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Abstract: The paper addresses the multi-period single-item production-inventory lot sizing problem where demand is stochastic 

and non-stationary. Over the entire planning horizon, the inventory replenishment periods are uniformly fixed and considering 

inventory positions of the product, we formulate a finite state Markov decision process model where states of a Markov chain 

represent possible states of demand for the product. The objective is to determine for each period of the production –inventory 

problem an optimal lot sizing policy so that the long run production-inventory costs are minimized for the given state of demand. 

The decision of whether or not to produce additional inventory units is made using dynamic programming over a finite period 

planning horizon. The approach demonstrates the existence of an optimal state dependent production lot size (PLS) and produces 

an optimal lot sizing policy as well as the corresponding total production and inventory costs. 
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1. INTRODUCTION  

The dynamic production lot size (PLS) model has extensive 

applications in production-inventory problems of 

manufacturing industries. The model is primarily used to 

decide upon when and how much to produce for inventory 

under fluctuating demand. A critical foundation of the 

stochastic version for the dynamic lot-size problem by Vargas 

[1] determines the optimal solution to the deterministic case 

using the well-known Wagner-Whitin algorithm. However, 

the characteristics of cost structures for dynamic lot size 

model with stochastic demand as illustrated by Bhaskaran and 

Sethi  [2] show the structure of the setup cost not having a 

convex  structure that is usually assumed. Tarim and 

Kingsman [3] build on the existing literature by considering 

service constraints under the static-dynamic uncertainty 

strategy where replenishment periods are fixed at the 

beginning of the planning horizon. 

Critical analysis of the problem from the social and behavioral 

science perspectives  by Purohit , Choudhary and Shankar [4] 

induced authors to investigate the effects of emission and 

system related parameters on inventory lot sizing and supply 

chain performance under dynamic stochastic demand using 

integer programming. Although earlier scholars examined the 

dynamic lot sizing problem with deterministic demands but 

stochastic lead times as noted by Nevison and Burstem [5], the 

solutions were lumpy in the sense that each order satisfied a 

set not necessarily consecutive, of the demands. The earlier 

version of this problem by Mubiru[6] considers the economic 

production lot size model with stochastic demand ; where  

stationary assumption of demand over the planning horizon is 

considered. The demand of item is described by a two-state 

markov chain and using dynamic programming, the optimal 

production lot sizing policy and economic production quantity 

are determined. In similar contexts, modeling lot size with 

time dependent demand based on stochastic programming by 

Rojas and Leiva [7] considered a case study of drug supply in 

Chile where a lot sizing methodology was proposed for an 

inventory system that faces time dependent random demands. 

The stochastic lot sizing literature also benefits from Bijari 

and Shirnesshan [8] where authors maximize the probability 

of meeting target profit for a single item and single period.  

 

Additional heuristics complement the solution approaches by 

Senyogdt E [9] where simultaneous considerations of both 

demand and price uncertainties are examined. When all the 

costs are constant over time, this represents the classical 

dynamic lot sizing problem whose optimal solution can be 

obtained by the Wagner-Whitin algorithm. The economic 

production lot size with stochastic demand and shortage with 

partial backlogging rate under imperfect quality items 

presented by Kumar and Chauham [10] considered constant 

deterioration and linear holding costs where shortages are 

permitted in inventory. The parameter effects upon the 

optimal solutions were numerically examined. 

 

On a comparative note however. the dynamic/inventory lot 

sizing model we propose offer interesting results for 

discussion especially for the sake of characterizing random 

demand in a dynamic production/inventory setting when 

shortages are allowed or not allowed. 

 

2.  Model Description 
We consider a production-inventory system whose demand 

during each time period over a fixed planning horizon is 
classified as either favorable (denoted by state F) or 
unfavorable (denoted by state U) and the demand of 
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any such period is assumed to depend on the demand of 
the preceding period. The transition probabilities over 
the planning horizon from one demand state to another 
may be described by means of a Markov chain. 
Suppose one is interested in determining an optimal 
course of action, namely to produce additional stock 
units (a decision denoted by Z=1) or not to produce 
additional units (a decision denoted by Z=0) during 
each time period over the planning horizon, where Z is 
a binary decision variable. 

Optimality is defined such that the lowest expected total 
production and inventory costs are accumulated at the end 
of a total of N consecutive time periods spanning the 
planning horizon under consideration. In this paper, a two-
period (N=2) planning horizon is considered. 

