token of the string by 

detecting every space in the document. 

2. Tokenize the words based on a fixed sliding 

window of text that can be changing by the user. 

o We select the number of words to be 12 

in the token –the count of the words in 

one line in the document; and the user-

can change this in runtime-. 

Here we will have 2 types of token; one that is cleared 

from any unwanted text, the other will be the text as they 

written without any modification – This will help in the 

quoted search-.  

3. Search for the token-sliding window- over the 

web and got the result.  

The selected mechanism for the search any token is the 

following: 

o Start search string by quoting "" the 

token; this will be helpful for finding the 

exact match of the string -here we will 

use the type of token that is not altered 

by any way-. 

 If a match is found add the 

source of the file to a 

constructed list of site that will 

be helpful for gathering the 

suspected documents. 

o Second search token without quoting, 

this will be helpful for finding the semi 

match of the string with the help of the 

rules of the search engine that are 

searching for any part or synonym of the 

token -here we will use the type of token 

that altered by our system-. 

 If a match is found add the 

source of the file to a 

constructed list of site that will 

be helpful for gathering the 

suspected documents. 

o Third with the help of the constructed list 

of suspected document; search for the 

token with specific search in that source 

thanks for the rules of the search engine 

that can specified in a site by adding 

SITE: to the query -here we will use the 

type of token that altered by our system 

to get the best match-. 

o We will add a specific link in the top of 

the list that will be our university site. 

This will help the system in searching all 

university local documents without the 

need to search and save documents in our 

system; meaning no need for any extra 

storage for the search.  

 The default defined maxed 

search for any token will be 3 

general searches, with adding 

specific search with the size of 

the suspected document list. 

 Optional: The user can add 

suspected source to the list 

manually and the system will 

search for the list that will be 

ordering by the frequency of the 

plagiarism that found in it per 

search. 

4. Download the result and extract the exact result 

for the search and calculate the token plagiarism 

percentage. 

o Parse the result of the search and get the 

top ranked searches in the result. 

o As same as the pre- processing we will 

remove any text ~ return to point 1, 3. 

o Divide the result to 3 block of text and 



International Journal of Academic Information Systems Research (IJAISR) 
ISSN: 2000-002X   

Vol. 2 Issue 3, March – 2018, Pages: 19-34 

 

 
www.ijeais.org/ijaisr 

26 

get every probability of the connecting 

string to search in it; this will be helpful 

to get the approximate percent of 

matching. 

o The same we divide the result as we 

divided the tokens. 

o Now by loping to both list found the 

matching token percent by using the 

following formula: 
                   

     [(
                                

                       
)     ]  ( 8 ) 

 The default defined maximum 

token plagiarism threshold 

selected as 75% that mean we 

will mark the full token 100% 

plagiarism if the percent > 75% 

. 

 We can have the percent more 

than 100% because of the 

probability of having more 

combination valid in the string 

and this will be down to 100%.  

5. Loop throw tokens until final token as same 

before until the end of file and calculate the major 

token plagiarism percentage for the whole file 

using the following formula: 

                            
                   

                             
   ( 9 ) 

 We have selected the maximum 

percentage to be 25% of the 

total tokens in the file to be 

marked as plagiarized 

document. 

6. Prepare the report with feedback needed to the 

researcher or university assistance. 

4. EXPERIMENTS  

This section summarizes the experiments that we tested the 

methodology and check the plagiarism in the electronic file. 

4.1. Dataset  

After we present our methodology, we want to test the 

system; in mean of the best percentage of detection can catch 

or based on the performance evaluation that we need to 

measure to satisfy the best cases for our system. However, 

for making this happen, we need some real plagiarism 

situation to test in our system; unfortunately, this cannot be 

afford because we need large numbers of documents to make 

our test accepted. On the other hand, we cannot use any real 

documents that had distributed without having the 

permission of the owner and we cannot use any generated or 

free text documents with respect to our honesty point of 

view. This led us to make a simulated plagiarism situation 

that helps us in testing the performance and the acceptance 

of the methodology. 

For testing purposes, our selected dataset consist of two 

types: first we will use about 100 different corpus consisting 

of short (200-300 words ~ English words) that Clough, P. 

and Stevenson, M. [40] developed in which plagiarism has 

been simulated. The other type will be checking over 

different topics like scientific, engineering literature, general 

news and static pages from the web in both languages: 

English and Arabic languages. 

The plagiarized corpus consists of five learning task that 

illustrated on Table 4.1 and consist of the following types: 

A. What is inheritance in object oriented 

programming? 

B. Explain the PageRank algorithm that used by the 

Google search engine. 

