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Abstract: The purpose of this article is to study and analyse the convective flow of nanofluid. The dimensionless entropy 

generation equation is obtained by solving the reduced momentum and energy equations. The momentum and energy equations are 

reduced to a system of ordinary differential equations by a similarity method. The Homotopy analysis method (HAM) is used to 

solve the resulting system of ordinary differential equations. The HAM is a valid mathematical tool for most of non-linear 

problems in science and engineering. The main purpose of the paper is to study the effects of Reynolds number, dimensionless 

temperature difference, Brinkman number, Hartmann number and other physical parameters on the entropy generation. These 

results are analysed and discussed. 
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1. INTRODUCTION  

The history of fluid flow is very old, one of the early 

studies is the work of Leonardo Da Vinci’s which gave rapid 

advanced to the study of fluids mechanics about 500 years 

ago, but earlier than this time; prehistoric relics of irrigation 

canals have shown that the study of fluid behaviour were 

much more available by the time of ancient Egyptian 

(Nakayama and Boucher, 1999). Several centuries ago Johan 

and Daniel began more modern understanding of fluids 

motion known as Bernoulli’s equation. Since then, many 

researchers have done numerous work on fluid mechanics. 

The study of fluid  flow and heat transfer in a vertical 

porous channel have been given considerable attention in the 

past few decades due to its wide applications in areas such as 

the design of cooling systems for electronic devices, 

chemical processingequipment, microelectronic cooling and 

solar energy (Jamalabadi et al., 2015). Numerous authors 

who conducted investigations on such flow include: Mutuku-

Njaneand Makinde (2013) who investigated the combined 

effects of buoyancy force and Navier slip on MHD flow of a 

Nanofluid over a convectively heated vertical porousplate 

and submitted that increase in Grashof number decreases the 

fluid velocity. Int he work of Jamalabadi et al. (2015), in 

which optimal design of Magnetohydrodynamic mixed 

convection flow in a vertical channel with slip boundary 

conditions and thermal radiation effects was analysed by 

using an entropy generation minimization method. It was 

concluded that Grashof numbers to Reynolds number ratio 

are better for maximizing the energy of the system. 

Adesanya and Falade (2015) presented the study on 

thermodynamic analysis for a third grade fluid through a 

vertical channel with internal heat generation, among the 

submissions was that increase in the Grashof number 

depletes the energy level of the thermal system. In addition, 

heat transfer dominates the channel with increase in Grashof 

number.  Also, Sharma etal. (2014) investigated radiative 

and free convective effects on MHD flow through a porous 

medium with periodic wall temperature and heat generation 

or absorption with the conclusion that increase in Grashof 

number increases the skin-friction coefficient at the wall.  

2. Mathematical formulation of the problem 
Consider the unsteady, incompressible Cu-water 

nanofluid in a vertical channel having permeable walls as 

shown in Fig. 1. The fluid is flowed at constant pressure 

gradient and an external uniform magnetic field is applied 

perpendicular to the plates. It is presumed that the fluid is 

injected uniformly into the channel at the fixed lower plate 

whereas the uniform fluid suction occurs at the moving 

upper plate. A transverse magnetic field with strength B0 is 

applied parallel to the Y-axis. The magnetic Reynolds 

number and the induced electric field are assumed to be 

small and negligible. The channel width is denoted by h with 

uniform temperature T0 at Y=0 and temperature T1 at Y= h 

such that T0<T1. The volume fraction of the Cu-

nanoparticles in the base fluid is taken to be from 0 to 10% 

(i.e.   = 0 to 0.1) and assumed to have been mixed 

homogeneously with the base fluid under laboratory 

condition thus we have a single phase flow. 

 
Fig.1:Schematic diagram of the problem 
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Using the Boussinesq approximation, the governing 

equations for the momentum and energy balance can be 

expressed as [7,8,11,16,7,19]; 
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where u is the axial velocity, P is the pressure, x is 

the axial distance, is the nanofluid density, is the 

nanofluiddynamic viscosity, is the nanofluid 

specific heat capacity at constant pressure, is the 

nanofluid thermal conductivity, is the entropy 

generation rate, T is the nanofluid temperature, is 

the nanofluid electrical conductivity, g is the 

gravitational acceleration and is the nanofluid 

thermal expansion coefficient. In the eqns. (1), (2) 

and (3) the Cu-water nanofluid thermophysical 

properties are given by [17-21]
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Table:1 Thermophysical properties of water and Cu nanoparticles [17-21]

 

