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Abstract: The basic idea of nonparametric regression is to let the data decide which regression function fits the best without 

imposing any specific form on it. Consequently, nonparametric methods are in general more flexible. They can uncover structure 

in the data that might otherwise be missed. In the real cases, we are frequently faced the problem in which two or more response 

variables are observed at several values of the predictor variables, and there are correlations among responses. For example, 

blood pressures and pulse are observed at several values of body mass index.  Multiresponse nonparametric regression model 

provides powerful tools for modeling the functions which represent association of these variables. Estimating of regression 

function is the main problem in this model. Smoothing spline estimator has powerful and flexible properties for estimating the 

regression function. In this paper we discuss theoretically a method to estimate regression function and optimal smoothing 

parameter of blood pressures and heart rate models based on smoothing spline estimator in multiresponse nonparametric 

regression. The estimated regression function can be obtained by taking solution of penalized weighted least square optimization 

by using reproducing kernel Hilbert space approach. Next, we can get the optimal smoothing parameter by minimizing generalized 

cross validation function. In this research we obtained plots of  predicted values of systolic and diastolic blood pressures and heart 

rate. The results show that patients who have high BMI, their systolic and diastolic blood pressures, and heart rate lead to hight. It 

means that patients who have overweight and obese categories lead to rentant suffering hypertension. 

Keywords — Blood Pressures, Multiresponse Nonparametric Regression, Heart Rate, Smoothing Parameter, Smoothing 

Spline Estimator. 

1. INTRODUCTION 

Statistical analysis often involves building mathematical 
models which examine the relationship between response and 
predictor variables. Spline smoothing is a general class of 
powerful and flexible modeling techniques. Research on 
smoothing spline models has attracted a great deal of attention 
in recent years, and the methodology has been widely used in 
many areas. Smoothing spline estimator with its powerful and 
flexible properties is one of the most popular estimators used 
for estimating regression curve of the nonparametric 
regression model. There are many researchers who have 
considered spline estimator for estimating regression function 
of the nonparametric regression model. Researchers [1-3] used 
original spline estimator to estimate regression curve of 

smooth data. M-type spline to overcome outliers in 
nonparametric regression has been proposed by [4-5]. 
Confidence interval for original spline model by using 
Bayesian approach has been constructed by [6]. Next, [7] 
compared between generalized cross validation (GCV) and 
generalized maximum likelihood (GML) for choosing the 
smoothing parameter in the generalized spline smoothing 
problem. Relaxed spline and quantile spline were introduced 
by [8-9]. Smoothing spline models with correlated random 
errors has been discussed by [10]. Some techniques for spline 
statistical model building by using reproducing kernel Hilbert 
spaces were introduced by [11]. A method that combines 
smoothing spline estimates of different smoothness to form a 
final improved estimate was proposed by [12]. Asymptotic 
property of smoothing splines estimators in functional linear 
regression with errors-in-variables has been studied by [13]. 
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Next, [14] have studied smoothing spline estimation of 
variance functions. Further, [15] showed goodness of spline 
estimator rather than kernel estimator in estimating 
nonparametric regression model for gross national product 
data. Also, [16] have studied the determination of an optimum 
smoothing parameter for nonparametric regression using 
smoothing spline. All these researchers studied spline 
estimators in case of single response nonparametric regression 
models only.     

In the real cases, we are frequently faced the problem in 
which two or more dependent variables are observed at 
several values of the independent variables, and there are 
correlations between responses. Multiresponse nonparametric 
regression model provides powerful tools to model the 
functions which represent association of these variables. There 
are many researchers who have considered nonparametric 
models for multiresponse data. Spline smoothing for 
estimating nonparametric functions from bivariate data with 
the same correlation of errors has been studied by [17]. 
Methods for estimating nonparametric regression model with 
spatially correlated errors were proposed by [18]. Next, [19] 
and [20] have studied spline estimators in multi-response 
nonparametric regression model with equal correlation of 
errors and unequal correlation of errors, respectively. 
Multiresponse nonparametric regression model approach to 
design child growth chart has been used by [21]. A 
mathematical statistics method for estimating regression curve 
of the multiresponse nonparametric regression model in case 
of heteroscedasticity of variance was proposed by [22]. 
Estimating regression function of the homoscedastic 
multiresponse nonparametric regression in which the number 
of observations were unbalance has been discussed by [23]. 
Next, [24-26] proposed smoothing spline estimator for 
estimating of the multiresponse nonparametric regression 
model by using reproducing kernel Hilbert space (RKHS). In 
addition, [27] discussed construction of covariance matrix in 
case of homoscedasticity of variances of errors.  Also, [28] 
discussed estimating of both covariance matrix and optimal 
smoothing parameter. Further, [29] used spline to show ability 
of covariance matrix. But, these researchers have not 
discussed estimating of smoothing parameter in multi-
response nonparametric regression model when the variances 
of errors are not the same for cross-section data. In addition, 
all these researchers have not discussed application of the 
estimated model on the real case data.  

