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Abstract: Agriculture is very important to human continued existence and remains a key driver of many economies worldwide, 

especially in underdeveloped and developing economies. There is an increasing demand for food and cash crops, due to the 

increasing in world population and the challenges enforced by climate modifications, there is an urgent need to increase plant 

production while reducing costs. Preceding instrument vision methods established for selective weeding have confronted with 

major challenges for trustworthy and precise weed recognition. In this paper, plant seedlings classification approach is presented 

with a dataset that contains approximately 5,000 images with 960 unique plants that belong to 12 species at a few developing 
phases. Convolutional Neural Network (CNN) algorithms, a deep learning technique extensively applied to image recognition was 

used, for this task. The results found that CNN-driven seedling classification applications when used in farming automation have 

the latent to enhance crop harvest and improve output and productivity when designed properly. The trained model achieved an 

accuracy of 99.48% on a held-out test set, demonstrating the feasibility of this approach.  

Keywords: Plant Seedlings, Classification, Deep Learning 

 

1. INTRODUCTION 

A seedling is a young plant sporophyte developing out 

of a plant embryo from a seed. Seedling development starts 

with germination of the seed. A typical young seedling 

consists of three main parts: the radicle (embryonic root), 

the hypocotyl (embryonic shoot), and the cotyledons (seed 
leaves). The two classes of flowering plants (angiosperms) 

are distinguished by their numbers of seed 

leaves: monocotyledons (monocots) have one blade-shaped 

cotyledon, whereas dicotyledons (dicots) possess two round 

cotyledons. Gymnosperms are more varied. For 

example, pine seedlings have up to eight cotyledons. The 

seedlings of some flowering plants have no cotyledons at all. 

These are said to be acotyledons [1,2]. 

The plumule is the part of a seed embryo that develops into 

the shoot bearing the first true leaves of a plant. In most 

seeds, for example the sunflower, the plumule is a small 
conical structure without any leaf structure. Growth of the 

plumule does not occur until the cotyledons have grown 

above ground. This is epigeal germination. However, in 

seeds such as the broad bean, a leaf structure is visible on the 

plumule in the seed. These seeds develop by the plumule 

growing up through the soil with the cotyledons remaining 

below the surface. This is known as hypogeal germination 

[3]. 

Growing plants continue to help as a source of nourishment 

and oxygen for all types of life on earth. Agriculture is main, 

proper automation of the agriculture process would aid in 

optimizing crop harvest and safeguard incessant productivity 
and sustainability. The makeover of the agricultural region 

by use of smart agricultural methods can influence economic 

growth in numerous countries. There is a strong relationship 

between increased productivity and economic affluence. 

 

In this work, we show that a Deep Convolutional Neural 

Network (CNN) does well in classifying plant seedlings. In 

computer vision, CNNs have been known to be powerful 

visual models that yield hierarchies of features enabling 

accurate segmentation. They are also known to perform 
predictions relatively faster than other algorithms while 

maintaining competitive performance at the same time [6]. 

Deep Learning is an Artificial Intelligence (AI) subfield that 

imitates the works of a human brain in processing data and 

producing patterns for use in decision making. Deep learning 

is a subset of machine learning in artificial intelligence that 

has networks the skills of learning from data that is 

unlabeled or unstructured. 

Deep Learning has grown hand-in-hand with the digital era, 

which has conveyed about an explosion of data in all forms 

and from every area of the world. This data, recognized 
as Big Data, is pinched from sources like social media, 

search engines, e-commerce platforms and more. This huge 

amount of data is freely accessible and can be shared through 

fintech applications like cloud computing. Though, the data, 

which normally is unstructured, is so massive that it could 

take years for humans to understand it and extract pertinent 

information. Companies understand the unbelievable 

potential that can result from disentanglement this wealth of 

information, and are progressively adapting to Artificial 

Intelligence systems for automated support [15-25]. 

One of the most common AI techniques used for processing 

Big Data is Machine Learning, a self-adaptive algorithm that 
gets gradually better analysis and patterns with experience or 

with new added data. If a digital payments company wanted 

to detect the occurrence of or potential for fraud in its 

system, it could use machine learning tools for this purpose. 
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The computational algorithm built into a computer model 

will process all transactions happening on the digital 

platform, find patterns in the data set and point out any 

anomaly detected by the pattern [26-40]. 