Materials  3/ mkg   kgKJCP /   mKWk /   mS /   1510 KX  

Pure water   997.1     4179     0.613   5.5X10
-6 

    21 

Copper (cu)   8933     385       401    59.6X10
6 

   1.67 

 

here bf is the base fluid density, 
P is the 

nanoparticles density, bf is the base fluid 

dynamic viscosity, bfk is the basefluid thermal 

conductivity, Pk is the nanoparticles thermal 

conductivity, bf is the base fluid thermal 

expansion coefficient, 
P is the nanoparticles 

thermal expansion coefficient, PbfC is the base 

fluid specific heat capacity, 
PPC is the 

nanoparticles specific heat capacity, bf is the 

base fluid electrical conductivity and 
P is the 

nanoparticles electrical conductivity. Introducing 
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the following dimensionless parameters and variables,
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For a given set of parameter values, the reactive 

convection flow evolves in time until a steady 

state condition is attained whenever this happens, 

then the equations becomes 
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The corresponding boundary conditions are as 

follows:  
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Table: 2 Numerical values of the constants A1 to A6 can be determine as follows: 
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Constant 

  
 A1 A2 A3 A4 A5 A6 Q M 

0 1 1 1 1 1 1 1 1 

0.05 1.02 1.23 0.87 0.98 1 0.85 0.88 0.86 

0.1 1.02 1.38 0.75 0.97 1 0.74 0.77 0.75 

By assumption, the exact solution of the eqn.(7) 

for the velocity of fluid is possible under this 

constant viscosity scenario and we obtain 
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 In many engineering and industrial 

processes, entropy production destroys the 

available energy in the system. It is therefore 

imperative to determine the rate of entropy 

generation in a system, in order to optimize energy 

in the system for efficient operation in the system. 

The convection process in a channel is inherently 

irreversible and this causes continuous entropy 

generation. Using the eqn. (6), the dimensionless 

form of local entropy generation rate in an eqn. (3) 

is given as follows: 
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Here 
1N denotes heat transfer irreversibility due to 

heat transfer, 
2N denote fluid friction and magnetic 

field irreversibility,  denotes irreversibility ratio. 

The Bejan number as shown in an eqn.(12) has a 

range of 10  Be . If 0Be , then the 

irreversibility is dominated by the combined 

effects of fluid friction and magnetic fields, but if 

1Be , then the irreversibility due to heat transfer 

dominates the flow system by the virtue of finite 

temperature differences. 

3 Solution of the non-linear boundary value 

problems using the Homotopy analysis method  

 In this paper an analytic tool for nonlinear 

problems, namely the Homotopy analysis method 

(HAM) by Liao [22], is employed as our basic 

concept to solve the nonlinear differential eqns., 

(3) and (4).  The Homotopy analysis method is 

based on a music concept in topology, i.e. 

Homotopy by Hilton [23] which is widely applied 

in numerical techniques as in [24–27].  Unlike 

perturbation techniques [28-30], the Homotopy 

analysis method is independent of small/large 

parameters.  Unlike all other reported perturbation 

and non-perturbation techniques such as the 

artificial small parameter method, the expansion 

method and Adomian decomposition method , the 

Homotopy analysis method provides us with a 

simple way to adjust and control the convergence 

region and rate of approximation series.  The 

Homotopy analysis method has been successfully 

applied to many nonlinear problems such as 

viscous flows, heat transfer, nonlinear oscillations, 

nonlinear water waves, Thomas Fermi’s atom 

model, etc. 

 In particular, by means of the Homotopy 

analysis method, the author Liao [33] gave a drag 
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formula for a sphere in a uniform stream, which 

agrees well with experimental results in a 

considerably larger region of Reynolds number 

than those of all reported analytic drag formulas.  

These successful applications of the Homotopy 

analysis method verify its validity for nonlinear 

problems in science and engineering.  The 

Homogony analysis method contains the auxiliary 

parameter h, which provides us with a simple way 

to adjust and control convergence region of 

solution series.  The approximate analytical 

expressions of the velocity and temperature 

profiles using Homotopy analysis method are as 

follows:
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4.  Results and discussion 

         Figure 1 shows the schematic diagram of the 

problem.  Fig.2 (a)-(e) represents the 

dimensionless transverse coordinate versus 

dimensionless fluid velocity.  From Fig. 2 (a), it is 

clear that when irreversibility ratio increases the 

corresponding dimensionless fluid velocity 

profiles decreases in some fixed values of the 

other parameters GrHaEcL ,,Re,Pr,, and h. From 

Fig. 2 (b), it is observed that when the Reynolds 

number increases the corresponding dimensionless 

fluid velocity profiles decreases in some fixed 

values of the other parameters. From Fig.2 (c), it is 

inferred that when the Grashof number increases 

the corresponding dimensionless fluid velocity 

profiles increases in some fixed values of the other 

parameters. From Fig. 2 (d), it is depict that when 

the Hartmann number increases the corresponding 

dimensionless fluid velocity profiles decreases in 

some fixed values of the other parameters. From 

Fig. 2 (e), it is noted that when the Eckert number 

increases the corresponding dimensionless fluid 

velocity profiles increases in some fixed values of 

the other parameters. 