According to [30], risk of health has correlation with 

increasing of body mass index (BMI), and BMI more than or 

equals to 23 kg/m2 was categorized as overweight or obesity. 

Since level of overweight can be measured by BMI  (body 

mass index), then increasing of BMI can also cause the 

increasing of systolic and diastolic blood pressures. Also, [31] 

have shown that the increasing of BMI of someone who were 

least than 60 years old caused the increasing of systolic and 

diastolic blood pressures. Next, [32] pointed out that 

increasing and decreasing of systole and diastole blood 

pressures were significantly caused by increasing and 

decreasing of BMI for all sex and all ages. Researchers [33] 

stated that BMI significantly influenced to systolic and 

diastolic blood pressures of Ethiopian, Vietnamese, and 

Indonesian. Also, [34] pointed out that BMI affects systolic 

and diastolic blood pressures of females and males. In 

addition, [35] have shown that there was positively correlation 

between BMI and both systole and diastole blood pressures of 

children 8-16 years old. Further, [36] pointed out that BMI 

and overweight or obesity can cause the increasing of blood 

pressures (systolic and diastolic). Therefore, in this paper, we 

discuss methods to estimate regression function and optimum 

smoothing parameter of the multiresponse nonparametric 

regression model if it is applied to blood pressures and heart 

rate affected by BMI. 

2. MATERIAL AND METHODS 

Firstly, consider multiresponse nonparametric regression 

model as given by [22, 24-25, 28]: 

 ( )ki k ki kiy f t   , 1,2,...,k p , 1,2,..., ki n  (1) 

where 
2( )ki kiVar   . Next, suppose that we apply the 

model in (1) to data of blood pressures and pulse that are 

affected by BMI such that we have the blood pressures and 

pulse model as follows: 

( )ki k ki kiy f t   ; 1,2,3k   ;  1,2,..., ki n        (2) 

where 
2( )ki kiVar   , 1iy , 2iy  and 3iy  are response 

variables that represent the first response (i.e., systolic blood 

pressure), the second response (i.e., diastolic blood pressure), 

and the third response (i.e., heart rate), respectively; and 

( )k kif t are unknown regression functions which represent 

function of predictor variable (i.e., BMI).  

The estimated regression function can be obtained by 

taking solution of penalized weighted least square 

optimization by using reproducing kernel Hilbert space 

approach. Next, we can get the optimal smoothing parameter 

by minimizing generalized cross validation function.  Finally, 

we apply the estimated model that we have obtained to the 

real case data, i.e., blood pressures and heart rate affected by 

BMI. In this case, we use the estimated estimate systolic and 

diastolic blood pressures, and heart rate.   

3. RESULTS AND DISCUSSION 

In this section, we give results and discussion about 
estimating regression function, estimating optimal smoothing 
parameter, and predicting blood pressures and heart rate by 
using smoothing spline estimator.  

3.1  Estimation of Regression Function  

Firstly, we consider a paired data set  that follows the 

blood pressures and heart rate model as given in (2), i.e.,: 

( )ki k ki kiy f t    ; 1,2,..., ki n ; k k ka t b  ;        (3) 

where k   represents the number of response,  kn n  for   

1,2,3k   and 1 2 3, ,f f f  are unknown regression functions  
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assumed to be smooth in Sobolev space 
2 [ , ]m

k kW a b , and ki  

are zero-mean independent random errors with variance  
2

ki . 

