Some New Results About Generalized Difference Triple Sequence Spaces Defined by a Double Orlicz－Functions

Ali Hussein Battor ${ }^{1}$ ，Dalael Saad Abdulzahra ${ }^{2}$
Department of Mathematics，Faculty of Education for Girls，Iraq．

Abstract：In this study we introduced some new results about generalized difference triple sequence spaces by using a double
Orlicz－functions and we will examine some new properties of these spaces．
Keywords：Triple sequence；Difference sequence；Double Orlicz functions．

1．Introduction

A triple sequence（complex or real）can be defined as a function $f: N \times N \times N \rightarrow R(C)$
where N, R and C denote the sets of natural numbers ，real numbers and complex numbers respectively［2］［9］．Some new results of triple sequences spaces would studied by Orlicz function using a function F where
$F=\left(F_{1}(r), F_{2}(u)\right)$.
Let $(x, y)=\left(x_{\mathrm{r}}, \mathrm{u}\right.$ ，回，$y_{\mathrm{r}, \mathrm{u}}$ ，回）be a triple infinite array of elements $\left(x_{\mathrm{r}}, \mathrm{u}\right.$, 回，$y_{\mathrm{r}}, \mathrm{u}$, 回）and Ω^{3} denotes the family of all triple sequences of real or complex numbers．
Let $3 l_{\infty}, 3 c_{0}$ be the linear spaces of bounded ，null，and convergent sequences with complex terms ，respectively，normed by ：

$$
\begin{aligned}
\|(x, y)\| & =\sup _{\mathrm{r}, \mathrm{u}} \text {, }\left\{\mid x_{\mathrm{r}, \mathrm{u}} \text { 团 }|,| y_{\mathrm{r}, \mathrm{u}} \text {, 团 } \mid\right\} \\
\|x\| & =\sup _{\mathrm{r}, \mathrm{u}} \text {, 团 } \mid x_{\mathrm{r}}, \mathrm{u}, \text { 回 } \mid \\
\|y\| & =\sup _{\mathrm{r}, \mathrm{u}}, \mid y_{\mathrm{r}, \mathrm{u}}, \text { 团| }
\end{aligned}
$$

where r, u and $j \in \mathbb{N}$ the set of positive integers．
In this study we define the triple sequence spaces $3 c_{0}\left(\Delta_{u}^{v}, F_{r, u}, p, \varphi\right), 3 c\left(\Delta_{u}^{v}, F_{r, u}, p, \varphi\right)$ ，and $3 l_{\infty}\left(\Delta_{u}^{v}, F_{r, u}, p, \varphi\right)$ ．

2．Definitions and Preliminaries：

Definition．2．1［7］

The double Orlicz－functions is afunction

$$
\begin{aligned}
& F:[0, \infty) \times[0, \infty) \rightarrow:[0, \infty) \times[0, \infty) \text { such that } F(u, v)=\left(F_{1}(u), F_{2}(v)\right) \\
& F_{1}:[0, \infty) \rightarrow[0, \infty) \text { and: } F_{2}[0, \infty) \rightarrow[0, \infty)
\end{aligned}
$$

such that F_{1}, F_{2} are Orlicz functions which are even，convex，continuous，non－decreasing and satisfies three conditions ：
i）$F_{1}(0)=0, F_{2}(0)=0 \rightarrow F(0,0)=\left(F_{1}(0), F_{2}(0)\right)$
ii）$F_{1}(u)>0, F_{2}(v)>0 \rightarrow F(u, v)=\left(F_{1}(u),\left(F_{2}(v)\right)>(0,0)\right.$ for $u>0$ ，
$v>0$ ，we mean that by $F(u, v)>(0,0)$ that $F_{1}(u)>0, F_{2}(v)>0$
iii）$F_{1}(u) \rightarrow \infty, F_{2}(v) \rightarrow \infty$ as $u, v \rightarrow \infty$ then
$F(u, v)=\left(F_{1}(u), F_{2}(v)\right) \rightarrow(\infty, \infty)$ as $(u, v) \rightarrow(\infty, \infty)$ we mean by
$F(u, v) \rightarrow(\infty, \infty)$ ，that $F_{1}(u) \rightarrow \infty F_{2}(v) \rightarrow \infty$