2.1 Notation 

Sets 

i,j                Set of states of demand 

Z                 Set of lot sizing policies 

Parameters 

D                Demand matrix 

Q                Demand transition matrix 

O                 On-hand inventory matrix 

V                 Production-Inventory cost matrix 

      e                  Expected  costs 

     a                Accumulated  costs 

cp                Unit production cost 

ch               Unit holding cost         

cs                Unit shortage cost             

 P                Production lot size             

Q
Z

ij                     Demand transition probability  

Others 

n,N              Stages      

C                 Customer matrix 

F                  Favorable demand         

U                 Unfavorable demand       

                    i,j Є {F,U}          Z Є{0.1} 

 

         2.2 Finite-Period Dynamic Programming 
Formulation 

Recalling that the demand can either be in state F or in state 
U, the problem of finding an optimal PLS and lot sizing 
policy may be expressed as a finite period dynamic 
programming model. Let gn(i) denote the optimal expected 

total production and inventory costs accumulated during 
periods n+1,………….N given that the state of the system 
at the beginning of period n  is  i Є{F,U}.The recursive 
equation relating gn and gn+1 is  

 

i Є{F,U}, Z Є{0,1}    n=1,2,……….N                                    
(1) 

together with the conditions 

 

This recursive relationship may be justified by noting that 
the cumulative total production - inventory costs V

Z
ij(n) + 

gn+1(j) resulting from reaching state j Є {F,U} at the start of 
period n+1 from state i Є {F,U} at the start of period n  
occurs with probability Q

Z
ij(n). 

Clearly, 

  Z Є {0,1}                        (2)

                             where ―T‖ denotes matrix 

transposition,  and hence the dynamic programming recursive 

equations 

 

                  

                             (3)

  

                                      (4)  

result. 

2.2.1 Computing Q
Z
(n) and V

Z
(n) 

 

The demand transition probability from state               i Є 

{F,U} to state j Є {F,U},given lot sizing  policy Z Є {0,1} 

may be taken as the number of customers observed with 

demand initially in state i and later with demand changing to 

state j , divided by the sum of customers over all states. That 

is, 

                  (5)     i Є 

{F,U}         ,        Z Є {0,1}     

When demand outweighs on-hand inventory, the cost matrix 

V
Z
(n) may be computed by means of the relation    

  

(6)   

for all i,j Є {F,U}   and   Z Є {0,1}      

A justification for expression (6) is that  D
Z

ij(n )  - O
Z

ij(n) units 

must be produced in order to meet excess demand. Otherwise 

production is cancelled when demand is less than or equal to 

on-hand inventory. 

The PLS when demand is initially in state i Є {F,U} ,given lot 

sizing policy Z Є {0,1} is  

 
i Є {F,U}   ,     Z Є {0,1}    
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The following conditions must, however, hold: 

1. P
Z

i(n) > 0   when   D
Z

ij (n)  >  O
Z

ij (n)  , and  p
Z

i (n) = 0   

when D
Z

ij (n)  ≤  O
Z

ij (n)   

2. Z=1 when cp > 0, and Z=0 when cp = 0 

3. cs > 0 when shortages are allowed, and cs = 0 when 

shortages are not allowed 

3. Computing an Optimal Lot sizing Policy and PLS 

The optimal PLS and lot sizing policy are found in this 

section, for each period separately 

 

3.1 Optimization strategy during period 1 

When demand is favorable (i.e. in state F), the optimal lot 

sizing policy during period 1 is 

 
The associated total production and inventory costs and PLS 

are then 

 
and 

  

 

respectively. Similarly, when demand is unfavorable (i.e. in 
state U), the optimal lot sizing policy during period 1 is 

 

 

 

while the associated total production and inventory costs 
and PLS are 

and 

 

3.2 Optimization strategy during period 2 

Using dynamic programming recursive equation (3) 
,and recalling that a

Z
i(1) denotes the already 

accumulated production and inventory costs at the end 
of period 1 as a result of decisions made during that 
period, it follows that 

 

                                  

Therefore, when demand is favorable (ie. in state F), the 
optimal lot sizing policy during period 2 is 

 

 

while the associated total production and inventory costs 
and PLS are  

 

and  

 

respectively. Similarly, when demand is unfavorable (i.e. in 
state U), the optimal lot sizing policy during period 2 is 

 

In this case, the associated total production and inventory 
costs and PLS are 

 

and  

 

respectively.  

 

4.  Case Study  

In order to demonstrate use of the model in §3-4, a real case 
application from Plascon, a manufacturer of plastic utensils 
in Uganda is presented in this section. Plastic basins are 
among the products manufactured and the demand for 
basins fluctuates from month to month. The company 
wants to avoid over-producing when demand is low or 
under-producing when demand is high, and hence. seeks 
decision support in terms of an optimal lot sizing policy, 
the associated production-inventory costs and specifically a 
recommendation as to PLS  of plastic basins over a two-
week period. 