The main objective of nonparametric regression analysis is 

estimate unknown regression functions 
2 [ , ]m

k k kf W a b  in 

model (3). Next, suppose that 1 2 3( , , )y y y y  , 

1 2 3( , , )f f f f  , 1 2 3( , , )      , and  1 2 3( , , )t t t t    

where 1( ,..., )k k kny y y   , 1( ( ),..., ( ))k k k k knf f t f t   ,  

1 2( , ,..., )k k k kn     , 1 2( , ,..., )k k k knt t t t   . Therefore, 

for 1,2,...,i n    and 1,2,3k   we can write equation (3) 

in the following equation:  

  y f                                                (4) 

where ( ) 0E   , and 2 1( ) [ ( )]Cov W  
2 2 2

1 1 2 2 3 3( ( ), ( ), ( ))diag W W W   . Estimating of the 

functions f   in (4) by using smoothing spline estimator 

appears as a solution to the penalized weighted least-square 

(PWLS) minimization problem, i.e., determine f̂  that can 

make the following PWLS minimum: 

1 2 3 2

3
1

1 1 1 1 1 3 3 3 3 3
, ,

1

{( ) ( ) ( ) ... ( ) ( )
m k

f f f W
k

Min n y f W y f y f W y f




                     

1 3

1 3

(2) 2 (2) 2

1 1 3 3( ( )) ... ( ( )) }
b b

a a
f t dt f t dt                            (5) 

for pre-specified value 1 2 3( , , )     . Note that, in 

equation (5), the first term represents the sum squares of errors 

and it penalizes the lack of fit. While, the second term which 

is weighted by   represents the roughness penalty and it 

imposes a penalty on roughness. It means that the curvature of 

f  is penalized by it. In equation (5), k ( 1,2,3)k  is 

called as the smoothing parameter. The solution will be vary 

from interpolation to a linear model, if k  varies from 0 to 

 . So that, if k  , the roughness penalty will 

dominate in (5), and the smoothing spline estimate will be 

forced to be a constant.  If  0k  , the roughness penalty 

will disappear in (5), and the spline estimate will interpolate 

the data. Thus,  the trade-off between the goodness of fit given 

by: 
3

1

1 1 1 1 1 3 3 3 3 3

1

( ) ( ) ( ) ... ( ) ( )k

k

n y f W y f y f W y f



        

and smoothness of the estimate given by: 

  
1

1

(2) 2 (2) 2

1 1( ( )) ... ( ( ))
k

k

b b

p p
a a

f t dt f t dt     

is controlled by the smoothing parameter k . The solution for 

minimization problem in (5) is a smoothing spline estimator 

where its function basis is a “natural cubic spline” with 

1 2, ,...,
knt t t ( 1,2,..., )k p

 
as its knots. Based on this 

concept, a particular structured spline interpolation that 

depends on selection of the smoothing parameter k  value 

becomes a appropriate approach of the functions kf

( 1,2,3)k   in model (1). Let 1 2 3( , , )f f f f   where 

1 2( ( ), ( ),..., ( ))k k k k k k knf f t f t f t  , 1,2,3k  , be the 

vector of values of function kf ( 1,2,3)k   at the knot 

points 1 2, ,...,
knt t t ( 1,2,3)k  . If we express the model 

of paired data set into a general smoothing spline regression 

model, we will get the following expression: 

     kiktki fLy
k

 ,  1,2,..., ki n ; 1,2,3k          (6) 

where kf Hk  (Hk represents Hilbert space) is an unknown 

smooth function, and 
kt

L Hk is a bounded linear functional.  

Suppose Hk can be decomposed into two subspaces  Uk  

and  Wk  as follows: 

  Hk = Uk   Wk  

where Uk is orthogonal to Wk, 1,2,3k  . Suppose that 

1 2{ , ,..., }
kk k kmu u u  and 

1 2{ , ,..., }
kk k kn    are bases of 

spaces Uk and Wk , respectively. Then, we can express every 

function kf Hk ( 1,2,3k  ) into the following expression: 

    k k kf g h   

where kg   Uk  and kh Wk . Since 
1 2{ , ,..., }

kk k kmu u u  is 

basis of space Uk and 
1 2{ , ,..., }

kk k kn    is basis of space  

Wk , then for every kf Hk ( 1,2,3k  ) follows:  

        
1 1

k km n

k kj kj ki ki

j i

f d u c 
 

   k k k ku d c   ;          (7) 

where pk ,...,2,1 ; 
kjd ℛ; kic  ℛ ;

1 2( , ,..., )
kk k k kmu u u u  , 

1 2( , ,..., )
kk k k kmd d d d  , 

1 2( , ,..., )
kk k k kn     , and 

1 2( , ,..., )
kk k k knc c c c  .  