C. Explain the Vector Space Model that is used for 

Information Retrieval 

D. Explain Bayes Theorem for probability theory. 

E. What is dynamic programming? 

 

The generated corpus plagiarism ranged from 19 file that 

are near copy (100%..75%), 19 file that are light revision 

(75%..50%), 19 file that are Heavy revision (50%..25%) 

and 38 file that are Non-plagiarism (25%..0%). The total of 

95 file that will used and this will helps us to calculate the 

accuracy of our system in respect to this average percent. 

 

Table 4.1v: numbers of tested corpus and their categories 

Category Learning task Total 

 A B C D E  

Near Copy 4 3 3 4 5 19 

Light 

Revision 

3 3 4 5 3 19 

Heavy 

Revision 

3 4 5 4 3 19 

Non-

Plagiarism 

9 9 7 6 7 38 

Total 19 19 19 19 19 95 

4.2. Performance Evaluation 
 

What about the performance, how we can test that? 

Potthast, M., et al. [41] develops a framework that provides 

many performance measures and address the performance 

of plagiarism detection systems. They introduce 3 

measures that we can apply one by one; or in combined 

with each other. In order to test our system, we need to 

describe some important parameters that Potthast, M., et al. 

introduce. Let   be the source document, let   be the 

plagiarism detection for the document, 
 

                                                , 



International Journal of Academic Information Systems Research (IJAISR) 
ISSN: 2000-002X   

Vol. 2 Issue 3, March – 2018, Pages: 19-34 

 

 
www.ijeais.org/ijaisr 

27 

   〈                      〉                                             

                                                    

 

  〈                       〉                                           

                                            

We say that   detect the document, 

                            

                  

We will use the following tests to check our performance. 

4.2.1. Test 1 : Precision 

Precision (positive predictive value):  defined as the test for 

the closeness of two or more values to each other. We can 

use precision to measure the performance of our system as 

using the following formula: 
 

    (   )   
 

| |
 

|    (   )|

| |    ,  

 ( 10 ) 

           {
                    

                  
  

  

 

4.2.2. Test 2 : Recall 

Recall (sensitivity): defined as the proportion of positives 

values that have correctly identified by the system. We can 

use recall to measure the performance of our system as using 

the following formula: 
 

   (   )   
 

| |
 

|    (   )|

| |    ,  

 ( 11 ) 

           {
                    

                  
      

  

 

4.2.3. Test 3 : Granularity 

Granularity (the level of detail): defined as the scale or level 

of detail that is present in a set of data. We can use 

granularity to measure the performance of our system as 

using the following formula: 
 

    (   )   
 

|  |
 |  |    

 ,  

 ( 12 ) 

          *  | (   )   (    )             +       

       

        *  | (   )              + ~ Number of 

matching has reported 

 

4.2.4. Overall Test : Precision, Recall, and 

Granularity 

To obtain the absolute result, we must select the plagiarism 

detection to be an overall score as using the following 

formula: 

                  (   )   
  

    (      (   ))
  , 

   ( 13 ) 

                               

          (   )   
            

        
 ( 14 ) 

Because there are no indications that which one (Precision or 

Recall) is more important, the suggestion is to use   
  (precision and recall equally weighted). On the same hand, 

the selection of the granularity measure is to decrease its 

impact on the overall score. 
 

4.3. Results and Discussion 
 

After the definition of the terms that we are going to use in 

the detail comparison, we will compare out system in match 

to the specified methods above. First, we need to find the 

best values of the methodology parameters for which the 

detection results (Precision, Recall, Overall Test) will be the 

best. These parameters are illustrated in table 4.2 and consist 

of the following: 

Table 4.2vi: selected parameters for our methodology 

Name Description Range 
Selected 

Value 

  

Precision and Recall 

equally weighted as 

Potthast, M., et al. 

described. 

1..10 1 

  
Maximum number of 

words in the token. 
3..28 12 

  

The maximum search 

times for any token, 

where n is the size of 

the suspected 

document list. Where 

+1 is our university 

site that added on the 

list. 

1..n 3..n+1 

  The maximum search           



International Journal of Academic Information Systems Research (IJAISR) 
ISSN: 2000-002X   

Vol. 2 Issue 3, March – 2018, Pages: 19-34 

 

 
www.ijeais.org/ijaisr 

28 

connected result that 

can mark as 

plagiarized. 

  

The maximum token 

plagiarism threshold for 

any token to mark as 

plagiarized. 

1..100%      

  

The maximum token 

plagiarism threshold 

for the whole 

document to mark as 

plagiarized. 

