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Abstract: In this paper, the definition of triple Aboodh transform of fractional order α, where α ϵ [0, 1], is introduced for functions 

which are fractional differentiable. We also present several properties of this transform. Furthermore, some main theorems and 

their proofs are discussed. 
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1. INTRODUCTION 

Differential equations  both ordinary and  partial including fractional have a lot of applications in real life science such as 

mathematics, physics, statistics, engineering ,and son. However, we do not have general method to solve these equations.  One of 

most popular and rather method for solving differential equations is the transform method. In literature, several different transforms 

are introduced and applied to find the solution of differential equations such as Laplace transform [1,2], Natural transform [3], 

Sumudu transform [4], Ezaki transform[5], and so on. 

A new one of them is Aboodh transform [6,7] which was introduced by Khalid Aboodh in 2013, the transform has  deeper 

connection with Laplace and Sumudu transforms [8].  Aboodh in 2014 introduced the double Aboodh transform which is a higher 

version of the simple Aboodh transform[9], S.alfaqeih and T.Ozis in 2019 introduced the triple Aboodh transform and use this 

method to solve integral, partial and fractional differential equations[10].   

In this paper, we extend the work done by S.Alfqeih and T.Ozis [11,12] , by introducing the  definition of the fractional triple 

Aboodh transform and its inverse, then we discuss several main properties  and theorems related to this transform. Also we find the 

fractional triple Aboodh transform for some fractional partial derivatives. 

This article is organized as follows:  

In Section (2), we give some notations about triple Aboodh transform, first and double fractional Aboodh transforms, Mittag-

Leffler function and modified fractional Rieman-Lioville derivative. In section (3), the definition of fractional triple Aboodh 

transform is introduced.  In section (4), we present and prove some properties of the triple fractional Aboodh transform, in section 

(5), the convolution theorem of the triple fractional Aboodh transform and its proof are stated. In section (6), we present the 

inversion formula and inversion theorem and its proof. Finally, the conclusion follows in section (7). 

2. PRELIMINARIES  

In this section , the definitions of  triple Aboodh transform,  simple and double fractional Aboodh transforms, and the fractional 

derivative via fractional difference are presented. 

 

Defention 2.1 The triple Aboodh transfom of a continuous function ( , )f x t  is defined by: 

        
0 0 0

1
, , , , , ,

st px qy
txy f

spq
K s p q A f t x y t x y dtdxdy



  
  e      (1) 

And, the inverse of triple Aboodh transform is given by: 

( , , )
1

( , , )
2 2

1

2

1st px qyf t x y se pe qe K s p q dq dp ds
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 For more details see[10]  
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Defintion 2.2:  [11] The fractional Aboodh transfrom of function ( )f t  is given by: 

 

        
0

, , 0) .
1

(A f K E st f dt
s

t s t s t
 

 



                        (3) 

Definition 2.3: [12] the  fractional double Aboodh transform of function ( , )f t x  is defined by : 

        2

0 0

1
( , ) ( , ) ( , ) .A f t x K s p E st px f t x dt dx

sp

  

  

 

         (4) 

Defintion 2.4: [13] The Mittag-Leffler function is defined by as follows: 

 

 
 0

  ,  t , ( )>0.
Γ 1

k

k
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t
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       (5) 

 

Defintion 2.5: (Fractional Derivative via Fractional Difference) let  f t  be a continuous function and not necessarily 

differentiable, then the fractional difference of   f t is defined by:

        
0

( 1)
j

j

t f tf FW h f
j

k h
  





 
    


  


       (6) 

Where   FW h    is a forward operater defined by: 

  ( )  ( )FW hh f t f t   

 And h   is a constant discretization span . 

And its α-derivative is defined by :   

  
 

0
lim
h

f
tD f

t

h








                  

 

For more details see [14,15]. 

Definition 2.6: (Modified Fractional Rieman-Lioville Derivative) Let  f t be the function that defined in definition 2.5, then 

a. If   ,f t b where b is constant , then its α-derivative is given by :  

   
,   0

Γ 1

0,           

t

c

tD f

otherwis

t

e









 



               

 

b. If  f t  is not constant , hence 

        0 0 ,f f f ft t    

and the fractional derivative given by: 

        0 0t tf D f D f ft t     . 

 Now,for α ˃0, we put 

         10t t tt t tD f f D f D f      

 And if, 1m m    , we  put  
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     , 1, 1m
m

t t m m mf f        

Theorem 2.7: The solution of fractional differential equation     , 0, (0) 0,t tdx f xdt


   is given by: 
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               0 1
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x f dv x

t v

t v

vf dv




 



 

   





 

Where the integration with respect to  dt


. for more result see [16,17] . 