Definition．2．2［2］［4］

A triple sequences $(x, y)=\left(x_{\mathrm{r}}, \mathrm{u}\right.$, 回，$y_{\mathrm{r}}, \mathrm{u}$ ，回）is called convergent to M in pringsheim＇s sense for everyє $>\mathrm{o}$ ，there exists $N(\epsilon) \in \mathbb{N}$ such that $\mid x_{\mathrm{r}}, \mathrm{u}$ ，回 $-M \mid<\epsilon$ ，whenever $r \geq N, u \geq N, j \geq N$ and we write

$$
\lim _{r, u, j \rightarrow \infty} x_{r, u, j}=M
$$

Definition．2．3［3］［4］

A triple sequence（ $x_{\mathrm{r}}, \mathrm{u}$, ？$)$ called Cauchy sequence if $\forall \epsilon>0, \exists \mathrm{~N}(\epsilon) \epsilon \mathbb{N}$ such that $\left|\mathrm{x}_{r, u, j}-x_{m, b, l}\right|<\epsilon$ whenever $, \mathrm{r} \geq m \geq N, \mathrm{u} \geq b \geq N, j \geq l \geq N$.

Definition．2．4［3］

A triple sequence $\left(x_{\mathrm{r}}, \mathrm{u}\right.$, ？$)$ called bounded if $\exists \mu>0$ such that
$\left|x_{\mathrm{r}, \mathrm{u}}, 0\right|<\mu$ for all r, u and $j \in N$ 。

Definition．2．5［4］

A triple sequence $\left(x_{r}, u\right.$ ，团 is called convergent regularly if it is convergent in pringshim＇s sense，and satisfy the following limit ：
$\lim _{j \rightarrow \infty} \mathrm{X}_{\mathrm{ru}}$ ？$=\alpha_{\mathrm{r}, \mathrm{u}}$
$\lim _{u \rightarrow \infty} \mathrm{X}_{\mathrm{ru}}$［ $=\alpha_{\mathrm{r}, \mathrm{j}}$
$\lim _{r, \rightarrow \infty} \mathrm{X}_{\mathrm{ru}}$ ？$=\alpha_{\mathrm{u}, \mathrm{j}}$
Let Ω^{3} dented the family of all triple sequence spaces of complex or real numbers．Then the class of triple sequence $3 c_{0}, 3 c, 3 l_{\infty}$ clearly these classes are linear spaces，then $3 \mathrm{c}_{0} \subset 3 \mathrm{c} \subset 31 \infty$

Theorem．2．1［3］

The spaces $3 c_{0}, 3 c, 3 l_{\infty}$ with the normed $\|x\|=\sup _{\mathrm{r}, \mathrm{u}}$ ，回 $\mid x_{\mathrm{r}, \mathrm{u}}$ ，回 $\mid<\infty$ and
$\|y\|=\sup _{\mathrm{r}, \mathrm{u}}, \mid y_{\mathrm{r}, \mathrm{u}}$, ？ $\mid<\infty$ are complete normed linear spaces．
proof．Simple．
By Kizmaz［6］we can introduced difference of single sequence spaces as following：
$\left.\Omega(\Delta)=\left\{\left(x_{r}\right)\right) \in:\left(\Delta x_{r}\right) \in \Omega\right\}$ for $\Omega=c, c_{0}, l_{\infty}$ where $\Delta x_{r}=x_{r}-x_{r+1}$ for all $r \in \mathbb{N}$ ．
For the differences of a double sequences $(\Delta x, \Delta y)$ is defined by
$(\Delta x, \Delta y)=\left(\Delta x_{r, u}, \Delta y_{r, u}\right)_{r, u=1}^{\infty}$.
Let $\Omega^{2}\left(\Delta_{\mathrm{ru}}\right.$ 目）be denote the difference triple sequence space，and a triple sequence space is defined as ：
$\Delta_{r, u, j}=x_{r, u, j}-x_{\mathrm{r}, \mathrm{u}+1, \mathrm{j}}-x_{\mathrm{r}, \mathrm{u}, \mathrm{j}+1}+x_{r, u+1, j+1}-x_{\mathrm{r}+1, \mathrm{u}, \mathrm{j}+1}-x_{\mathrm{r}+1, \mathrm{u}+1, \mathrm{j}}+x_{\mathrm{r}+1, \mathrm{u}, \mathrm{j}+1}-x_{r+1, u, j+1}+x_{\mathrm{r}+1, \mathrm{u}+1, \mathrm{j}+1}$
Now，we introduced the $p^{t h}$ order difference triple Sequence the space as follows ：
$3 c_{0}\left(\Delta^{p}\right)=\left\{\left(x_{r, u, j}\right) \in \Omega^{3}:\left(\Delta^{p} x_{r, u, j}\right)\right.$ is regularly null $\}$.

