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Abstract: Hydrates are an enormous energy resource with global circulation in the permafrost and in the oceans. Even if 

conventional estimates are deliberated and only a small fraction is recoverable, the pure size of the resource is so huge that it 

demands assessment as a potential energy source. In this research work, we discuss the hydrate production prediction with 
Computer Modeling Group STARS (CMG STARS). In this paper different literatures reviews have been visited concerning hydrate 

production prediction with CMG STARS and this have been done through consulting internet search in which secondary data were 

extracted. It was observed that most literatures does not quantify the knowledge on how hydrates production prediction with CMG 

STARS can be done. It was recommended that in the future, the research work on hydrate production prediction with CMG needs 

to be done by performing sensitivity analysis of different reservoir parameters which affect production process and commences the 

simulation model for the production prediction 
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1. INTRODUCTION  

Energy call is anticipated to increase uninterruptedly in the 

upcoming years for meeting the human society‟s grows. In 
contrast, the ever-scarcer fossil energies including 

petroleum, coal and natural gas impede human society‟s 

continuous development. Therefore, it is essential and urgent 

to develop new alternative energy sources. Solar energy, 

wind energy, ocean energy, biomass energy and nuclear 

energy have undergone profoundly the development of the 

different levels in the different countries [1].  

Gas hydrates are non-stoichiometric combination of gas 

molecules and water molecules under the conditions of high 

pressure and low temperature.  

 

Figure1: Influencing factors (sI) for hydrate formation [2] 

Typically has been termed as the crystalline solid 

compounds consisting of a gas molecules surrounded by the 
cage of water molecules due to the hydrogen bonding and 

Van der Waal‟s forces.  The crystalline structure formed are 

classified as sI, sII, and sH. Its stability favor the situation 

having deep-water sediments of the world‟s ocean [3-

5].These gas hydrates is composed of natural gas molecules 

trapped inside the ice structure. It is estimated that gas 

hydrates is twice as much carbon as all other fossil fuels 
(coal, natural gas, and oil) combined. Scientists and the 

world in general believe that in 1810, Sir Humphrey Davy, 

first obtained hydrates by cooling a saturated solution of 

chlorine in water well below 9°C [6]. 

It is believed that natural gas hydrate are widely dispersed in 

permafrost region and offshore places. With the growing 

knowledge on the distribution and gas hydrates saturation in 

sediments, the global assessments of hydrate-bound gas have 

decreased by at least one order of magnitude. Currently more 

than 230 Natural Gas Hydrate deposit have been discovered 

[7, 8] and these deposits found in both permafrost regions 
and in Arctic regions [9, 10]. 

The three main mechanisms of hydrate dissociation for gas 

production include: (1) depressurization, in which the 

pressure is lowered below the level of equilibrium value of 

stability region PH, at the prevailing temperature [11]; (2) 

thermal stimulation, in which the temperature is increased 

above the dissociation temperature TH, at the prevailing 

pressure [12]; and (3) the use of inhibitors injection 

(methanol, glycol and salts), shifts the equilibrium 

temperature and pressure from stability region and causes 

hydrate decomposition [13]. 
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Figure 2: Hydrates production methods [14]. 

Commercial reservoir simulator (CMG STARS simulator) is 

possible to be used to construct the hydrate production 

prediction and make the forecast of the gas production to be 

feasible in gas industry by establishing the simulation model.  

The aim of this research paper, is to visit different literatures 

on the hydrate production prediction with CMG STARS, in 

which studies about hydrates production and prediction 
model using CMG STARS simulator are extensively visited. 

2. BACKGROUND AND LITERATURE SURVEY 

The authors in [15], developed a model that incorporates two 

hydrate-bearing sand units using detailed reservoir 

geological and structural information obtained from past and 

recent drilling programs, their analysis revealed that 2D 

reservoir models with homogeneous demonstrations for 

porosity and hydrate saturation significantly underestimate 

production potential. 

Using Advanced Processes & Thermal Reservoir Simulator 

(STARS) that approximates the production design and 
response of this gas hydrate field, the authors in [16, 17], 

developed a model of field scale reservoir  for Sunlight Peak, 

and in their model it was found that the proximity of the 

reservoir from the base of permafrost and the base of hydrate 

stability zone (BHSZ) has significant effect on gas 

production rates. Generally it was concluded that Sunlight 

Peak gas hydrate accumulation behaves differently than 

other Class III reservoirs (Class III reservoirs are composed 

of a single layer of hydrate with no underlying zone of 

mobile fluids) due to its smaller thickness and high angle of 

dip [18]. 