1..100%      

We are now able to configure our system and select the best 

value for each parameter. Let us start by selecting the best    

: 

a) Configuration   

Figure 4.1 illustrated the selecting of 3 word on our 

token; therefore we can get unwanted behavior as 

we see some files are get above 100% of the ratio. 

 
Figure 4.1vii: configuration of   = 3 

Figure 4.2 illustrated the selecting of 5 word on our token; as 

we see the percent enhanced but we can‟t get any percent 

about category 4. 

 

 
Figure 4.2viii: configuration of   = 5 

Figure 4.3 illustrated the selecting of 8 word on our token; as 

we see the percent enhanced in category 4 but dropped in 

other category. 

 

 
Figure 4.3 ix: configuration of   = 8 

Figure 4.4 illustrated the selecting of 12 word on our token; 

as we see the percent enhanced in category 4 and still good 

in other category. 

 

 
Figure 4.4x: configuration of   = 12 

Figure 4.5 illustrated the selecting of 20 word on our token; 

as we see the percent start dropping in all category. 

 
Figure 4.5xi: configuration of   = 20 

Catego
ry 1

Catego
ry 2

Catego
ry 3

Catego
ry 4

𝜷=8 70 65 54 5

0

25

50

75

𝜷=8 

𝜷=8 

Categ
ory 1

Categ
ory 2

Categ
ory 3

Categ
ory 4

𝜷=12 85 65 57 8

0

25

50

75

100

𝜷=12 

𝜷=12 

Catego
ry 1

Catego
ry 2

Catego
ry 3

Catego
ry 4

𝜷=20 60 42 30 10

0

25

50

75

𝜷=20 

𝜷=20 



International Journal of Academic Information Systems Research (IJAISR) 
ISSN: 2000-002X   

Vol. 2 Issue 3, March – 2018, Pages: 19-34 

 

 
www.ijeais.org/ijaisr 

29 

Figure 4.6 illustrated the selecting of 28 word on our token; 

as we see the percent continue dropping in all category. 

 

 
Figure 4.6xii: configuration of   = 28 

Figure 4.7 illustrated the selecting of 30 word on our token; 

as we see the system cannot find any match and this because 

the search engine is ignore the high word in the search token. 

 

 
Figure 4.7xiii: configuration of   = 30 

After selecting the best   which was 12, now we will start 

selecting the best   : 

b) Configuration   
Figure 4.8 illustrated the selecting of 1 search time for our 

token; therefore we can start getting values and ratio from 

the web. 

 

 

Figure 4.8xiv: configuration of γ = 1 

Figure 4.9 illustrated the selecting of 2 search time for our 

token; therefore we can start enhance our ration from the 

web. 

 

 

Figure 4.9xvxvi: configuration of γ = 2 

 

Figure 4.10 illustrated the selecting of 3 search time for our 

token; therefore we can continue enhance our ration from the 

web. 

 

 

Figure 4.10xvii: configuration of γ = 3 

Categ
ory 1

Categ
ory 2

Categ
ory 3

Categ
ory 4

𝜷=28 20 10 5 2

0

25

𝜷=28 

𝜷=28 

Category
1

Category
2

Category
3

Category
4

𝜷=30 0 0 0 0

0

25

𝜷=𝟑0 

𝜷=30 

Categor
y 1

Categor
y 2

Categor
y 3

Categor
y 4

γ=1 52 40 30 5

0

25

50

75

𝜸=1 

γ=1 

Category 1Category 2Category 3 Category 4

γ=2 
 

60 45 35 2

0
25
50
75

𝜸=2 

γ=2 
 

Category
1

Category
2

Category
3

Category
4

γ=3 
 

70 55 35 7

0
25
50
75

𝜸=3 

γ=3 
 



International Journal of Academic Information Systems Research (IJAISR) 
ISSN: 2000-002X   

Vol. 2 Issue 3, March – 2018, Pages: 19-34 

 

 
www.ijeais.org/ijaisr 

30 

Figure 4.11 illustrated the selecting of 3..N+1 search time for 

our token; therefore we enhance our ration to be from web 

and from our suspected list that are growing throw search . 

 

 

Figure 4.11xviii: configuration of γ = 3..n+1 

After selecting the best   which was 3..N+1 search time for 

our token, now we will start selecting the best   : 

c) Configuration   

Figure 4.12 illustrated the selecting of 1 connected word for 

any token to mark as plagiarized; therefore we can start 

getting values and ratio from the web. 

 
Figure 4.12xix: configuration of  =1 

Figure 4.13 illustrated the selecting of 2 connected word for 

any token to mark as plagiarized; therefore we the ratio. 