Vol． 3 Issue 7，July－2019，Pages：100－106
$3 c\left(\Delta^{p}\right)=\left\{\left(x_{r, u, j}\right) \in \Omega^{3}:\left(\Delta^{p} x_{r, u, j}\right)\right.$ is convergent in pringsheim＇s sense $\}$
$3 l_{\infty}\left(\Delta^{p}\right)=\left\{\left(x_{r, u, j}\right) \in \Omega^{3}:\left(\Delta^{p} x_{r, u, j}\right)\right.$ is bounded $\}$ ．
By above forms of $\left(\Delta^{\mathrm{p}} x_{\mathrm{r}, \mathrm{u}}\right.$ ，？$\left.{ }^{2}\right)$ the binomial explanation of generaliz difference triple sequence has the following mode：
$\Delta^{p} x_{r, u, j}=\sum_{r=1}^{\mathrm{p}} \quad \sum_{u_{=} 1}^{\mathrm{p}} \sum_{j=1}^{\mathrm{p}}(-1)^{\mathrm{s}+\hat{k}+\dot{r}}\binom{\mathrm{p}}{r}\binom{\mathrm{p}}{u}\binom{\mathrm{p}}{j} x_{\mathrm{ru+uj}+\mathrm{rj}}$ ，For all r, u and $j \in N$［3］．
When Δ^{p} is replaced by Δ ，the above spaces becomes $3 c_{0}(\Delta), 3 c(\Delta), 3 l_{\infty}(\Delta)$ ．
So，we can define the triple sequence spaces by using Kizmaz［6］as follows：
$3 l_{\infty}(\Delta)=\left\{(x, y) \in \Omega^{3}:(\Delta x, \Delta y) \in 3 l_{\infty}\right\}$
$3 c_{0}(\Delta)=\left\{(x, y) \in \Omega^{3}:(\Delta x, \Delta y) \in 3 c_{0}\right\}$
$3 c(\Delta)=\left\{(x, y) \in \Omega^{3}:(\Delta x, \Delta y) \in 3 c\right\}$
Let U be the set of all triple sequence $\Lambda=\left(\Lambda_{r, u, j}\right)$ ．
By Malkowsky［5］we can define difference triple sequence $3 c, 3 c_{0}, 3 l_{\infty}$ as following forms
$3 l_{\infty}(\Lambda, \Delta)=\left\{(x, y) \in \Omega^{3}:(\Delta x, \Delta y) \in 3 l_{\infty}\right\}$
$3 c(\Lambda, \Delta)=\left\{(x, y) \in \Omega^{3}:(\Delta x, \Delta y) \in 3 c\right\}$, and
$3 c_{0}(\Lambda, \Delta)=\left\{(x, y) \in \Omega^{3}:(\Delta x, \Delta y) \in 3 c\right\}$
Also，we can defined these spaces $3 c, 3 c_{0}, 3 l_{\infty}$ of difference triple sequence in Asma［1］as following ：