According to the authors in, [19-21], the gas hydrate 
decomposition can be represented by the following kinetic 

equation: 

   .n  O ± Heat   → +     + n  O  

It is the endothermic equation where there is a gaining of 
heat in high quantity during the decomposition process, in 

which    .n  O is the kind of hydrate, and n is the 

corresponding hydration number which lies between 5.75-

7.4. 

The authors in [22-24] dedicated themselves in developing 

the simulator for numerical simulation of gas production. 

Empirically, in the last three decades, a lot of excellent 

accomplishments were achieved, but the major issues such 

as gas production mechanism from NGH, governing factors, 

efficiency and economic evaluation were still not solved. 

The author in [25] studied the relationship between 

controlling mechanisms and hydrate dissociation models as 

well as the features of dissociation front advance have been 

identified by use of 12 well-designed scenarios considering 

different thermal boundary conditions, intrinsic permeability, 

and hydrate dissociation models, and the author  revealed 

that a piston-like dissociation mode was formed while the 

dissociation of hydrate reservoirs was controlled by either 

the fluid flow mechanism or the heat transfer mechanism. 

The author in [26]  developed the geological model, 

representative of the Gulf of Mexico subsurface, with sand 

and shale layers with a fault running through them and the 
author revealed that Permeability and porosity of the hydrate 

formation zone decreased as solid hydrates form in the pores, 

from numerical simulations of gas hydrate formation and the 

study of rock and fluid flow properties during hydrate 

formation, it was found that the important reservoir 

characterization tool, can be used for estimation of the 

hydrate reserves as well as determination of well placement 

and production strategies. 

The author in [27], investigated the effects of the 

geomechanical mechanisms on the gas production of a 

depressurized Class-3 hydrate deposit, Four-Way-Closure 
Ridge and it was found that there was a lower gas production 

rate and a longer production plateau when geomechanics 

were considered in the fluid flow modeling. 

According to Sun et al in [28], the sensitivity analysis on one 

factor at a time (OFAT) was performed and an orthogonal 

design were used in the simulation to investigate which 

factors dominate the productivity ability and which was the 

most sensitive one, their  results showed that the order of 

effects of the factors on gas yield was perforation interval > 

bottom hole pressure > well spacing and also the numerical 

simulation results showed that under the condition of 3000 
kPa constant bottom hole pressure, 1000 m well spacing, 

perforation in greater intervals and with one horizontal well, 

the daily peak gas rate can reach 4325.02 m3 and the 

cumulative gas volume is 1.291 × 106 m3 . 

Nandanwar et al in [29] developed a field scale reservoir 

model that fully defines the production design and the 

response of hydrate field and CMG STARS was used as a 

simulation tool to model multiphase, multicomponent fluid 

flow and heat transfer in which an equilibrium model of 

hydrate decomposition was used and deliberate the 

sensitivity analysis of the effect of the reservoir properties 

and working parameters on the overall productivity of the 
reservoir, they found the response of the reservoir to pressure 

and temperature changes due to depressurization and hydrate 

dissociation over a period of time. 
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According to Mohammadmoradi et al in [30], a direct three-

phase pore morphological simulation method was proposed, 

tested and applied to simulate hydrate malformations and 

forecast fluid possessions and absolute and effective 
permeabilities of hydrate-bearing geological formations, they 

proposed this technique in order to simulate capillary-

dominant displacements by applying a set of geomaterial 

procedures directly to the pixels of pore-level porous media 

images, they  used sandy microstructures created based on 

the particle size distributions of the Mallik gas hydrate 

deposit, and the sensitivity analysis showed that although the 

gas relative permeability was less sensitive to the hydrate 

qualifications, the porosity, grain size distribution, and 

hydrate content and occupancy remarkably influence the 

rock absolute permeability. 

According to [31], developed some mathematical models for  
gas-hydrate reservoirs and the various governing equations 

of fluid flow, heat transfer, thermodynamics and kinetics of 

hydrate decomposition, which were all integral to gas 

production from hydrate reservoirs, and were solved 

simultaneously to develop two predictive models to forecast 

the performance of flat and tilted hydrate reservoirs and they 

further developed, a material balance equation for hydrate-

capped gas reservoir, the solution developed was found to be 

valid during transient, boundary-affected and boundary-

dominated flow. 