3.  FRACTIONAL TRIPLE ABOODH TRANSFORM  

Definition 3.1: Let  ( , , )f t x y  be a function where , , 0t x y   , then the fractonal triple Aboodh transform of order α is 

defined by : 

 

          

        

3

0 0 0

, ,
0 0 0

1
( , , ) ( , , ) ( , , ) ,

1
               = (li , , ) ,  s,  q .m p,

u v w

u v w

A f t x y K s p q E st px qy f t x y dt dx dy
spq

E st px qy f t x y dt dx dy
spq

   

  

   



  



    

   

  

  

     (7) 

 

By using the multiplication property of Mittag-Leffler function, we can write (9) as follows: 

                3

0 0 0

1
( , , ) ( , , ) ( , , )A f t x y K s p q E st E px E qy f t x y dt dx dy

spq

     

    

  

             

(8) 

Remark 1: When 1,  , Fractional triple Aboodh transfrom (7) turns to  tiple Aboodh transform (1). 

4. PROPERTIES OF FRACTIONAL TRIPLE ABOODH TRANSFORM 

1) Linearity Property. 

Let ( , , ),  ( , , )f t x y g t x y  be two functions of three variables, then: 

          3 3 3

1 2 1 2, ,   , ,   , , , , ,A c f t x y c g t x y c A f t x y c A g t x y      

where 1 2,c c  are constants. 

Proof: 

we can simply get the proof, by applying the definition  () 

 

2) Changing of Scale. 

If     3 , , , , ,A f t x y k s p q   then:   3 1
, , , , ,

s

c

p q
A f at bx cy k

a b ca b
   

 
  

 
  

Where , ,a b c  are constants. 

Proof:  
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By letting , , ,u at v bx w cy    we have: 

         3
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3) Shifting property. 

If     3 , , , , ,A f t x y k s p q   then       3 , , , , ,A E at bx cy t x y k s a p b q cf


          where 

, ,a b c  are constants. 

Proof : 
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Depending on the following property of the Mittag-Leffler function,  
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4) Multiplication by t x y  
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5) Fractional triple Aboodh transform of  some fractional partial derivatives: 

a)  The fractional triple Aboodh transform of fractional first partial derivatives is given by: 

1. respect to t  

 
 3
1

, , ( , , ) (0, , ).
Г

A g t x y s K s p q K p q
t s




   

 
  

 
 

2. respect to x  
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3. respect to y  

 

 
 3
1
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Proof: 

(1) By using the fractional integration by part formula with respect to t , we obtain: 
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The proof of part 2 and 3 is similar to part 1.  

 

b) The fractional triple Aboodh transform of  a mixed fractional partial derivative is given by: 

       

         

3
3

2 2 2 3

( ) ( )
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Proof: 

 Depending on part (a) , we get the result. 

 

Remark 2:  ( ,0,0) ( ),  (0, , ) ( , ),  K s K s K p q K p q      where ( )K s  and ( , )K p q , denote the fractional first and 

double Aboodh transforms given by equation ( 3),(4) respectivly.  

 

Remark 3 :For 1  , all  above results  are sutable for triple Aboodh transform. 
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5. CONVOLUTION THEOREM  

Theorem 5.1 : The α- order triple convolution of functions  , ,f t x y  and  , ,g t x y   defined by the following 

expression: 

             
0 0 0

, , ***   , , , , , , .

xt y

f t x y g t x y f t u x v y w g u v w du dv dw
  

          (9) 

thus, the fractional triple Aboodh transform  of (9) is given by: 

         3 3 3, , ***   , , , , , ,A f t x y g t x y spqA f t x y A g t x y      

 

Proof:  
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by letting , ,t u x v y w        and  the limit from zero to infinity,  (10) becomes: 
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6. INVERSION EQUATION OF TRIPLE FRACTIONAL ABOODH TRANSFORM 

Definition 6.1:[17] The Dirac’s distripution  , ,t x y   of order   , where  0,1  is defined by: 

          3, , , , , ,f t x y t x y dt dx dy f




 
       



      .        (11) 

 

Example  : The triple fractional Aboodh transform of  , ,t x y       can be given by: 
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In particular, 



International Journal of Engineering and Information Systems (IJEAIS) 

ISSN: 2643-640X 

Vol. 3 Issue 5, May – 2019, Pages: 31-39 

 

www.ijeais.org 

37 

  
3

3 , ,  A t x y
spq

 


  . 

The relation between  , ,t x y    and ( )E t x y 

     is clarified by the following lemma. 

Lemma 6.2 : [18] The following formula holds 
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      .       (12) 

Where  , is the period of the complex-valued Mittag-leffer function and satisfy 

   1E i 


  .  

Proof:  
We test the consistency between (12) and 
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By substituting (13), in (12), we get: 
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Theorem 6.2:( Inversion Theorem ) 

 The inverse of the triple Fractional  Aboodh transform (7)  can be defined as follows: 
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Proof:  

 Subsitute  (14) into (7) and  depending on  (12) and (13) we get: 
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7. CONCLUSION  

In this article, we have extended the work of [11,12] to the triple fractional Aboodh transform. Several main properties and 

theorems related to fractional triple Aboodh transform are discussed and proved. We also, implemented the introduced transform to 

some partial fractional derivatives. The triple convolution theorem of fractional order are presented and proved. Finally, we defined 

the inverse of the fractional triple Aboodh transform.  Our results are in agreement with the triple Aboodh transform when 1  . 
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