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Abstract: This paper interested in finding the numerical value of a double – integral with a continuous integrand . Romberg 

acceleration used to improve the correction terms of the derivation composite rule  . these rule given values of such integral on the 

region of integral , these outputs be better if we take in account , the accuracy as well as the number  of subintervals . 
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1-Introduction  

         Finding the value of double integral is difficult  than that of a singular one, this is due to  the former  that depends on two 

variables as well as the requirement of continuity , singularity of the integrand and  beside the singularity of the partial derivatives 

of the integrand . It is known that ,in single integration we deal with interval , where as in double integration we deal with region or 

surface , so it is easy to solve such type of integrals numerically . 

In this work , combined rules are derived to evaluate the correction terms of such integrals (double integrals) where the integrands 

are continuous and bounded on integration interval .the Romberg  acceleration convergence method . 

2- Singular integral for continuous integrand   

Suppose that J is defined as follows : 
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   Such that )(xf  is a continuous integrand lies above the x-axis on the interval  nxx ,0
 ,

 
)(hG  represents largranian  

approximation of the value of integration, E(h) is a series of correction terms that can be added to G (h) , J represents the area 

under the curve )(xfy   and above x-axis and bounded by the parallel lines 
0, xxxx n  . 

  The general form of )(hG  is given by 
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iw are weighted factors , and
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to simplify formula (2) we rewrite the weights in terms of 0w provided that 
0201 2,)1(2 wwww  .    Now, if we let 

2/10 w  , then we will gat the trapezoidal rule and then symbolized to the function )(hG by the symbol  

 

And when 00 w  we get the mid-point rule and symbolized by the symbol )(hM  : 
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where n is the number  sub-intervals. 

    The general formula for the suggested method  (which depend on the rules of trapezoid and the mid-point) symbolized by Su is  
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 see reference [ 2 ]  

     The reminder )(hRG
has the form )(
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is Bernoulli number 

 

3- Romberg integration   

    The Romberg method is an application of Ralston [9] method to find the best value  for J  using the trapezoid, mid-point and 

suggested rules. 

Suppose that we applied the error formulas for two different values of h , say 21, hh , we find that  
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in the formula (4), and solving it together with formula (3) for 
GA  and neglecting those terms which 

contain ,..., 64 hh from both mentioned formulas we will get 
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Where  1hh  . 

Formula (5) does not represent the accurate value of integration, but it is to some extend closer to the real value of the integration 

than the two values   )(,2/ hGhG , it will be symbolized by 
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Thus, 
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where ,..., GG BA  are  constants. 

In a similar way a closer value of the integration can be found using  2/,hhG , and hence we get  table of values of Romberg 

table and in general the values of this table can be calculated  using 
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where ,...6,4,2k , and G is the value of a new column of Romberg table, and )(,)2/( hGhG are present in the previous 

column, the first column of Romberg table represents the use of the mid-point   method  on the inner dimension  x and the  the rule 

of  suggested method on the external dimension y, which symbolized by  MSu  and finely the value of Romberg table is determined 

according to the required accuracy which we call Eps , in which the relative error is as follows 
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, where 12 ,GG  are two approximate  values of the integral in a single row of Romberg table with a 

method of numerical integration 

 

4.Derivation of composite rule to calculate continuous double integrals and formulas for the error using the mid-point  rule 

and the suggested method 

 Suppose that the integral I is defined as follows 
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can be written on the internal dimension (x) with the suggested method as follows 
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where ),( baj  , ...,3,2,1j , ihaxi    and nabh /)(  . 

Integrating both sides of (10) numerically for y on the interval [c, d] using the mid-point  method yiel 
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Where MSuMSuMSu CBA ,,  constants whose value depends on the partial derivatives of the function ),( yxf  , and that 

jhcynjihaxni ji  ,,....,3,2,1,,1,....,3,2,1      

 

5-Examples and Results 

1.   
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)ln( dxdyyx
, the analytical value is  (1.08913865206603) which is approximated to 14 decimal places. 

2. 
dxdyxe yx )(
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    The analytical value is (0.06144772819733)  near to 14 decimal places 

3. 
dxdyxy y

13

2

3

2

)(   has no analytical value. 

 

N MSu K=2 K=4 K=6 K=6 

1 1.09156956942644 

 

   

2 1.08975064597941 1.08914433816373    

4 1.08929192371573 1.08913901629450 1.08913866150322   

8 1.08917698716071 1.08913867497570 1.08913865222111 1.08913865207378  

16 1.08914823691532 1.08913865350019 1.08913865206848 1.08913865206606 1.08913865206603 
2 2

1 1

ln( )x y dxdy   
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n MSu K=2 K=4 K=6 K=8 K=10 

1 
0.0543550704651

28  
    

2 
0.0596164623915

11 

0.0613702597003

05 
    

4 
0.0609861724812

64 

0.0614427425111

82 

0.0614475746985

74 
   

8 
0.0613321038317

86 

0.0614474142819

60 

0.0614477257333

45 

0.0614477281307

23 
  

1

6 

0.0614188073639

08 

0.0614477085412

81 

0.0614477281585

70 

0.0614477281970

65 

0.0614477281973

25 
 

3

2 

0.0614404970671

72 

0.0614477269682

60 

0.0614477281967

26 

0.0614477281973

31 

0.0614477281973

33 

0.0614477281973

32 
2 1
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n MSu K=2 K=4 K=6 K=6 K=8 K=10 

1 

2.07631685979

886       

2 

2.08150417076

353 

2.08323327441

842      

4 

2.08277664179

756 

2.08320079880

890 

2.08319863376

827     

8 

2.08309245372

090 

2.08319772436

201 

2.08319751939

889 

2.08319750171

049    

1
6 

2.08317124588
309 

2.08319750993
715 

2.08319749564
216 

2.08319749526
507 

2.08319749523
980   

3

2 

2.08319093358

619 

2.08319749615

388 

2.08319749523

500 

2.08319749522

854 

2.08319749522

839 

2.08319749522

838  

6

4 

2.08319585486

129 

2.08319749528

632 

2.08319749522

848 

2.08319749522

838 

2.08319749522

838 

2.08319749522

838 

2.08319749522

838 
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Discussion and conclusion: The theorem was proved to solve double integrals over their given intervals.  

From the tables corresponding to the rule MSu, we conclude that they give good results, but they need relatively high number of 
subintervals. But using Romberg acceleration after external adjustment, we reach better results which were closer to the real values 

integrals.  
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