For some $\rho>0\}$ ．

Now，from idea of Orlicz sequence in Lindenstrauss and Tzafriri［10］we can construct a double Orlicz－functions as following：
$3 l_{F}=\left\{(x, y) \in \Omega^{3}: \sum_{r=1}^{\infty} \quad \sum_{u_{=1}}^{\infty} \sum_{j=1}^{\infty}\left[\left(F_{1}\left(\frac{\mid x_{r, u} \text { 目 } \mid}{\rho}\right) \vee F_{2}\left(\frac{\mid y_{r u, ~} \text { ，目 } \mid}{\rho}\right)\right)\right]<\infty\right.$, for all $\left.\rho>0\right\}$
$l_{F_{1}}=\left\{x \in \Omega^{3}: \sum_{r=1}^{\infty} \sum_{u=1}^{\infty} \sum_{j=1}^{\infty} \quad F_{1}\left(\frac{\mid x_{\mathrm{r}, u} \text { 目 } \mid}{\rho}\right)<\infty\right.$, for all $\left.\rho>0\right\}$
And
$l_{F_{2}}=\left\{y \in \Omega^{3}: \sum_{\mathrm{r}=1}^{\infty} \sum_{\mathrm{u}=1}^{\infty} \sum_{\mathrm{j}=1}^{\infty} F_{2}\left(\frac{\mid y_{\mathrm{r}, \mathrm{u}} \text {（『）} \mid}{\rho}\right)<\infty\right.$ for all $\left.\rho>0\right\}$
which is aBanach space with the norm ：
$\|(x, y)\|_{F=\inf }\left\{\rho>0: \sum_{r=1}^{\infty} \sum_{u=1}^{\infty} \sum_{j=1}^{\infty}\left[\left(F_{1}\left(\frac{\mid x_{\mathrm{ru}}, \text { 目 } \mid}{\rho}\right) \vee\left(F_{2}\left(\frac{\mid x_{\mathrm{r}, \mathrm{u}} \text { ，迫 } \mid}{\rho}\right)\right)\right] \leq 1\right\}\right.$
where
$\|x\|_{F_{1}}=\inf \left\{\rho>0: \quad \sum_{r=1}^{\infty} \quad \sum_{u=1}^{\infty} \quad \sum_{\mathrm{j}=1}^{\infty} \quad F_{1}\left(\frac{x_{\mathrm{ru}}, \mathrm{T}_{\mathrm{c}}}{\rho}\right) \leq 1\right\}$
$\|y\|_{F_{2}}=\inf \left\{\rho>0: \quad \sum_{r=1}^{\infty} \sum_{u=1}^{\infty} \sum_{\mathrm{j}=1}^{\infty} \quad F_{2}\left(\frac{y_{\mathrm{ru}}, \text { ，}}{\rho}\right) \leq 1\right\}$
Bu Mursuleen［8］we define difference sequence spaces by a double Orlicz－functions as following：
$3 l_{\infty}(\Delta, F)=\left\{(x, y) \in \Omega^{3}: \sup _{\mathrm{r}, \mathrm{u}}\right.$ ，［？$\left[\left(F_{1}\left(\frac{\mid \Delta x_{\mathrm{r}, \mathrm{w} \text { 国 }}}{\rho}\right)\right) \vee\left(F_{2}\left(\frac{\mid \Delta y_{\mathrm{r}, ~} \text { 国 } \mid}{\rho}\right)\right)\right]<\infty$ ，for some $\left.\rho>0\right\}$ ，
$3 c_{0}(\Delta, F)=\left\{(x, y) \in \Omega^{3}: \sup _{\mathrm{r}}, \mathrm{u}\right.$ ，团 $\left[\left(F_{1}\left(\frac{\left|\Delta x_{\mathrm{ru}, \mathrm{E} \mid}\right|}{\rho}\right)\right) \vee\left(F_{2}\left(\frac{\mid \Delta y_{\mathrm{r} u} \text { 国 } \mid}{\rho}\right)\right)\right]<\infty$ ，for some $\left.\rho>0\right\}$ ，
$3 C(\Delta, F)=\left\{(x, y) \in \Omega^{3}: p-\lim _{r, u, j \rightarrow \infty}\left[\left(F_{1}\left(\frac{\left.\mid \Delta x_{\mathrm{r} u,\left[\mathrm{Z}-l_{1} \mid\right.}\right)}{\rho}\right) \vee\left(F_{2}\left(\frac{\mid \Delta y_{\mathrm{r} u,\left[\boxed{\square}-l_{2} \mid\right.}}{\rho}\right)\right)\right]=0\right.\right.$ for some $\left.\rho>0, l_{\infty}, l_{\infty} \in C\right\}$,
where $F=\left(F_{1}(x), F_{2}(y)\right)$ is a double Orlicz－functions，these spaces are aBanach spaces with the norm：
$\|(x, y)\|_{\Delta}=\inf \left\{\rho>0: \sup _{r, u, j}\left[\left(F_{1}\left(\frac{\mid \Delta x_{\mathrm{r}, \mathrm{u}}, \text { 回 }}{\rho}\right) \vee\left(F_{2}\left(\frac{\left.\mid \Delta y_{\mathrm{r}, \mathrm{u}, \text { 回 } \mid}\right)}{\rho}\right)\right] \leq 1\right\}\right.\right.$
$\|x\|_{\Delta}=\inf \left\{\rho>0: \sup _{r, u, j} F_{1}\left(\frac{\mid \Delta x_{\mathrm{r}, \mathrm{u}} \text { ，团 } \mid}{\rho}\right) \leq 1\right\}$
$\|y\|_{\Delta}=\inf \left\{\rho>0: \sup _{r, u, j} F_{1}\left(\frac{\mid \Delta y_{\mathrm{r}, \mathrm{u}}, \text { 回 } \mid}{\rho}\right) \leq 1\right\}$
Note．2．2．Throughout this study let $F_{1}=F_{1_{r, u}}, F_{2}=F_{2_{r, u}}$ and $\left(F_{1}, F_{2}\right)=F=F_{\mathrm{r}, \mathrm{u}}=\left(F_{1 \mathrm{r}, \mathrm{u}}, F_{2 r, u}\right)$