 

Figure 4.13xx: configuration of  =2 

Figure 4.14 illustrated the selecting of 3 connected word for 

any token to mark as plagiarized; therefore, we enhance the 

ratio in category 2 and 3. 

 

Figure 4.14xxi: configuration of  =3 

Figure 4.15 illustrated the selecting of 8 connected word for 

any token to mark as plagiarized; therefore, ratio start 

dropping. 

 

 

Figure 4.15xxii: configuration of  =8 

Figure 4.16 illustrated the selecting of 12 connected word for 

any token to mark as plagiarized; therefore, ratio continue 

dropping. 

Categ
ory 1

Categ
ory 2

Categ
ory 3

Categ
ory 4

γ=3..n+1 
 

85 65 57 8

0
25
50
75

100

𝜸=3..N+1 

γ=3..n+1 
 

Categ
ory 1

Categ
ory 2

Categ
ory 3

Categ
ory 4

δ=1 
 

96 88 50 10

0
25
50
75

100

𝜹=1 

δ=1 
 

Categ… Categ… Categ…

𝜹=2 
 

89 80 40 9

0
25
50
75

100

𝜹=2 

𝜹=2 
 

Catego
ry 1

Catego
ry 2

Catego
ry 3

Catego
ry 4

𝜹=3 86 70 60 4

0
25
50
75

100

𝜹=3 

𝜹=3 

Category
1

Category
2

Category
3

Category
4

𝜹=8 83 60 50 4

0
25
50
75

100

𝜹=8 

𝜹=8 



International Journal of Academic Information Systems Research (IJAISR) 
ISSN: 2000-002X   

Vol. 2 Issue 3, March – 2018, Pages: 19-34 

 

 
www.ijeais.org/ijaisr 

31 

 

 

Figure 4.16xxiii: configuration of  =12 

After selecting the best   which was 3 connected words, now 

we will start selecting the best   : 

d) Configuration   

We select the maximum token plagiarism threshold for any 

token to mark as plagiarized to be      and this percent 

can be changed per Institution and can change on runtime. 

Therefore, after selecting the best   which was      from 

the total of the token, now we will start selecting the best   : 
 

e) Configuration    

We select the maximum token plagiarism threshold for the 

whole file to mark as plagiarized to be      and this 

percent can be changed per Institution and can change on 

runtime. 

Now we have the Best result for each configurations as we 

see in Figure 4.17, so we will start our methodology of this 

numbers and let the user change them if they want. 

Configuration     ,    ..n+1,       , 

     ,       

 
Figure 4.17xxiv: our final configuration for the system 

4.4. System Screenshot 

Here we present our system screenshot after completing the 

implementation of the methodology.  

Figure 4.18 illustrated the selecting the file for starting the 

process of detection. 

 
Figure 4.18xxv: our system, selecting file for checking 

Figure 4.19 illustrated the system when they check token by 

token for polarized of not. 

 
Figure 4.19xxvi: our system, checking document 

Figure 4.20 illustrated the final system report, which are 

having the similarities with the percent and a link to go to the 

matched document. 

 

Figure 4.20xxvii: our system, report after checking for a doc 

Categor
y 1

Categor
y 2

Categor
y 3

Categor
y 4

𝜹=12 72 40 30 0

0255075100

𝜹=12 

𝜹=12 

Catego
ry 1

Catego
ry 2

Catego
ry 3

Catego
ry 4

ε≥75%, 
ζ≥25% 

86 70 60 4

0255075100

𝜷=𝟏𝟐 ,  𝜸=𝟑 . . N + 1 ,  𝜹=𝟑 . .  𝜷 ,  𝜺≥𝟕𝟓
% ,  𝜻≥𝟐𝟓%  

ε≥75%, ζ≥25% 



International Journal of Academic Information Systems Research (IJAISR) 
ISSN: 2000-002X   

Vol. 2 Issue 3, March – 2018, Pages: 19-34 

 

 
www.ijeais.org/ijaisr 

32 

5. CONCLUSION 

We concluded that the most plagiarism systems nowadays 

are responsible for storing the files and make a local 

repository internally to detect for the future documents. We 

have developed our method that use the enhanced features of 

searching that search engine provide without the need to 

store any file or the need to construct the local repository. On 

the same hand, we added the ability for searching inside the 

academic website that will use the system in order to 

optimize the output that they present for the public use. In 

addition, we presented support for Arabic document that 

have a few plagiarism detectors to use in the public, and 

made our system capable to use the test that contains 

Diacritics that make the plagiarism so hard in case of the 

Arabic synonyms. 