Reagan et al in [24, 32, 33], used the massively parallel 
TOUGH+HYDRATE code (pT+H) to assess the production 

potential of a large, deep ocean hydrate reservoir and 

develop strategies for effective production and their 

simulations revealed the challenges inherent in producing 

from deep, relatively cold systems with extensive water-

bearing channels and connectivity to large aquifers, mainly 

difficulty of achieving depressurization and the problem of 

enormous water production, also new frontiers in large-scale 

reservoir simulation of coupled flow, transport, 

thermodynamics, and phase behavior, including the 

construction of large meshes and the computational scaling 
of larger systems were highlighted.  

According to authors in [34], a three dimensional finite-

difference simulation of heat and mass transfer in a reservoir 

comprising stratified layers of gas hydrates (50 ft.) and free 

natural gas (50 ft) was organized and the results showed that 

in the volumetric depletion gas reservoir, hydrated gas was 

found to donate about 20 to 30% of the total gas production 

and this was due to hydrate decomposition as the pressure in 

the reservoir was lowered.  

M. Pooladi-Darvish et al in [35], developed an analytical 

model to predict the performance of decomposition of gas 

hydrates in porous media, and  used  it to perform sensitivity 
studies to examine the feasibility of commercial gas 

production from hydrate reservoirs and the results proposed 

that substantial quantities of gas can be produced from gas 

hydrate reservoirs where the hydrate superimposes the gas 

zone.  

The authors in [36], studied the effect of the overlying 

hydrate in enlightening the production performance of the 
underlying gas reservoir and explored the effect of various 

parameters on gas production behavior and the rate of gas 

generated and produced, various parameters like pressure, 

temperature, and saturation distributions were studied in 

order to examine the sensitivity of results on individual input 

parameters and it was decided that the development of gas 

reservoirs with overlying hydrates led to substantial 

production rates and that the top hydrates were found to have 

a large influence on increasing the reserve and enlightening 

the productivity of the underlying gas reservoir. 

Howe et al in [37], simulated the production of gas from a 1 

mile by 4 mile reservoir block having hydrate underlain by 
an accumulation of free gas and the subsequent production 

profiles were analyzed and found that, the  depressurization 

of the free gas zone lowered the pressure at the gas-hydrate 

interface below that required for hydrate stability and caused 

the hydrate to decompose into methane gas and water. 

Also the authors in [2], computed the detailed mathematical 

models of the most relevant chemical and physical processes 

for the enhanced exploitation of gas hydrate deposits and the 

basic mechanisms of gas hydrate formation/ dissociation and 

heat in which the mass transport in porous media were 

considered and implemented into simulation programs, they 
found that there was strongly dependence on the deposit 

conditions, especially multiphase flow rates which were 

controlled by permeability terms, as well the heat transport 

within heterogeneous layered deposits led to improved 

hydrate dissociation and thus higher production rates. 

Tabatabaie et al in [38], established analytical model rate of 

gas generation and hydrate recovery when gas was produced 

from an inclined hydrate-capped gas reservoir where the 

geothermal gradient was accounted, then the numerical 

simulator was used to validate the assumption used in 

analytical model and the sensitivity analysis of different 
reservoir parameters were done and the sensitivity results 

showed how a steeper reservoir that prolongs closer to the 

base of permafrost leads to less recovery. 

Walsh et al in [39], performed the economic studies on 

simulated gas hydrate reservoirs  to evaluate the price of 

natural gas that may lead to economically worthwhile 

production from the most promising gas hydrate 

accumulations, and came up with the result that economic 

evaluation reliant on the producibility of the target zone, the 

amount of gas in place, the associated geologic and 

depositional environment, present pipeline infrastructure, 

and local tariffs and taxes. 

The authors in [40-45], discussed the corresponding 

production strategies of gas hydrate, and found that simple 

depressurization appears promising in Class 1 hydrates, but 
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its appeal decreases in Class 2 and Class 3 hydrates in which 

most promising production strategy in Class 2 hydrates 

involves combinations of depressurization and thermal 

stimulation, and was obviously enhanced by multi-well 
production-injection systems whereas the efficiency of 

simple depressurization in Class 3 hydrates was restricted, 

and thermal stimulation (alone or in combination with 

depressurization) through single well systems seems to be 

the strategy of choice in such deposits. 

