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Abstract: Bi-response Poisson regression model based on the bivariate Poisson distribution and the response variable is a count
data that correlate. The function of the bi-response Poisson regression model can be estimate using the parametric approach and
the nonparametric approach. In this paper, we discuss the nonparametric approach using local linear estimator. The parameters
of the bi-response Poisson regression model are estimated by the method of maximum likelihood.
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1. INTRODUCTION

The regression model can be used to describe the relation
between the response variable and the predictor variable. The
response variable of the regression model allows for
continue data and count data. Some the regression model of
the count data are Poisson regression model, Generalized
Poisson regression model, and Negative Binomial regression
model. According to Zamani, et al (2015), Poisson
regression model has been widely used for modeling count
data with covariates. The Poisson regression model is the
basic framework for count data analysis and it arises from
the evidence that the number of occurrences of a given event
over a specific time period depends on some covariates
(Santos & Neves, 2008). The Poisson regression model
based on the Poisson distribution. The Poisson distribution
satisfies the equal-dispersion property because the
conditional mean of the response variable equals its
conditional variances (Famoye, 1993).

Poisson regression modeling often involves not only one
response variable but also can two or more response
variables because of a phenomenon involving multiple
response variables. Poisson regression analysis involving
one response variable with one or more predictor variables is
called Poisson regression. Poisson regression involving two
response variables correlated with one or more predictor
variables is called bi-response Poisson regression. The
extension of the bi-response Poisson regression is the multi-
response Poisson regression, the Poisson regression
involving more than two response variables with one or
more predictor variables.

The function of the Poisson regression model can be
estimated using two approaches, there are the parametric
approach and the nonparametric approach. The parametric
approach used if the function of the regression model is
known except for finitely many unknown parameters and the
relation between the response variable and the predictor

variable is assumed to have a specific type curve. If we used
the parametric regression approach to this condition then
consequently, giving misleading inference about the
regression model (Chamidah & Saifuddin, 2013). One
collection of procedures that can be used for this purpose are
nonparametric regression approach. These approaches give
estimate of regression function that allow great flexibility in
the possible form of the regression curve because the
estimate get from data. A nonparametric regression model
generally only assumes that the regression curve satisfies
smooth properties that are continuity and differentiability
(Eubank, 1999).

In this research, we will be studied about bi-response
Poisson regression estimation based on local linear approach.

2. BI-RESPON POISSON REGRESSION MODEL

Let the three random variables V,, V,, and U to follow three
independent Poisson distributions with the positive
parameters &,0,,and y respectively. According to Jung &
Winkelmann (1993), new random variables Y, and Y, can be
constructed by Y, =V, +U and Y, =V, +U where Y, and Y,
are Poisson random variables. The mean Y, and Y, are
E(Y,)=6 +y and E(Y,)=6,+7.

The density probability function of Y, and Y, given by:
PCY, =y, Y, =Y,)= (¥, ¥,)

k Hyl—k ezyz—k

_ exol— > 7
R ) P ey

where y;,Y, =0,1,2,...and S = min(y,, Y,).

;)

The covariance betweenY, and Y, is:
Cov(Y,,Y,) =Cov(V, +U,V, +U)
=Var(U)
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=y )
The correlation between Y, and Y, is:

_r ©)
O, +7)(0, +7)

The parameter y is non-negative (Berchout & Flug, 2004).
Following the standard approach in univariate Poisson
regression we model the marginal expectation of Y, and Y, ,

respectively, as a loglinear function of exogenous variables.
(Jung and Winkelmann, 1993).

0. +y=exp(x f)ir=L2dani=1 2, .., n (4)
The likelihood fJnction for the observed random sample is
given by:

B ) = Flexply - 2 o058
and the log likelihood function is:

L=log (5. 5,.7)

= ny—_%exp(g;,@)—%exp(g;@zh_%log B; (5)
where

T i—K T —k
53 P Texp0g8) - 1™ Texp(,8) -1
LRkl (y, k) (¥, —k)!
s, =min(y,),r=1,2
The maximum likelihood estimates of the parameters can be
obtained by solving equations:

olog L Olog L
°d =0and °d
oy Py

Corr(Y,,Y,) =

=0;r=1,2.

3. LOCAL LINEAR ESTIMATOR IN SINGLE RESPON

Local linear estimator is special case in local
polynomial estimator. Local polynomial estimator is one of
the smoothing methods that can be used as a regression
function approach m(.) (Fan & Gijbels, 1996). Local
polynomial estimators can estimate regression functions

m(x,) and their derivatives:
m'(x,), m"(x,),---, m®(x,)
Suppose the regression function m(.) has a derivative (p +

1) at the point x , the regression function m(.)can be

approached locally with the degree of polynomial p. By
Taylor expansion, for x in a neighborhood of, we have:

m(x) = m(x,) +m'(x,)(x—X,) +
m"(x,)(x= %)’ m” (x)(x-Xx,)’
+...+
21 p!