Deep learning, a division of machine learning, uses a 

hierarchical level of artificial neural networks to perform the 

process of machine learning. The artificial neural networks 

are constructed like the human brain, with neuron nodes 

linked together like a web. While traditional programs build 

to do analysis with data in a linear way, the hierarchical task 

of deep learning systems allows machines to process data 

with a nonlinear approach. A traditional approach to 

detecting fraud or money laundering might depend on the 

amount of transaction that precedes, while a deep learning 

nonlinear technique would include geographic, IP address, 

time, location, type of retailer and any other feature that is 
likely to indicate a fraudulent activity. The first layer of the 

neural network processes a raw data input like the amount of 

the transaction and send it on to the next layer as output. The 

second layer processes the previous layer’s information by 

including extra information like the user's IP address and 

send on its result [41-60]. 

The next layer takes the second layer’s information and 

includes raw data like geographic location and makes the 

machine’s pattern even improved. This goes on across all 

levels of the neuron network. 

Practical application of Deep Learning is fraud detection 
system. Using the fraud detection system mentioned above 

with machine learning, we can create a deep learning 

example. If the machine learning system created a model 

with parameters built around the amount of dollars a user 

sends or receives, the deep learning method can start 

building on the results offered by machine learning. Each 

layer of its neural network builds on its previous layer with 

added data like retailer, sender, user, social media event, 

credit score, IP address and a host of other features that may 

take years to connect together if processed by a human 

being. Deep learning algorithms are trained to not just create 
patterns from all transactions, but to also know when a 

pattern is signaling the need for a fraudulent investigation. 

The final layer relays a signal to an analyst who may freeze 

the user’s account until all pending investigations are 

finalized [8]. 

Deep learning is used across all industries for a number of 

different tasks. Commercial apps that use image 

recognition, open source platforms with consumer 

recommendation apps and medical research tools that 
explore the possibility of reusing drugs for new ailments are 

a few of the examples of deep learning incorporation. 

2. RELATED WORK 

The Authors in [9] used deep learning to detect five 

tomato leaves diseases. They achieved a high accuracy in 

detecting the tomato disease.  

The authors in [10] provided a dataset that is aimed at 

ground-based weed or specie spotting and also suggested a 

benchmark measure to researchers to enable easy 

comparison of classification results. The authors in [12] 

demonstrated the effectiveness of a convolutional neural 

network to learn unsupervised feature representations for 44 
different plant species with high accuracy. 

In the course of exploring the right architecture for our 

model, we consider the work of [11] in classifying leaves 

using the VGGNet16 architectures. The authors in [13] 

implemented a 26-layer deep learning model consisting of 8 

residual blocks in their classification of 10,000 images of 

100 ornamental plant species achieving classification rates of 

up to 91.78%. 

The authors in [14] addressed the problem of CNN-based 

semantic segmentation of crop fields separating sugar beet 

plants, weeds, and background solely based on RGB data by 
proposing a deep encoder-decoder CNN for semantic 

segmentation that is fed with a 14-channel image storing 

vegetation indexes and other information that in the past has 

been used to solve crop-weed classification. 

3. METHODOLOGY 

In this section we describe the proposed solution as 

selected convolutional network (ConvNet) architecture and 

discuss associated design choices and implementation 

aspects. 

3.1 Dataset 

The dataset used, provided by the Aarhus University Signal 
Processing group, in collaboration with University of 

Southern Denmark, contains a set of 5608 images of 

approximately 960 unique plants belonging to 12 species at 

several growth stages. See Fig. 1 for plant seedling samples. 
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Figure 1: Images of the segmented plant seedling 

 

  

3.2 Architecture 

VGGNet is a well-documented and globally used 

architecture for convolutional neural networks [11]. This 

ConvNet became very widespread by accomplishing 

excellent performance on the ImageNet [12] dataset. It 

comes in several variations of which the two best-performing 

(with 16 and 19 weight layers) have been made publicly 

available. In this work, the VGG16 architecture was selected, 

since it has been shown to generalize well to other datasets. 

The input layer of the network expects a 224x224 pixel RGB 

image. The input image is passed through five convolutional 
blocks. Small convolutional filters with a receptive field of 

3_3 are used. Each convolutional block includes a 2D 

convolution layer operation (the number of filters changes 

between blocks). All hidden layers are equipped with a 

ReLU (Rectified Linear Unit) as the activation function layer 

(nonlinearity operation) and include spatial pooling through 

use of a max-pooling layer. The network is concluded with a 

classifier block consisting of three Fully Connected (FC) 

layers. 

3.3 Design considerations 

The original VGG16 must be modified to suit the current 
solution: the final fully-connected output layer must perform 

12 classes only. 