According to the authors in [46], developed the simulator to 

study the formation and the dissociation of hydrates in 

laboratory-scale core samples and in hydrate formation from 

the system of gas and ice (G+I) and in hydrate dissociation 

systems where ice appears, the equilibrium between 

aqueous-phase and ice (A–I) was found to have a “blocking” 

effect on heat transfer when salt was absent from the system 
in which the results showed that rise of initial temperature (at 

constant outlet pressure), introduction of salt component into 

the system, decrease of outlet pressure, and rise of boundary 

heat transfer coefficient can lead to faster hydrate 

decomposition. 

Sun et al in [47-51], developed a thermal, three-phase, one-

dimensional numerical model to simulate two regimes of gas 

production from sediments containing methane hydrates by 

depressurization, and the model showed that laboratory-scale 

experiments were often dissociation-controlled, but the field-

scale processes were typically flow-controlled and gas 
production from a linear reservoir was more sensitive to the 

heat transfer coefficient with the nearby than the longitudinal 

heat conduction coefficient, in 1-D simulations. 

The authors in [22, 52-60], conducted the parametric study 

of natural gas production from the dissociation of methane 

hydrate in a confined reservoir by a depressurizing well and 

they found that the gas production rate depends on various 

factors such as, well pressure, reservoir temperature and 

zone permeability. 

The authors in [61-63], developed a three dimensional 

numerical model  to simulate the hydrate dissociation 
behavior in the porous medium of the reservoir during 

drilling operations and they found that, wellbore pressure 

and temperature on the dissociation pressure and 

temperature, velocity and location of dissociation front, all 

govern  a lot on the hydrate decomposition process. 

According to the authors in [64-67], studied the hydrate 

dissociation in a porous sandstone core by using a computer 

modeling approach, and results showed that the rate of 

hydrate dissociation in a core was mainly depend on  

surrounding environment temperature, outlet pressure 

condition, and permeability. 

Zhao et al in [68-72], developed and validated a two-
dimensional axisymmetric model to investigate the effect of 

heat transfer on gas production from methane hydrate 

dissociation by depressurization, thermal stimulation, and a 

combination of the two methods and they found that 

dissociation behavior was affected by reservoir permeability, 

with high permeability exhibiting spatial hydrate 

dissociation, followed by an inward moving decomposition 
front from the surrounding wall of the sediment core. 

3. METHODOLOGY 

The methodology employed by this research was an „Internet 

Search‟, in which the study visited different sources on the 

internet to find evidence and facts about the hydrates 

production prediction with CMG STARS. Where possible 

the websites of the specific resources were consulted, for 

instance websites of some journals which put materials in 

HTML format only rather than pdf or word document. The 

visited literatures are found on the internet. So generally 

secondary source of data were mainly used in a large portion 

of this research to come up with the conclusion. 

4. DISCUSSION 

According to the visited literatures that have been conducted 

for hydrate production prediction with CMG STARS, many 

authors discussed on how to simulate the hydrate 

decomposition either analytically or numerically by using 

different reservoirs simulators, but in their discussion they 

didn‟t talk exactly on how to conduct hydrate production 

prediction with CMG STARS. Also on the sensitivity 

analysis conducted by some authors, they only stated the 

parameters which affects the hydrate production without 

considering the environmental condition for each parameter, 
as well the favorable conditions of hydrate production was 

not stated in range of data, to show the effectiveness when 

the environmental condition changes. 

Moreover, some authors only studied the rock fluid 

properties like initial conditions like temperature, pressure 

and water saturation without starting the effect of capillary 

pressure on hydrate production using CMG STARS 

simulator. No any authors discussed the effect of capillary 

pressure. Also some authors did the code comparison of 

different reservoir simulator on hydrate decomposition 

process, but they didn‟t state the good simulator in 
comparison with other, so as to avoid complexity in 

simulating hydrate decomposition.  

5. CONLUSION AND FUTURE WORK 

In this paper, the author visited different literatures about 

hydrates production prediction with CMG STARS, and the 

results from most of the literatures concentrated on the 

hydrate production mechanism, numerical simulation of 

hydrate decomposition, analytical model of hydrate 

production, but they didn‟t touch on hydrate production 

prediction with CMG STARS. In the future, the author 

recommends on performing the research on hydrate 

production prediction with CMG STARS, in which the 
description of sensitivity analysis of different parameters in 

stating the range of data need to be done, the analysis of the 

geologic parameters that control the occurrence and stability 

of hydrates in nature need to be done, description about 
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hydrates characteristics in relation to the production factors 

need to be done also. 
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