    

 4.1 Data collection 

A sample of 50 customers was used. Past data revealed the 
following demand pattern and inventory levels of basins 
during the first and second weeks of the month when 
demand was favorable (state F) or unfavorable (state U).  

Table 1:   Customers versus state transitions 

  Lot sizing policy 

1 

Lot sizing policy 

0 

Week States F U F U 

1 F 34 16 24 26 

 U 20 30 19 31 
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2 F 27 23 25 25 

 U 22 28 9 41 

 

Table 2: Demand (basins) versus state transitions 

  Lot sizing policy 

1 

Lot sizing policy 

0 

Week States F U F U 

1 F 75 10 80 25 

 U 20 50 40 10 

2 F 80 15 75 30 

 U 45 60 90 45 

 

Table 3: On hand inventory (basins) versus state transitions 

  Lot sizing policy 

1 

Lot sizing 

 policy 0 

Week States F U F U 

1 F 60 20 25 50 

 U 40 25 30 65 

2 F 

U 

75 

55 

30 

40 

45 

50 

100 

60 

      

 

In either case, the unit production cost (cp) is $2.00,the unit 
holding cost per week(ch) is $0.50 and the unit shortage 
cost per week (cs) is $1.00 

4.2 Computation of model parameters 

Using (5) and (6)., the state transition matrices and 
production-inventory cost matrices for weeks 1 and 2 
are 

                  

                                                       

for the case where additional basins are produced 
during weeks 1 and 2, while these matrices are given by 

                                                          

                                                     
for the case where additional basins are not produced during 

weeks 1 and 2. When additional basins are produced (Z=1) 

during week 1, the matrices Q
1
(1) and V

1
(1) yield the costs 

 

 

 

However, when additional basins are not produced (Z=0) 

during week 1, the matrices Q
0
(1) and V

0
(1) yield the costs 

 

When additional units are produced (Z=1) during week 2, the 

matrices Q
1
(2) and V

1
(2) yield the costs 

 

 
 

while the matrices   Q
0
(2) and V

0
(2) yield the costs 

 

   

4.3 The Optimal lot sizing policy and PLS 

Since 37.3 < 98.9, it follows that Z=1 is an optimal lot sizing 

policy for week 1 with associated total production and 

inventory costs of $37.3 and a PLS of 75 – 60 =15 units if 

demand is favorable. Since 24.15 < 35.58, if follows that Z=0 

is an optimal lot sizing policy for week 1 with associated total 

production and inventory costs of $24.15 and a PLS of 0 units 

if demand is unfavorable. 

If demand is favorable, the accumulated production and 

inventory costs at the end of week1 are 

 

 

Since 59.43< 120.38, it follows that Z=1 is an optimal lot 

sizing policy for week 2 with associated accumulated 

production and inventory costs of $59.43 and a PLS of 80 – 75 

= 5 units for the case of favorable demand. However, if 

demand is unfavorable, the associated accumulated production 

- inventory costs at the end of week 1 are 

 

   

Since 40.43<61.7, it follows that Z=0 is an optimal lot sizing 

policy for week 2 with associated accumulated production and 

inventory costs of $29.63 and a PLS of 0 units for the case of 

unfavorable demand. When shortages are not allowed, the 

values of Z, gn(i) and P
Z

i(n) may be computed for i Є {F,U} in 

a similar fashion after substituting cs=0 in the matrix function 

V
Z
(n) = [cp+ch+cs][D

Z
(n) – O

Z
(n)] 

5. Conclusion 

A dynamic production lot size model with stochastic demand 

was presented in this paper. The model determines an optimal 

lot sizing policy, production-inventory costs and the PLS of a 

given product with stochastic non-stationary demand. The 

decision of whether or not to produce additional stock units is 

modeled as a multi-period decision problem using dynamic 

programming over a finite period planning horizon. The 

working of the model was demonstrated by means of a case 

study. Therefore as a cost minimization strategy in 
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production-inventory management, computational efforts of 

using markov decision processes show promising results. It is 

appropriate to conclude this paper by identifying the 

limitations of our model, which also indicate future research 

directions. 

• Our model ignores production disruptions that influence lot 

sizing policies in manufacturing 

• Production capacity limitations that influence lot size 

optimization for effective production planning have similarly 

not been considered. 

• Extending this model to production/inventory lot sizing 

policies using continuous time markov chains (CTMC) is an 

important challenge 

• Finally, better and more robust models are needed for 

production/lot sizing policies with highly uncertain demand 

conditions. 
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