(6)

or

P mP(x) P ,
mx) ~ Y ——2(x-x) = X ﬂj(xo)(x—xo)’;
=0 J! j=0
X e (X, —hx, +h)
where
(i
ﬂj(xo):m (%,)

j!

1 J=0L12,---,p. )

Suppose we taking n-pairs data sample (x,y,), the
estimates of B based on Weighted Least Square (WLS)
procedure by minimizing function:

n P ; .

Zi{y. - 'Zoﬂj (Xo)(Xi - Xo)J}2 Kh (Xi - Xo); 1=12,---,n (8)
i= j=

where K(.) is Kernel function and h is bandwidth. Local
polynomial estimators can estimate regression functions
m(x,) and their derivatives. According to Equation (7), local
polynomial estimators of derivatives jth in regression
function m”(x,) is:

MY (%) = 18,(%,): ] =012+, p; ©)
For j=0, the estimate of regression function at the point X,
is:

m(xo) = IBQ(X()) . (10)

Local linear estimator we obtain if the degree of polynomial
(p) equal one (p=1). Local linier estimator can be written is:

é{yi =B, (%) — A% = X )F K, (% —%,) (11)

4, STUDY OF BI-RESPONSE POISSON REGRESSION USING
LOCAL LINEAR ESTIMATOR

Suppose we have pair observational data (X,Y,),
r=12dani=1 2, .., nwhich is distribute independently
with x is vector of covariates and Y is the count bi-response
that follows the Poisson distribution. The probability density
function of y_ given by equation (1).

Generally, equation (4) can be wrote:

0, +y=exp[m (x);r=42dani=1 2, .., n 12)
The function m (.) in equation (5) is a smooth function.
Assume that the function m (.) has a (p+1)" continuous
derivative at the point x,. We approximate the function
m, (.) by Taylor expansion with order one or p =1, for data
point x. in a neighborhood of x, with x. e (x,—h,x, +h)
and h is a bandwidth:

m, () = By (%) + B (X)X —X%,);r =1,2.

or
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m.(x) =x (%) (x);r =12
where
r r r T
X' =[L (x-x)]and g =[B(x) B (x)]
Let K, (x —x,) is a Kernel weight and h is bandwidth, the
local likelihood function can be obtained from Eq (1):

(6} (1) _ _
i—ZK (X X) 1— ) exp[ﬂ (X)+ﬁ (X Xo)] 7Yy
oy = exp [ﬂ(l)(X )+,3(1)(Xi _ Xo)]_ 2

I

k+( k_y2|
(2) (2)
7 Lexp[ B2 (%) + B (% - x)] -

00,60,y x) =11 (y,,y,) %) (13) oL
0 %o Ve %) = L0 T W Vo and — ZK(X x){ exp[xﬂ ]x
The log local likelihood function is: aﬁ =
O b7 %)=INUG,. 6, 7. %) s (v —k)exp[ X 87 |
n 7 Yk gk ) eXp[XTﬂ(l)]— to
=2 | K, (x —%,)1[~(6, +6, +7/)]+|n i LR
i1 KEQy, =M =Y ) o
(14) 5P ElKh (x - Xo){—eXp[x?ﬁj‘”]xi
Next, by subtituting Equation (12) into Equation (14), we @ .
have: ) R R 19)
L(mli M, 7, Xo) = i;l Kh(xi - Xo) {}/—EXD [m1(xi)] —Exp [mz(xi)] k=0 EXD[&T@(Z)]—Y
Y1i =k Yai—k .
s, ¥ (exp[ml(xi)]—y) (exp[mz(xi)]—y) ’ Proof:
+In EOF : : The likelihood function in Equation (16) will have maximum
- ° (yli _k)' (yzi _k)' . . . (1)
value when the first derivative of parameter », g (x,),
(15) and B (x,) equal to zero. The partial derivatives of
Let D = 2 D.’D; equation (11) is:
i K=0
oL »n 1 oD
— =2 K (X =x)1-| —— (20)
Where oy il D, oy
k T (6} yli_k
exp(x,. (x X)) — ob
DY :7/—[ PO, 04)F7 (%) =71 —"in equation (20) can be obtained using equation (15)
ok (y, —k)! oy
. kK and equation (16) as follows:
o [exp(K (%) A7 (%)~ 717 o o
and D" = = D, & [ D aDik o
i Y =Y D D, (21)
(yzi k) a}/ k=0 6}/ a}/ ik
The Equation (15) can be written :
where
LB (6)B” (x,),7.%,) = 2 K, (%, ~,) % 4 (a4 (1 50 Ykt
22 ) 7 %) = 2B T e 7 (exp[gl (x,)B (XO)]—y)
2 = X
{y— Zlexp[g(iT (xo)g“)(xo):l +In Di} (16) oy k!(y, —k)!
r=:
Parameter estimation y, B”(x), dan B(x) in bi- (k exp[g(i (Xo)é’()(xo)]—?/yﬁ) (22)
response Poisson regression model can be obtained by local T @ Yai k-1
likelihood maximum method given by following Theorem 1. aDi(:) _ (k Y )(exp[gl (XO)/} (Xo)] B 7) (23)