      Figure 3(a)-(d) are representing the 

dimensionless transverse coordinate versus 

Dimensionless fluid temperature profiles.  From 

Fig.3 (a), it is inferred that the irreversibility ratio 

increases fluid temperature profiles increases in 

some fixed values of the other parameters 

GrHaEcL ,,Re,Pr,, and h . From Fig. 3 (b), it is 

observed that when the Reynolds number 

increases the corresponding dimensionless fluid 

temperature profiles decreases in some fixed 

values of the other parameters. From Fig. 3 (c), it 

is clear that when the Grashof number increases 

the corresponding dimensionless fluid temperature 

profiles increases in some fixed values of the other 

parameters. From Fig. 3 (d), it is depict that when 

the Hartmann number increases the corresponding 

dimensionless fluid temperature profiles decreases 

in some fixed values of the other parameters. 

 Figure 4 (a)-(c) are represent the Entropy 

generation rate versus dimensionless transverse 

coordinate. From Fig.4 (a) it is inferred that the 

irreversibility ratio increases entropy generation 

rate increases in some fixed values of the other 

parameters 
1,,,Re,Pr,, BrGrHaEcL  and h . 
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From Fig. 4 (b), it is observed that when the 

Reynolds number increases the corresponding 

entropy generation rate decreases in some fixed 

values of the other parameters. From Fig. 4 (c), it 

is noted that when the 1Br  increases the 

corresponding entropy generation rate increases in 

some fixed values of the other parameters. 

 Figure 5 (a)-(c) are represent the 

dimensionless transverse coordinate versus Bejan 

number. From Fig.5 (a) it is inferred that the 

irreversibility ratio increases Bejan number 

increases in some fixed values of the other 

parameters 
1,,,Re,Pr,, BrGrHaEcL and h . 

From Fig. 5 (b), it is observed that when the 

Reynolds number increases the corresponding  

Bejan number decreases in some fixed values of 

the other parameters. From Fig. 5 (c), it is noted 

that when the 1Br  increases the corresponding 

Bejan number decreases in some fixed values of 

the other parameters. 

    (a) 

 
(b) 

 

(c) 

 
(d) 

 
                                                                                   

(e) 
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Fig. 2 (a)-(e): Dimensionless fluid velocity profiles  yw versus dimensionless transverse coordinate  y . 

The curves are plotted using the eqn. (17) for various values of the dimensionless parameter LPr,  and in 

some fixed values of the other dimensionless parameters,  when  

 

16.0,1.0Re,,,,

,15.0,05.0Re,,,,,20.0,0Re,,,,





hGrHaEc

hGrHaEchGrHaEca

 

04.0,,5.0Re,,,

,10.0,,3.0Re,,,,16.0,,1.0Re,,,





hGrHaEc

hGrHaEchGrHaEcb
 

  855.0,Re,,5,,,52.0,Re,,3,,,20.0,Re,,1,,  hGrHaEchGrHaEchGrHaEcc  

  49.0,Re,,,5,,72.0,Re,,,3,,20.0,Re,,,1,  hGrHaEchGrHaEchGrHaEcd  

  22.0,Re,,,,2,20.0,Re,,,,1,18.0,Re,,,,1.0  hGrHaEchGrHaEchGrHaEce

(a) 

 
(b) 

 
(c) 

 
(d) 

 

Fig. 3 (a)-(d) : Dimensionless fluid temperature profiles  y versus dimensionless transverse coordinate 

 y .The curves are plotted using the eqn. (18) for various values of the dimensionless parameter LPr, and in 

some fixed values of the other dimensionless parameters,  when  
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(a) 

 
(b) 

 
(c) 

 

Fig. 4 (a)-(c) : Dimensionless entropy generation rate Ns versus dimensionless transverse coordinate  y .The 

curves are plotted using the eqn. (11) for various values of the dimensionless parameter LPr, and in some 

fixed values of the other dimensionless parameters,  when  

 

40.0,1.0Re,,,,

,43.0,05.0Re,,,,,45.0,0Re,,,,





hGrHaEc

hGrHaEchGrHaEca

 

65.0,,5.0Re,,,

,60.0,,3.0Re,,,,65.0,,1.0Re,,,





hGrHaEc

hGrHaEchGrHaEcb

  55.0,Re,,5,,,72.0,Re,,3,,,59.0,Re,,1,,  hGrHaEchGrHaEchGrHaEcc

  01.0,Re,,,5,,7.0,Re,,,3,,80.0,Re,,,1,  hGrHaEchGrHaEchGrHaEcd
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(a) 