Definition．2．6．

Let F, F_{1} and F_{2} be a double Orlicz－functions，and v be a positive integer，we use the notation（ $\Delta_{u}^{v} x_{\mathrm{r}}$ ，u，园）for
 define：

$3 c_{0}\left(\Delta_{u}^{v}, F_{\mathrm{r}, \mathrm{u}}, \varphi\right)=$
$\left\{(x, y) \in \Omega^{3}: p-\lim _{r, u, j \rightarrow \infty}(r u j)^{-\varphi}\left[\left(F_{1_{r, u}}\left(\frac{\left|\Delta_{u}^{v} x_{\mathrm{r} u, \text { 国 }}\right|}{\rho}\right)\right) \vee\left(F_{2_{r, u}}\left(\frac{\mid \Delta_{u}^{v} y_{\mathrm{r} u} \text { ® } \mid}{\rho}\right)\right)\right]=0\right.$ for some $\left.\rho>0, \varphi \geq 0\right\}$
And ：

$\left.\mathrm{l}_{1}, \mathrm{l}_{2} \in C, \varphi \geq 0\right\}$ ．

Main Results ：

Theorem．2．2 $3 l_{\infty}\left(\Delta_{u}^{v}, F_{\mathrm{r}, \mathrm{u}}, \varphi\right)$ is a Banach space with norm
$\|(x, y)\|_{\Delta_{u}^{v}}=\inf \left\{\rho>0: \sup _{\mathrm{r}, \mathrm{u}}\right.$ ，回 $\left.(r u j)^{-\varphi}\left[\left(F_{1_{r, u}}\left(\frac{\left|\Delta_{u}^{v} x_{\mathrm{ru}, \mathrm{Q}}\right|}{\rho}\right)\right) \vee\left(F_{2_{\mathrm{ru}}}\left(\frac{\left|\Delta_{u}^{v} y_{\mathrm{ru}}{ }^{[⿴ 囗}\right|}{\rho}\right)\right)\right] \leq 1\right\}$ ，
where
$\|(x)\|_{\Delta_{u}^{v}}=\inf \left\{\left\{\rho>0: \sup _{r, u, j}(r u j)^{-\varphi} F_{1_{r, u}}\left(\frac{\mid \Delta_{u}^{v} x_{r u,}[\mid]}{\rho}\right) \leq 1\right\}\right.$
$\|(y)\|_{\Delta_{u}^{v}}=\inf \left\{\rho>0: \sup _{r u j}(r u j)^{-\varphi} F_{2_{r, u}}\left(\frac{\left|\Delta_{u}^{v} y_{\mathrm{ru},} \square\right|}{\rho}\right) \leq 1\right\}$
Proof．Let $\left(x^{i}, y^{i}\right)$ be any triple Cauchy sequence in $3 l_{\infty}\left(\Delta_{u}^{v}, F_{\mathrm{r}, u}, \varphi\right)$
Such that $\left(x^{i}\right)$ and $\left(y^{i}\right)$ be a Cauchy sequence in $31_{\infty}\left(\Delta_{u}^{v}, F_{1_{r, u}}, \varphi\right)$ ，
$3 l_{\infty}\left(\Delta_{u}^{v}, F_{2 r, u}, \varphi\right)$ respectively，where．
$\left(x^{i}, y^{i}\right)=\left(x^{i}{ }_{\mathrm{r}, \mathrm{u}}\right.$ ，回，$y^{i}{ }_{\mathrm{r}, \mathrm{u}}$ ，回 $)=\left(\left(x_{1,1,1}^{i}, y_{1,1,1}^{i}\right),\left(x_{2,2,2}^{i}, y_{2,2,2}^{i}\right), \ldots\right) \in$
$3 l_{\infty}\left(\Delta_{u}^{v}, \mathrm{r}, \mathrm{u}, \varphi\right)$ for all $i \in N$
Let $m_{1}, m_{2}>0$ be fixed，then for all $\frac{\epsilon}{m_{1} m_{2}}>0$
There exists a positive integers N such that