3.3.1 Preprocessing 

Input images must be preprocessed by:  

 Normalizing the pixel values to a [0,1] range;  

 Balance the 12 different species  

The current data is not balanced: (Fat Hen: 540, 

Small-flowered Cranesbill: 577, Maize: 257, Loose 

Silky-bent: 801, Sugar beet: 461, Common wheat: 

255, Cleavers: 345, Common Chickweed: 713, 

Scentless Mayweed: 605, Black-grass: 330, 

Charlock: 451, Shepherds Purse: 273). We made the 
data balanced using augmentation by generating 

new images from the existing ones. After the 

balancing, the data became(Fat Hen: 801, Small-

flowered Cranesbill: 801, Maize: 762, Loose Silky-

bent: 801, Sugar beet: 801, Common wheat: 760, 

Cleavers: 801, Common Chickweed: 801, Scentless 

Mayweed: 801, Black-grass: 801, Charlock: 801, 

Shepherds Purse: 796) as seen in Fig.2 and Fig. 3. 

 Resizing the image to be 128x128 pixels. 
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Figure 2: Bar graph showing the distribution of the different classes of plants before treatment 

 
Figure 3: Bar graph showing the distribution of the different classes of plants after treatment

 

 

3.3.2 Data augmentation 

In order to make the most of our few training examples and 

increase the accuracy of the model, we augmented the data 

via a number of random transformations. The selected data 

augmentation techniques were: size re-scaling, rotations of 

40, horizontal shift, image zooming, and horizontal flipping. 

Furthermore, it is expected that data augmentation should 
also help prevent overfitting (a common problem with small 

datasets, when the model, exposed to too few examples, 

learns patterns that do not generalize to new data) and, for 

this reason, improving the models ability to generalize. 

 

3.4 One problem, three possible solutions  

The modified VGG16 ConvNet can be used in three 

different ways:  

 training the ConvNet from scratch;  

 using the transfer learning paradigm to leverage 

features from a pre-trained VGG16 on a larger 

dataset; and  

 keeping the transfer learning paradigm and 
fine-tuning the ConvNets architecture. These 

variants (named Method 1, Method 2, and 

Method 3, respectively) are described next.  
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3.4.1 Training from scratch 

The architecture is initialized with random weights and 

trained for a number of epochs. After each epoch, the model 

learns features from data and computes weights through 
backpropagation. This method is unlikely to produce the 

most accurate results if the dataset is not significantly large. 

However, it still can serve as a baseline for comparison 

against the two other methods. 

3.4.2 ConvNet as feature extractor 

Due to the relatively small number of images of plant 

seedling datasets, this method initializes the model with 

weights from the VGG16 trained on a larger dataset (such as 

ImageNet [11]), a process known as transfer learning. The 

underlying assumption behind transfer learning is that the 

pre-trained model has already learned features that might be 

useful for the classification task at hand. 
This corresponds, in practice, to using selected layer(s) of 

the pre-trained ConvNet as a fixed feature extractor, which 

can be achieved by freezing all the convolutional blocks and 

only training the fully connected layers with the new dataset. 

3.4.3 Fine-tuning the ConvNet 

Another common transfer learning technique consists of not 

only retraining the classifier on the top of the network with 

the new dataset, but also applying a fine-tuning of the 

network by training only the higher-level portion of the 

convolutional layers and continuing the backpropagation. 

In this work, we propose to freeze the lower level layers of 

the network because they contain more generic features of 

the dataset. We are interested in training only the top layers 

of the network due to their ability to perform extraction of 
more specific features. In this method, the first four 

convolutional layers in the final architecture are initialized 

with weights from the ImageNet dataset. The fifth, and final, 

convolutional block is initialized with weights saved and 

loaded from the corresponding convolutional layer in 

Method 1. This method was adapted in our current research.  

4. EXPERIMENTS  AND DISCUSSIONS 

We have done two experiments with Fine-tuning the 
ConvNet as described above.  

 

 The first experiment: We used the original 

plant seedling dataset that consists of 5608 

images after resizing the images to 128x128 

pixels. We divided the data into training (90%), 
validation (10%). The training accuracy was 

100% and the validation accuracy was 98.57% 

 The second experiment: We used the balanced 

plant seedling dataset that consists of 9527 

images after resizing the images to 128x128 

pixels. We divided the data into training (90%), 

validation (10%). The training accuracy was 

100% and the validation accuracy was 99.48% 
 

We think that the more images we have the better the 
results will. 

  
Figure 4: Training and validation accurcey Figure 5: Training and validation Loss 

 

5. CONCLUSION 

We proposed a solution for assisting farmers to optimize 

crop. More specifically, we have designed and implemented 

a two-class classifier that takes plant seedling images with 

12 different species an input, builds a model using deep 
learning convolutional neural networks, and uses this model 

to predict the type of (previously unseen) images of  plant 

seedling. 

The proposed approach achieves promising results – most 

notably, validation accuracy of 99.48% . 
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