REFERENCES 

[1] Oxford Reference.  [cited 2017 9, 18]; Available from: 

http://www.oxfordreference.com/view/10.1093/oi/autho

rity.20110803100329803. 

[2] Stamatatos, E., Intrinsic plagiarism detection using 

character n-gram profiles. threshold, 2009. 2(1,500). 

[3] Zechner, M., et al. External and intrinsic plagiarism 

detection using vector space models. in Proc. SEPLN. 

2009. 

[4] Seaward, L. and S. Matwin. Intrinsic plagiarism 

detection using complexity analysis. in Proc. SEPLN. 

2009. 

[5] Alzahrani, S. and N. Salim, Fuzzy semantic-based string 

similarity for extrinsic plagiarism detection. Braschler 

and Harman, 2010: p. 1-8. 

[6] Ferrero, J., et al., Deep Investigation of Cross-Language 

Plagiarism Detection Methods. arXiv preprint 

arXiv:1705.08828, 2017. 

[7] Mcnamee, P. and J. Mayfield, Character n-gram 

tokenization for European language text retrieval. 

Information retrieval, 2004. 7(1): p. 73-97. 

[8] Pataki, M., A new approach for searching translated 

plagiarism. 2012. 

[9] Barrón-Cedeno, A., et al. On Cross-lingual Plagiarism 

Analysis using a Statistical Model. in PAN. 2008. 

[10] Hilgert, L.W., et al. Building Domain Specific Bilingual 

Dictionaries. in LREC. 2014. 

[11] Gabrilovich, E. and S. Markovitch. Computing semantic 

relatedness using wikipedia-based explicit semantic 

analysis. in IJcAI. 2007. 

[12] Jinha, A.E., Article 50 million: an estimate of the 

number of scholarly articles in existence. Learned 

Publishing, 2010. 23(3): p. 258-263. 

[13] Google.  [cited 2017 9, 18]; Available from: 

https://www.google.com. 

[14] DuckDuckGo.  [cited 2017 9, 18]; Available from: 

https://duckduckgo.com/. 

[15] Top 15 Misconceptions About Turnitin [cited 2017 9, 

18]; Available from: 

http://turnitin.com/en_us/resources/blog/421-

general/1644-top-15-misconceptions-about-turnitin. 

[16] Robertson, S., Understanding inverse document 

frequency: on theoretical arguments for IDF. Journal of 

documentation, 2004. 60(5): p. 503-520. 

[17] Kang, N., A. Gelbukh, and S. Han. PPChecker: 

Plagiarism pattern checker in document copy detection. 

in International Conference on Text, Speech and 

Dialogue. 2006. Springer. 

[18] Jiffriya, M., et al. AntiPlag: Plagiarism detection on 

electronic submissions of text based assignments. in 

Industrial and Information Systems (ICIIS), 2013 8th 

IEEE International Conference on. 2013. IEEE. 

[19] Bensalem, I., P. Rosso, and S. Chikhi. Intrinsic 

plagiarism detection in Arabic text: Preliminary 

experiments. in II Spanish Conference on Information 

Retrieval (CERI‟12). 2012. 

[20] Menai, M.E.B., Detection of plagiarism in Arabic 

documents. International journal of information 

technology and computer science (IJITCS), 2012. 4(10): 

p. 80. 

[21] Turnitin.  [cited 2017 9, 18]; Available from: 

http://turnitin.com/. 

[22] Dahl, S., Turnitin® The student perspective on using 

plagiarism detection software. Active Learning in 

Higher Education, 2007. 8(2): p. 173-191. 

[23] Delphi.  [cited 2017 9, 18]; Available from: 

https://www.embarcadero.com/products/delphi. 

[24] Office.  [cited 2017 9, 18]; Available from: 

https://www.office.com/. 

[25] OLE [cited 2017 9, 18]; Available from: 

http://searchwindowsserver.techtarget.com/definition/O

LE-Object-Linking-and-Embedding. 

[26] Wikipedia.  [cited 2017 9, 18]; Available from: 

https://www.wikipedia.org/. 

[27] Wikia.  [cited 2017 9, 18]; Available from: 

http://www.wikia.com/fandom. 

[28] CrunchBase.  [cited 2017 9, 18]; Available from: 

https://www.crunchbase.com/. 

[29] GitHub [cited 2017 9, 18]; Available from: 

https://github.com/. 

[30] WikiHow [cited 2017 9, 18]; Available from: 

https://www.wikihow.com/Main-Page. 

[31] The Free Dictionary.  [cited 2017 9, 18]; Available 

from: https://www.thefreedictionary.com/. 

[32] DuckDuckGo API.  [cited 2017 9, 18]; Available from: 

https://duckduckgo.com/api. 