Furthermore, since 
kitL  is a function which is bounded and 

linear in Hk , and kf   Hk , 1,2,3k   then we have

( )
ki kit k t k kL f L g h  ( ) ( )k ki k kig t h t  )( kik tf .   (8) 

Based on model (3), and by applying the Riesz representation 

theorem [3], and because of 
kitL Hk is bounded linear 

functional, then according to Wang (2011) there is a 

representer ki   Hk  of 
kitL which follows: 

           
, ( )

kit k ki k k kiL f f f t    , kf   Hk                  (9) 
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where  ,   denotes an inner product. Based on (6) and by 

applying the properties of the inner product, we get: 

       ( ) ,k ki ki k k k kf t u d c     
 

                    
, ,ki k k ki k ku d c         .                      (10) 

Next, by applying equation (10), for 1k  we have: 

1 1 1 1 1 1 1 1( ) , ,i i if t u d c         , 11,2,...,i n ; 

and for 11,2,3,...,i n  we have: 

       11 1 1 11 1 12 1 1( ) ( ( ), ( ),..., ( ))nf t f t f t f t    

                1 1 1 1K d c  ,                                     (11) 

where: 

1

1

1 1 1 1

11 11 11 12 11 1

12 11 12 12 12 1

1

1 11 1 12 1 1

, , ,

, , ,

, , ,

m

m

n n n m

u u u

u u u
K

u u u

  

  

  

      
 
      

  
 
       

, 

1

1

1 1 1 1

11 11 11 12 11 1

12 11 12 12 12 1

1

1 11 1 12 1 1

, , ,

, , ,

, , ,

n

n

n n n n

     

     

     

      
 
      

   
 
       

, 

11 11 12 1( , ,..., )md d d d  ,  and  
11 11 12 1( , ,..., )nc c c c  . In 

the similar process, we obtain: 2 2 2 2 2 2( )f t K d c  ; 

3 3 3 3 3 3( )f t K d c  . Therefore, the regression function 

( )f t  can be expressed as: 

         
1 1 2 3( ) ( ( ), ( ), ( ))f t f t f t f t 

  

                  
1 1 2 2 3 3 1 1 2 2 3 3( , , ) ( , , )K d K d K d c c c       

            1 2 3 1 2 3( , , )( , , )diag K K K d d d  
 

                     1 2 3 1 2 3( , , )( , , )diag c c c   
 

                 
Kd c  .                                                   (12) 

In equation (12), K  is a ( )N M -matrix and d  is a vector 

of parameters with dimension )1( M  (where 

3

1

3k

k

N n n


  , 
3

1

3k

k

M m m


  ) that are expressed as:

1 2 3( , , )K diag K K K ,  and  1 2 3( , , )d d d d    , respectively. 

Also,  is a )( NN  -matrix, and c  is a )1( N -vector of 

parameters which are expressed as: 

1 2 3( , , )diag     ,  and  1 2 3( , , )c c c c    , respectively.  

Therefore, we can write model in (3) as follows: 

              y Kd c    . 

We use the RKHS method to obtain the estimation of f , by 

solving the following optimization: 

    

2 2
1 1

2 22 2

1,2,3 1,2,3

( ) ( )( )
k k k kf f

k k

Min W Min W y f  
 
 

      
    

      
H H

,   (13) 

with constraint: 

 
k

k

b

a
kkk

m

k dttf 2)( )]([  , 0k .                 (14) 

To solve the optimization (13) with constraint (14) is 

equivalent to solve the optimization PWLS: 

2

3
1 2 ( ) 2

[ , ]
1

1,2,3

( ) ( )( ) [ ( )]
k

m
kk k k

b
m

k k k k
af W a b

k
k

Min N y f W y f f t dt 






 
   

 
 

, (15) 

where k , 1,2,3k   are smoothing parameters that control 

trade-off between goodness of fit represented by:    
1 2( ) ( )( )N y f W y f     

and the roughness penalty measured by: 

       
1 3

1 3

( ) 2 ( ) 2

1 1 1 1 3 3 3 3[ ( )] ... [ ( )]
b b

m m

a a
f t dt f t dt    . 

To get the solution to (15), we first decompose the roughness 

penalty as follows: 

      11

2

11

2

1

)(

1 ,)]([
1

1

PfPfPfdttf
b

a

m

      

             
1 1 1 1 1 1 1 1, ( )c c c c      

1 1 1c c 
 
 

It implies:  

      
1

1

( ) 2

1 1 1 1 1 1 1 1[ ( )]
b

m

a
f t dt c c    .                              (16) 

Next, by similar way, we get: 

     
2

2

( ) 2

2 2 2 2 2 2 2 2[ ( )]
b

m

a
f t dt c c    , … , 

    
3

3

( ) 2

3 3 3 3 3 3 3 3[ ( )]
b

m

a
f t dt c c     .                          (17) 

Based on (16) and (17), we have penalty: 

 
3

( ) 2

1

[ ( )] }
k

k

b
m

k k k k
a

k

f t dt


   c c                         (18) 

where 
1 2 31 2 3( , , )n n ndiag I I I    . We can express the 

goodness of fit in (15) as follows: 

       
1 2( ) ( )( )N y f W y f    =    

     

1 2( ) ( )( )N y Kd c W y Kd c     . 