Theorem 1

By assuming bi-variate Poisson distribution for response
variable y_, these considerations yield the conditional local

weighted log-likelihood in Equation (16), the maximum
likelihood estimator for parameter can be found from a
solution of maximum likelihood equation:

8;/ (yzi - k) !
By substituting equation (15), equation (16), equation (22),
and equation (23) to equation (21), we have:
1i7k
7*(exe ¥ ()89 (%) |7
k!(ylifk)!(yzifk)!

87/ k=0

b s
—=2
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x(exp[x?(xo)@”(xo)]—y)y”_k}

B OO e T 7
yexp[ X ()8°(x,) |- exp[ ¥ ()87 (x) |- 7

(24)
According to equation (14) and equation (23), equation (20)
can be written:

oL o s kEXDI:Z(iT (xo)g(”(xo)]_yy1i
=YK (X —%)y1- >
oy i= k=0 7eXp[)~(iT (Xo)ﬁ(” (Xo)] B 7/2
k-vy.
Lo P (25)
exp| X (x,)87 (%) | -7
oL n ; r
m = iél. Kh (Xi - Xo) {_eXp[Xi (Xo)g( )(Xo):|)~(i X
1 o |,
ol e

D, o, . . :
B () and B () in equation (26) can be obtained

based on equation (14) :

i 2 (=) (exp [ 00820 ]-7)"

i :z ’
op”(x,) k=0 k! (y, —k)!

(e[ 0870 ]-#) "

exp| X (%,)87 (%) | % (%,)x
[ - ] (yzi_k)!

(27)

oD,
i — Z ;o

/ (yli - k) (exp [K.T (Xo)é’(l) (Xo):l i 7)yl. —«

op” (x,) k=0 | k! (y, —k)!

(=)ol )87 0)]-7)"
(y, —k)!
<exp X ()57 () 5 (x)f 28)

According to equation (27), equation (26) can be expressed
as:

oL d T 1
aﬁ(l) (X ) = igl Kh (Xi - Xo) {_eXp[)}i (XO)@( )(Xo ):| X (Xo)
N i (yli _k)eXp[Z(.T (Xo)[jm(xo):l )N(i(xo) (29)
e[ X ()87 (x) -7

According to equation (28), equation (26) can be expressed
as:

aL n T 2
gy R0 T el 67 )]s )

k=0 exp |:>~(IT (x,)8% (XO)] -y
The likelihood function in equation (16) has maximum value

when equation (25), equation (29), and equation (30) equals
zero, we can be written as :

; (kexp[xi(xo)@”(xo)]—yyﬁ

o2 000 —k)exp[x?(xo)@‘2)<xo)}&<xo)} )

YK, (% -x){1- 3 T :
i=1 k=0 7exp|:)~(i (Xo)g (Xo)]—]f

¥ K=Y -0 31
exp[x?(xo)/g"”(xo)]—y]} Y

El Kh (Xi - XO) {—exp [Z('T (Xo)g(l) (Xo):l X; (Xo)

+2

k=0 exp[g(:(xo),@m (Xo)]—?/
(34)

£k om0 (0]100)

(v, —K)exp[ X ()8 (00)
(v, ~K)e[x (x,) (xo>]x.(x0)}:0 -

L3 (0o X o)A 00 500 |
=0 exp| X ()87 (x) |7 )

(33)
The first partial derivative obtained in Equation (31) to
Equation(33) are nonlinear in parameters so that an iteration
process is required to obtain the solution. The commonly
used numerical method is the Newton-Raphson method. In
the Newton-Raphson method, there is a Hessian matrix
whose element is a partial derivative of the two functions of

In likelihood to the », (8™)", and (8“)" parameters.

5. CONCLUSION

Estimator bi-response Poisson regression model using
local linear approach can be obtained from the first partial
derivative of the likelihood function. The first partial
derivative are nonlinear in parameters so that we required an
iteration process to obtain the solution, it is the Newton-
Raphson method.
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