[33] DuckDuckGo Syntax.  [cited 2017 9, 18]; Available 

from: https://duck.co/help/results/syntax. 

[34] HTML.  [cited 2017 9, 18]; Available from: 

https://www.w3schools.com/html/html_intro.asp. 

[35] DIHtmlParser.  [cited 2017 9, 18]; Available from: 

https://www.yunqa.de/delphi/products/htmlparser/index. 

[36] JSON.  [cited 2017 9, 18]; Available from: 

https://www.w3schools.com/js/js_json_intro.asp. 



International Journal of Academic Information Systems Research (IJAISR) 
ISSN: 2000-002X   

Vol. 2 Issue 3, March – 2018, Pages: 19-34 

 

 
www.ijeais.org/ijaisr 

33 

[37] SuperObject.  [cited 2017 9, 18]; Available from: 

https://github.com/hgourvest/superobject. 

[38] Regular expression [cited 2017 9, 18]; Available from: 

http://www.oxfordreference.com/view/10.1093/oi/autho

rity.20110803100411512. 

[39] PerlRegEx [cited 2017 9, 18]; Available from: 

https://www.regular-expressions.info/delphi.html. 

[40] Clough, P. and M. Stevenson, Developing a corpus of 

plagiarised short answers. Language Resources and 

Evaluation, 2011. 45(1): p. 5-24. 

[41] Potthast, M., et al. An evaluation framework for 

plagiarism detection. in Proceedings of the 23rd 

international conference on computational linguistics: 

Posters. 2010. Association for Computational 

Linguistics. 

[42] Shaath, M. Z., Al-Hanjouri, M., Abu Naser, S. S., & 

Aldahdooh, R. (2017). Photoshop (CS6) intelligent 

tutoring system. International Journal of Academic 

Research and Development, 2(1), 81-87.  

[43] Qwaider, S. R., & Abu Naser, S. S. (2017). Expert 

System for Diagnosing Ankle Diseases. International 

Journal of Engineering and Information Systems 

(IJEAIS), 1(4), 89-101.  

[44] Naser, S. (2009). Evaluating the effectiveness of the 

CPP-Tutor an intelligent tutoring system for students 

learning to program in C++. Journal of Applied Sciences 

Research, 5(1), 109-114.  

[45] Nabahin, A., Abou Eloun, A., & Abu Naser, S. S. 

(2017). Expert System for Hair Loss Diagnosis and 

Treatment. International Journal of Engineering and 

Information Systems (IJEAIS), 1(4), 160-169.  

[46] Mrouf, A., Albatish, I., Mosa, M., & Abu Naser, S. S. 

(2017). Knowledge Based System for Long-term 

Abdominal Pain (Stomach Pain) Diagnosis and 

Treatment. International Journal of Engineering and 

Information Systems (IJEAIS), 1(4), 71-88.  

[47] Mosa, M. J., Albatish, I., & Abu-Naser, S. S. (2018). 

ASP. NET-Tutor: Intelligent Tutoring System for 

leaning ASP. NET. International Journal of Academic 

Pedagogical Research (IJAPR), 2(2), 1-8.  

[48] Marouf, A., Abu Yousef, M. K., Mukhaimer, M. N., & 

Abu-Naser, S. S. (2018). An Intelligent Tutoring System 

for Learning Introduction to Computer Science. 

International Journal of Academic Multidisciplinary 

Research (IJAMR), 2(2), 1-8.  

[49] Mahdi, A. O., Alhabbash, M. I., & Abu Naser, S. S. 

(2016). An intelligent tutoring system for teaching 

advanced topics in information security. World Wide 

Journal of Multidisciplinary Research and Development, 

2(12), 1-9.  

[50] Khella, R. A., & Abu Naser, S. S. (2017). Expert 

System for Chest Pain in Infants and Children. 

International Journal of Engineering and Information 

Systems (IJEAIS), 1(4), 138-148.  

[51] Kassab, M. K. I., Naser, S. S. A., & Shobaki, M. J. A. 

(2017). The Impact of the Availability of Technological 

Infrastructure on the Success of the Electronic 

Document Management System of the Palestinian 

Pension Authority. International Journal of Engineering 

and Information Systems (IJEAIS), 1(5), 93-109.  

[52] Hilles, M. M., & Abu Naser, S. S. (2017). Knowledge-

based Intelligent Tutoring System for Teaching Mongo 

Database. EUROPEAN ACADEMIC RESEARCH, 

6(10), 8783-8794.  

[53] Hamed, M. A., & Abu Naser, S. S. (2017). An 

intelligent tutoring system for teaching the 7 

characteristics for living things. International Journal of 

Advanced Research and Development, 2(1), 31-45.  