If we combine the goodness of fit and the roughness penalty, 

we will have optimization PWLS: 

                 

 
3

3

2( ) ( )( )
n

m
c R

d R

Min y Kd c W y Kd c c N c 




      

     

                  =  
3

3

( , )
n

m
c R

d R

Min Q c d




.                                         (19) 
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To get the solution to (19), firstly we must take the partially 

differential of ( , )Q c d  and then their results are equaled to 

zeros as follows: 

   

( , )
0

Q c d

c





 

1 2ˆ ( )( )c M W y Kd  .    (20) 

   

( , )
0

Q c d

d





   

           

1 2 1 1 2ˆ [ ( ) ] ( )d K M W K K M W y     .          (21) 

Next, if we substitute (21) into (20) , we obtain: 

  1 2 1 2 1 1 2ˆ ( )[ ( ( ) ) ( )]c M W I K K M W K K M W y        .   (22) 

Finally, based on (12), (21) and (22), we get the smoothing 

spline estimator which can be expressed as follows:  

         

1

2

1, 1

2, 2

,

ˆ ( )

ˆ ( )ˆ ˆ ˆ( ) ( )

ˆ ( )
pp p

f t

f t
f t Kd c H y

f t











 
 
 
    
 
 
 
 

              (23)                      

where 
1 2 1 1 2 1 2

~
( ) [ ( ) ] ( ) ( )H K K M W K K M W M W        

 

                

1 2 1 1 2[ ( ( ) ) ( )]I K K M W K K M W     , 

and ˆ ( )f t  is smoothing spline with a natural cubic spline as 

a basis function with knots at 
1 2, ,...,

knt t t ( 1,2,3)k  , for a 

fixed smoothing parameter 0  .  ( )H   is a positive-

definite (symmetrical) smoother matrix that depends on 

smoothing parameter  and the knot points 
1 2, ,...,

knt t t

( 1,2,3)k  . Yet, it does not depend on y .  

Based on estimated model we have in (23), we conclude 

that the estimated model is a linear function in observation. In 

addition, by taking expectation of equation (23), i.e., 

ˆ( ( ))E f t  we obtain that the estimated regression function in 

(23) is a biased estimator Further discussion about this 

estimator can be obtained on [3],  [37-41].  

3.2. Estimation of Optimal Smoothing Parameter 

Researcher [3] has shown that in uniresponse spline 

nonparametric regression, if smoothing parameter (  ) value 

is very small )0(   then it will give a very rought 

estimator of nonparametric regression function. In contrary, if  

smoothing parameter ( ) value is very large )(   then 

it will give a very smooth estimator of nonparametric 

regression function. Therefore, we need to select optimum 

smoothing parameter ( )  in order to obtain estimator that is 

suitable with data. For this need, some researchers have 

proposed some selection methods, for instance [2] proposed 

cross validation (CV) method, [10] proposed unbiased risk 

(UBR) method, and [3] proposed generalized cross validation 

(GCV) method. Not only does uniresponse spline 

nonparametric regression, but also multiresponse spline 

nonparametric regression depends on smoothing parameter 

k , 1,2,3k  . 

In this section we discuss selection method for selecting 
the optimum smoothing parameter in multiresponse 
nonparametric regression model for data of blood pressures 
and pulse. Regression function estimator of multiresponse 
nonparametric regression model for data of blood pressures 
and pulse as given in equation (23) can be expressed as 
follows: 

 
2

1 2 3
ˆ ( ) ( , , ; )f t H y                                        (24)                                     

where 
2 2 2 2

1 2 3( , , )     .  MSE (Mean Square Error) of 

(24) can be determined as follows: 

2

2

1 2 3 3

1

ˆ ˆ( ( )) ( )( ( ))
( , , ; )

k

k

y f t W y f t
MSE

n

 
   



 




         

   2 2 2

1 2 3 1 2 3

3

1

( , , ; ) ( ) ( , , ; )

k

k

y H y W y H y

n

        




 




            

   2 2 2

1 2 3 1 2 3( , , ; ) ( ) ( , , ; )N NI H y W I H y

N

        
    