$$
\left(\left\|x^{i}-x^{t}\right\|_{\Delta_{u}^{v}},\left\|y^{i}-y^{t}\right\|_{\Delta_{u}^{v}}\right)<\frac{\epsilon}{m_{1} m_{2}}, \text { for all } i, t \geq N
$$

Using the definition of norm，we have，

≤ 1, for all $i, t \geq N$

For all $r, u, j \geq 0$ ，and for all $i, t \geq N$ ．
Therefore one can find that exits $m_{1}, m_{2}>0$ with
$(r u j)^{-\varphi}\left[\left(F_{1_{r, u}}\left(\frac{m_{1} m_{2}}{2}\right)\right) \vee\left(F_{2_{r, u}}\left(\frac{m_{1} m_{2}}{2}\right)\right)\right] \geq 1$ such that

$(r u j)^{-\varphi}\left[\left(F_{1_{r, u}}\left(\frac{m_{1} m_{2}}{2}\right)\right) \vee\left(F_{2_{r, u}}\left(\frac{m_{1} m_{2}}{2}\right)\right)\right]$.
The implies that

$$
\begin{aligned}
& \left\lvert\,\left(\Delta_{u}^{v} x^{i}{ }_{r, u} \text {, 回 }-\Delta_{u}^{v} x^{t}{ }_{\mathrm{r}, \mathrm{u}} \text {, 回, } \Delta_{u}^{v} y^{i}{ }_{\mathrm{r}, \mathrm{u}} \text {, 回 }-\Delta_{u}^{v} \mathrm{y}^{t}{ }_{\mathrm{r}, \mathrm{u}} \text {, 回) } \left\lvert\, \leq \frac{m_{1} m_{2}}{2} \frac{\epsilon}{m_{1} m_{2}}=\frac{\epsilon}{2}\right. \text { since } \Lambda_{\mathrm{r}, \mathrm{u}} \text {, 团 } \neq 0 \text { for all } r \text {, } u \text { and } j \text { we get } \mid\right.\right. \\
& \Delta^{v} x^{i}{ }_{\mathrm{r}, \mathrm{u}} \text {, 回 }-\Delta^{v} x^{t}{ }_{\mathrm{r}, \mathrm{u}} \text {, 团, } \Delta_{u}^{v} y^{i}{ }_{\mathrm{r}, \mathrm{u}} \text {, 囵 }-\Delta_{u}^{v} y^{t}{ }_{\mathrm{r}, \mathrm{u}} \text {, 团 } \left\lvert\, \leq \frac{\epsilon}{2}\right. \text { for all } i, t \geq N
\end{aligned}
$$

Hence $\left(\Delta^{v} x_{r, u, j}^{i}\right),\left(\Delta^{v} y_{r, u, j}^{i}\right)$ is a Cauchy sequence in R such that $\left(\Delta_{u}^{v} x_{r, u, j}^{i}, \Delta_{u}^{v} y^{\mathrm{i}}{ }_{\mathrm{r}, \mathrm{u}}\right.$, 回) are triple Cauchy sequence inR $\times \mathrm{R} \times$ R.