[54] Kassab, M. K. I., Abu Naser, S. S., & Al Shobaki, M. J. 

(2017). An Analytical Study of the Reality of Electronic 

Documents and Electronic Archiving in the 

Management of Electronic Documents in the Palestinian 

Pension Agency (PPA). EUROPEAN ACADEMIC 

RESEARCH, 6(12), 10052-10102.  

[55] Elnajjar, A. E. A., & Abu Naser, S. S. (2017). DES-

Tutor: An Intelligent Tutoring System for Teaching 

DES Information Security Algorithm. International 

Journal of Advanced Research and Development, 2(1), 

69-73.  

[56] El Agha, M., Jarghon, A., & Abu Naser, S. S. (2017). 

Polymyalgia Rheumatic Expert System. International 

Journal of Engineering and Information Systems 

(IJEAIS), 1(4), 125-137.  

[57] Bakeer, H. M. S., & Naser, S. S. A. (2017). Photo 

Copier Maintenance Expert System V. 01 Using SL5 

Object Language. International Journal of Engineering 

and Information Systems (IJEAIS), 1(4), 116-124.  

[58] Al-Nakhal, M. A., & Abu Naser, S. S. (2017). Adaptive 

Intelligent Tutoring System for learning Computer 

Theory. EUROPEAN ACADEMIC RESEARCH, 6(10), 

8770-8782.  

[59] Almurshidi, S. H., & Abu Naser, S. S. (2017). Stomach 

disease intelligent tutoring system. International Journal 

of Advanced Research and Development, 2(1), 26-30.  

[60] Almurshidi, S. H., & Abu Naser, S. S. (2017). Design 

and Development of Diabetes Intelligent Tutoring 

System. EUROPEAN ACADEMIC RESEARCH, 6(9), 

8117-8128.  

[61] Al-Hanjori, M. M., Shaath, M. Z., & Abu Naser, S. S. 

(2017). Learning computer networks using intelligent 

tutoring system. International Journal of Advanced 

Research and Development (2), 1.  

[62] Alhabbash, M. I., Mahdi, A. O., & Abu Naser, S. S. 

(2016). An Intelligent Tutoring System for Teaching 

Grammar English Tenses. EUROPEAN ACADEMIC 

RESEARCH, 6(9), 7743-7757.  

[63] Aldahdooh, R., & Abu Naser, S. S. (2017). 

Development and Evaluation of the Oracle Intelligent 

Tutoring System (OITS). EUROPEAN ACADEMIC 

RESEARCH, 6(10), 8711-8721.  

[64] Al-Bayed, M. H., & Abu Naser, S. S. (2017). An 

intelligent tutoring system for health problems related to 



International Journal of Academic Information Systems Research (IJAISR) 
ISSN: 2000-002X   

Vol. 2 Issue 3, March – 2018, Pages: 19-34 

 

 
www.ijeais.org/ijaisr 

34 

addiction of video game playing. International Journal 

of Advanced Scientific Research, 2(1), 4-10.  

[65] Al-Bastami, B. G., & Abu Naser, S. S. (2017). Design 

and Development of an Intelligent Tutoring System for 

C# Language. EUROPEAN ACADEMIC RESEARCH, 

6(10), 87-95.  

[66] Alawar, M. W., & Abu Naser, S. S. (2017). CSS-Tutor: 

An intelligent tutoring system for CSS and HTML. 

International Journal of Academic Research and 

Development, 2(1), 94-98.  

[67] Al Shobaki, M. J., Abu Naser, S. S., & Kassab, M. K. I. 

(2017). The Reality of the Application of Electronic 

Document Management System in Governmental 

Institutions-an Empirical Study on the Palestinian 

Pension Agency. International Journal of Engineering 

and Information Systems, 1(2), 1-14.  

[68] Al Rekhawi, H. A., Ayyad, A. A., & Abu Naser, S. S. 

(2017). Rickets Expert System Diagnoses and 

Treatment. International Journal of Engineering and 

Information Systems (IJEAIS), 1(4), 149-159.  

[69] Al Rekhawi, H. A., & Abu Naser, S. (2018). An 

Intelligent Tutoring System for Learning Android 

Applications Ui Development. International Journal of 

Engineering and Information Systems (IJEAIS), 2(1), 1-

14.  

[70] Akkila, A. N., & Abu Naser, S. S. (2017). Teaching the 

right letter pronunciation in reciting the holy Quran 

using intelligent tutoring system. International Journal 

of Advanced Research and Development, 2(1), 64-68.  