     

   
2

1
2 22

1 2 3( ) ( , , ; )NW I H y

N

    

 .                                         

where  
1

2 2( )W   is a diagonal matrix, and 
3

1

k

k

N n


 .                                                

Next, we define a quantity (further it is called as GCV 
function) as follows: 

   

 

2
1

1 2 22
1 2 3

2

1 2 3 2
1 2

1 2 3

( ) ( , , ; )

( , , ; )

( , , ; )

N

N

N W I H y

G

N trace I H

    

   
   








 
 

 

The optimum smoothing parameter 
opt  is obtained by taking 

the solution of the following optimization:  
2

1( ) 2( ) 3( )( , , ; )opt opt opt optG      

  
   

 1 2 3

2
1

1 2 22
1 2 3

2
, , 1 2

1 2 3

( ) ( , , ; )

( , , ; )

N

R R R

N

N W I H y

Min

N trace I H
  

    

   
  



   

 
 
 

  
  
  

 

,      
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where 
2 2

1 ... pv v v     for  1 2 3( , , )v v v v  , and 

1( ) 2( ) 3( )( , , )opt opt opt opt     .  

3.3.  Estimation of Blood Pressures and Heart Rate   

In this section, we give an example application of 

smoothing spline estimator on real case data set, i.e., 

association between blood pressures, heart rate, and body 

mass index (BMI). The data was recorded from a District 

General Hospital of Trenggalek city, East Java Province, 

Indonesia in 2018. The data draws the association between 

blood pressures (systolic and diastolic), heart rate and BMI of 

patients.  Data consists of three response variables (in this 

case, 1,2,3k  ) and a predictor variable. The first response 

variable ( 1y ) is systolic blood pressure, the second response 

variable ( 2y ) is diastolic blood pressure, and the third 

response variable ( 3y ) is heart rate. While the predictor 

variabel ( t ) is body mass index (BMI).  

The estimation results give plot of estimated systolic 

blood pressure versus BMI, estimated diastolic blood pressure 

versus BMI, and estimated heart rate versus BMI as given in 

Figure 1, Figure 2, and Figure 3, respectively. 

   

 

 

 

 

 

 

 

 

Figure 1.  Plot of systolic blood pressure versus BMI. 

 

 

 

 

 

 

 

 

 

Figure 2.  Plot of diastolic blood pressure versus BMI. 

 

 

 

 

 

 

 

 

 

      Figure 3.  Plot of heart rate versus BMI. 

According to [42], body weight clasification can be 

determined by BMI, i.e., underweight (BMI < 18.5), normal 

(18.5   BMI   22.9), and overweight (BMI   23) in which 

the body weight clasification is determined by BMI in certain 

interval. We can show patterns of underweight, normal, and 

overweight effects on systolic and diastolic blood pressures, 

and heart rate by using smoothing spline estimator that 

includes all observations as knots of spline. 

Figure 1 shows that if patients have BMI least than 19 

kg/cm
2 

or have BMI from 19 kg/cm
2
 to 28.5 kg/cm

2
, their 

systolic blood pressures go up slowly along with increasing 

their BMI. Furthermore, if patients have BMI greater than 

28.5 kg/cm
2
,  their systolic blood pressures go up sharply 

along with increasing their BMI. It means that if patients have 

BMI with underweight category or between normal and 

overweight category, according to [42], then their systolic 

blood pressures go up slowly along with increasing their 

BMI. This increasing systolic blood pressures will go up 

sharply if patients have BMI in obese category. Next,  Figure 

2 shows that the increasing BMI will raise diastolic blood 

pressure slowly not only for patient who has underweight and 

overweight categories but also for patient who has obese 

category along with increasing their BMI. Finaly, Figure 3 

shows that heart rate of patients who have BMI less than 19 

kg/m
2 

have not shown sharply increasing, however, heart rate 

of patients who have BMI more than 19 kg/m
2
 raise sharply 

along with increasing their BMI. In addition, patients who 

have high BMI, their systolic and diastolic blood pressures, 

and heart rate lead to hight. Furthermore, since BMI is 

determined by body weight devided by square of hight then 

patients who have overweight and obese categories lead to 

rentant suffering hypertension.  

4.  CONCLUSION 

In estimating of the regression function of the 

multiresponse nonparametric regression model based on 

smoothing spline estimator, we use all observation points as 

knots. In this case, the results of analysis show that patients 

who have overweight and obese categories lead to rentant 

suffering hypertension. 
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