Therefore each $0<\epsilon<1$), there exist a positive integer N such that

$$
\left|\left(\Delta^{v} x_{r, u, j}^{i}-\Delta^{v} x_{r, u, j}, \Delta^{v} y_{r, u, j}^{i}-\Delta^{v} y_{r, u, j}\right)\right| \leq \in \text { for all } i \geq N
$$

Now, using the continuity of $F_{1_{r, u}}, F_{2_{r, u}}$ for each r, u we get :

Taking infimum of ρ^{s} and we have
$\inf \left\{\rho>0: \sup _{r, u, j \geq N}(r u j)^{-\varphi}\right.$

Since $\left(x^{i}, y^{i}\right) \in 3 \mathrm{l}_{\infty}\left(\Delta_{u}^{v}, F_{r, u}, \varphi\right)$ and F_{1}, F_{2} be a double Orlicz-functions, then
$F_{=}\left(F_{1}, F_{2}\right)$ is a double Orlicz-functions for each r, u and there for continuous, we get that $(x, y) \in 3 l_{\infty}\left(\Delta_{u}^{v}, F_{r, u,} \varphi\right)$
The rest of proof $3 c, 3 c_{0}$ is like the previous case $3 l_{\infty}$.
Theorem.2.3.The classes of sequences $3 l_{\infty}\left(\Delta_{u, F, \varphi}^{v} \varphi\right), 3 c\left(\Delta_{u}^{v}, F, \varphi\right), 3 c_{0}\left(\Delta_{u}^{v}, F, \varphi\right)$ are linear spaces.
Proof. Obvious.
Lemma 2.1. Let F_{1}, F_{2} and F be a Orlicz-functions .Then
i) $3 \mathrm{l}_{\infty}\left(\Delta_{u}^{0}, \mathrm{r}, \mathrm{u}, \varphi\right) \subset 3 \mathrm{l}_{\infty}\left(\Delta_{u}^{v}, F_{\mathrm{r}, \mathrm{u}}, \varphi\right)$
ii) $3 c\left(\Delta_{u}^{0}, F_{\mathrm{r}, \mathrm{u}}, \varphi\right) \subset 3 c\left(\Delta_{u}^{v}, F_{\mathrm{r}, \mathrm{u}}, \varphi\right)$
iii) $3 c_{0}\left(\Delta_{u}^{0}, F_{\mathrm{r}, \mathrm{u}}, \varphi\right) \subset 3 c_{0}\left(\Delta_{u}^{v}, F_{\mathrm{r}, \mathrm{u}}, \varphi\right)$

Proof. it's clear.

REFERENCES

1. C. Asma, On some difference sequence space defined by Orlicz functions, Southeast Asian Bulletin of Mathematics, 28(2004),195-202.
2. A.J.Datta, A. Esi, B.C. Tripathy, "Statistically convergent triple sequence spaces defined by Orlicz function". J. Math. Anal.,4(2) (2013) 16-22.
3. Sh. Debnath et al., "On Some Newly Generalizes Difference Triple Sequence", J Apple Compatat Math 2016,5:4 an open access journal ISSN :2016-9679.
4. Sh .Debnath et al .,"New Type Of Difference Triple Sequence spaces ". Palestine J. of Math .,Vol.4(2)(2015),284-290.

International Journal of Engineering and Information Systems (IJEAIS)
ISSN: 2643-640X
Vol. 3 Issue 7, July - 2019, Pages: 100-106
5. E.Malkowasky,"A note on the Kothe-toeplitz duals of generalized sets of bounded and convergent difference sequence ,Analysis 4(1996),9-81.
6. H. Kizmaz ," on certain sequence spaces" .Cand. Math . Bull ,(2), (1981), 169-179.
7. Z. H. Hasan," Statistical Convergent of Generalized Difference Double Sequence Spaces which Defined by Orlicz Function". M.Sc. Thesis, University of Kufa ,(2017).
8. M. Mursaleen, M.A . Khan , and Qamaruddin, Difference sequence spaces defined by Orlicz functions, Demonstratio Math.32(1) (1999).145-150.
9. E. Sava's and A. Esi, Statistical convergence of triple sequences on probabilistic normed space, Annals of the University of Craiova Mathematics and Computer and Science Series, 39(2) (2012), 226-236.
10. J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, Israel J. Math;101 (1971), 379-390.