 
(b) 

 
(c) 

 

Fig. 5 (a)-(c) : Dimensionless Bejan number Be versus dimensionless transverse coordinate  y .The curves 

are plotted using the eqn. (12) for various values of the dimensionless parameter LPr, and in some fixed 

values of the other dimensionless parameters,  when  

 

11.0,1.0,Re,,,,

,10.0,05.0Re,,,,,,10.0,0,Re,,,,

1

11









hBrGrHaEc

hBrGrHaEchBrGrHaEca

 

01.0,,5.0Re,,,,

,03.0,,3.0Re,,,,,03.0,,1.0Re,,,,

1

11









hBrGrHaEc

hBrGrHaEchBrGrHaEcb

 

25.0,Re,,5,,

,10.0,2.6Re,,3,,,45.0,Re,62.0,1,, 11



 

hGrHaEc

hBrGrHaEchBrGrHaEcc
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 

20.0,1.0,Re,,,,

,28.0,05.0Re,,,,,,50.0,0,Re,,,,

1

11









hBrGrHaEc

hBrGrHaEchBrGrHaEca

 

43.0,,5.0Re,,,,

,35.0,,3.0Re,,,,,20.0,,1.0Re,,,,

1

11









hBrGrHaEc

hBrGrHaEchBrGrHaEcb
 

 
11.0,Re,,5,,

,02.0,2.6Re,,3,,,20.0,Re,62.0,1,, 11



 

hGrHaEc

hBrGrHaEchBrGrHaEcc
 

5. Conclusions 

 A mathematical study is carried out for the 

entropy generation rate in hydromagnetic mixed 

convection flow of Cu-Water nanofluid through a 

channel with permeable wall. The velocity and the 

temperature profiles are obtained graphically and 

analytically with the Homotopy analysis method.  

We can also derive the analytical expressions for 

the skin friction, Nusselt number, entropy 

generation number with the Bejan number. The 

analytical results were obtained through this paper 

demonstrates that the optimal design and the 

efficient performance of a flow system involving 

nanofluid or a thermally designed system can be 

improved by choosing the appropriate values of 

the physical parameters. The Homotopy analysis 

method (HAM) contains the convergence control 

parameter h, so that it can be extend to solve the 

other MHD fluid flow problems in other 

engineering and sciences. 
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Appendix A 

Approximate analytical expressions of the non-

linear differential eqns. (7) and (8) using 

Homotopy analysis method  
In this section, we indicate how the eqns. 17) and 

(18) are derived in this paper.   

To find the solution of the equation (3.7) and (3.8) 

and reduced to  
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                                                               (B.1)                                               

                                            (B.2) 

We construct the HAM for (B.1) and (B.2) are as follows: 

  031Re21 2
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
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
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


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
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dy

dw
A

dy
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                   (B.4) 

The approximate solution of the equation (B.3) and (B.4) are as follows: 

...4

4

3

3

2

2

10  wpwpwppwww                                                                             (B.5) 

...4

4

3

3

2

2

10   pppp                                                                              (B.6) 

Substituting the eqns.(B.5) into an eqn. (B.6), we get the following results: 
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Comparing the coefficients of like powers of 
10 , pp  in the eqns. (B.7) and (B.8) we get 

0:
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dy

wd
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The initial approximations are as follows: 
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Solving the eqns. (B.9) - (B.12) and using the initial approximations (B.13) and (B.14), we can obtain the 

following results: 
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where 4321 ,,,, ttttf  are defined in the eqns.(7)-(21) respectively. 

According to HAM, we can conclude that 

  10
1

lim wwww
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After putting the eqns. (B.15) and (B.16) into an eqn.(B.19) and putting the eqns.(B.17) and (B.18) into an 

eqns.(B.20),  we can obtain the solution in text eqns. (17) and (18). 

 

Appendix: B – Nomenclature 

 

 

Symbol                                 Meaning 
vu,  Velocities  of the fluid 

  Fluid density 

p  Fluid pressure 

yx,   Coordinates 

L  axial  pressure gradient parameter 

0T  Temperature at the lower plate 

1T  Temperature at upper plate 

T  Fluid temperature 

  Coefficient of viscosity 

Pr  Prandtl number 

Ha  Hartmann number 

Gr  Grashof number 

Be  Bejan number 

sN  Entropy generation rate 

  Dimensionless temperature  

Re  Reynolds number 

Ec  Eckert number 

Pe  Peclet number 

Br  Brinkmann number 

  Temperature difference parameter 

y  Dimensionless transverse coordinate 

  Irreversibility ratio 