[71] Abu-Naser, S., Ahmed, A., Al-Masri, N., Deeb, A., 

Moshtaha, E., & AbuLamdy, M. (2011). An intelligent 

tutoring system for learning java objects. International 

Journal of Artificial Intelligence and Applications 

(IJAIA), 2(2).  

[72] AbuEl-Reesh, J. Y., & Abu-Naser, S. S. (2018). An 

Intelligent Tutoring System for Learning Classical 

Cryptography Algorithms (CCAITS). International 

Journal of Academic and Applied Research (IJAAR), 

2(2), 1-11. 

[73] Abu-Naser, S. S., El-Hissi, H., Abu-Rass, M., & El-

Khozondar, N. (2010). An expert system for endocrine 

diagnosis and treatments using JESS. Journal of 

Artificial Intelligence; Scialert, 3(4), 239-251.  

[74] AbuEl-Reesh, J. Y., & Abu Naser, S. S. (2017). An 

Expert System for Diagnosing Shortness of Breath in 

Infants and Children. International Journal of 

Engineering and Information Systems (IJEAIS), 1(4), 

102-115.  

[75] Abu Naser, S. S., & Sulisel, O. (2000). The effect of 

using computer aided instruction on performance of 

10th grade biology in Gaza. Journal of the College of 

Education, 4, 9-37.  

[76] AbuEloun, N. N., & Abu Naser, S. S. (2017). 

Mathematics intelligent tutoring system. International 

Journal of Advanced Scientific Research, 2(1), 11-16.  

[77] Abu Naser, S. S. (2016). ITSB: An Intelligent Tutoring 

System Authoring Tool. Journal of Scientific and 

Engineering Research, 3(5), 63-71.  

[78] Abu Ghali, M., Abu Ayyad, A.,  Abu-Naser, S. S., & 

Abu Laban M. (2018). An Intelligent Tutoring System 

for Teaching English Grammar. International Journal of 

Academic Engineering Research (IJAER), 2(2), 1-6.  

[79] Abu Naser, S. S. (2012). Predicting learners 

performance using artificial neural networks in linear 

programming intelligent tutoring system. International 

Journal of Artificial Intelligence & Applications, 3(2), 

65.  

[80] Abu Ghali, M. J., Mukhaimer, M. N., Abu Yousef, M. 

K., & Abu Naser, S. S. (2017). Expert System for 

Problems of Teeth and Gums. International Journal of 

Engineering and Information Systems (IJEAIS), 1(4), 

198-206.  

[81] Abu Naser, S. S. (2012). A Qualitative Study of LP-ITS: 

Linear Programming Intelligent Tutoring System. 

International Journal of Computer Science & 

Information Technology, 4(1), 209.  

[82] Abu Hasanein, H. A., & Abu Naser, S. S. (2017). An 

intelligent tutoring system for cloud computing. 

International Journal of Academic Research and 

Development, 2(1), 76-80.  

[83] Abu Naser, S. S. (2008). Developing visualization tool 

for teaching AI searching algorithms. Information 

Technology Journal, Scialert, 7(2), 350-355.  

[84] El Haddad, I. A., & Abu Naser, S. S. (2017). ADO-

Tutor: Intelligent Tutoring System for leaning ADO. 

NET. EUROPEAN ACADEMIC RESEARCH, 6(10), 

8810-8821.  

[85] Abu Naser, S. S. (2008). Developing an intelligent 

tutoring system for students learning to program in C++. 

Information Technology Journal, 7(7), 1055-1060.  

[86] Albatish, I., Mosa, M. J., & Abu-Naser, S. S. (2018). 

ARDUINO Tutor: An Intelligent Tutoring System for 

Training on ARDUINO. International Journal of 

Engineering and Information Systems (IJEAIS), 2(1), 

236-245.  

[87] Abu-Naser, S. S. (2006). Intelligent tutoring system for 

teaching database to sophomore students in Gaza and its 

effect on their performance. Information Technology 

Journal, 5(5), 916-922.  

[88] Abu-Naser, S. S. (2001). A comparative study between 

animated intelligent tutoring systems AITS and video-

based intelligent tutoring systems VITS. Al-Aqsa Univ. 

J, 5(1), 72-96.  

[89] Abu Naser, S. (2008). JEE-Tutor: An Intelligent 

Tutoring System for Java Expression Evaluation. 

Information Technology Journal, Scialert, 7(3), 528-

532.  

[90] Abu Naser, S. (2008). An Agent Based Intelligent 

Tutoring System For Parameter Passing In Java 

Programming. Journal of Theoretical & Applied 

Information Technology, 4(7).  


