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Abstract: Estimation of a regression model is equivalent to estimate a regression function of the regression model. The regression 
function draws association between response variable and predictor variable. Multiresponse nonparametric regression model 
provides powerful tools for modeling the function which represents association between response variable and predictor variable 
where there are correlations between responses. It means that estimating regression function is the main problem in the 
multiresponse nonparametric regression model. Smoothing spline estimator has powerful and flexible properties for estimating the 
regression function in this model. Therefore, in this paper we present the simulation study to determine regression function 
estimate of multiresponse nonparametric regression model based on smoothing spline estimator. In this simulation study we apply 
the smoothing spline estimator to three multiresponse nonparametric regression models represented by trigonometric, polynomial, 
and exponential models. The result shows that based on plots of estimation results, the smoothing spline estimator has good 
performance and flexibility for estimating the regression function of the multiresponse nonparametric regression models.     
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1. INTRODUCTION

Research on smoothing spline models has attracted a great
deal of attention in recent years, and the methodology has 
been widely used in many areas. Smoothing spline estimator 
with its powerful and flexible properties is one of the most 
popular estimators used for estimating regression function in 
the nonparametric regression model as well as in the 
multiresponse nonparametric regression model. Researchers 
who have considered spline estimator for estimating 
regression function of the nonparametric regression and 
multiresponse nonparametric regression models are [1-3] who 
have used original spline estimator to estimate regression 
function of smooth data, [4-5] who have introduced M-type 
spline to overcome outliers in nonparametric regression, [6] 
who has constructed confidence interval for original spline 
model by using Bayesian approach, [7] who compared 
generalized cross validation (GCV) and generalized maximum 
likelihood (GML) for choosing the smoothing parameter in the 

generalized spline smoothing problem, [8-9] who introduced 
relaxed spline and quantile spline, [10] who has studied 
smoothing spline models with correlated random errors, [11] 
who introduced some techniques for spline statistical model 
building by using reproducing kernel Hilbert spaces, [12] who 
proposed a method that combines smoothing spline estimates 
of different smoothness to form a final improved estimate, 
[13] who investigated asymptotic property of smoothing 
splines estimators in functional linear regression with errors-
in-variables, [14] who have studied smoothing spline 
estimation of variance functions, [15] who showed goodness 
of spline estimator rather than kernel estimator in estimating 
nonparametric regression model for gross national product 
data, [16] who have studied the determination of an optimal 
smoothing parameter for nonparametric regression using 
smoothing spline, [17] who has studied spline smoothing for 
estimating nonparametric functions from bivariate data with 
the same correlation of errors, [18] who proposed methods for 
estimating nonparametric regression model with spatially 
correlated errors, [19] and [20] have studied spline estimators 
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in multiresponse nonparametric regression model with equal 
correlation of errors and unequal correlation of errors, 
respectively, [21] who have used multiresponse nonparametric 
regression model approach to design child growth chart, [22] 
who proposed a mathematical statistics method for estimating 
regression function of the multiresponse nonparametric 
regression model in case of heteroscedasticity of variance, 
[23] who discussed estimating regression function of the 
homoscedastic multiresponse nonparametric regression in 
which the number of observations were unbalanced, [24-26] 
who proposed smoothing spline estimator for estimating of the 
multiresponse nonparametric regression model by using 
reproducing kernel Hilbert space (RKHS), [27] who have 
discussed construction of covariance matrix in case of 
homoscedasticity of variances of errors, [28] who discussed 
estimating of both covariance matrix and optimal smoothing 
parameter, and [29] who used spline to show ability of 
covariance matrix.  

These researchers mentioned above have not discussed 
about estimation of multiresponse nonparametric regression 
model via a simulation study for some type of multiresponse 
nonparametric regression models. Therefore, in this paper we 
give numerical example as an illustration of smoothing spline 
estimator in estimating the regression function of the three 
model types of multiresponse nonparametric regression 
models. 
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2.   MATERIAL AND METHODS 

In this simulation study we apply three model types of 
multiresponse nonparametric regression model where in 
every model consists of a predictor variable (  and three 

response variables (

)t

1y , 2y , 3y ). Data ( 100n = ) is 
generated from these three model types, i.e., trigonometric 
model, polinomial model, and exponential model. These 
models are given in Eq. (1), Eq. (2), and Eq. (3), respectively.  
Trigonometric Model: 
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Polinomial Model: 

                            (2) 
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Exponential Model: 
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     The estimated regression function can be obtained by 
taking solution of penalized weighted least square 
optimization by using reproducing kernel Hilbert space 
approach as has been discussed by [21-26, 30]. 

3.   RESULTS AND DISCUSSION 

In this section, we give results and discussion about 
estimating regression functions of trigonometric, polynomial, 
and exponential models.  

3.1.  Estimation of Trigonometric Model 

In this simulation, for trigonometric model in (1) we take 
sample size of 100n = , and correlation values 12 0.5ρ = , 

13 0.7ρ = , 23 0.4ρ = , and variances 2 2 2
1 2 3 1σ σ σ= = = . 

The following figure (Fig. 1) gives plots of  estimated 
response ( ) versus predictor ( t ) for simulation data of 

trigonometric model in (1), i.e., plot  of 

ŷ
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Figure 1.  Plots of estimation curves for trigonometric model. 

Based on the simulation results, for trigonometric model 
we obtain estimated optimal smoothing parameters of 

8
1̂ 6.886826 10λ −= ×  (for the first response, 1ŷ ), 

8
2̂ 7.748048 10λ −= × (for the second response, 2ŷ ), and 

8
3̂ 8.303897 10λ −= × (for the third response, 3ŷ ). Also, we get 

minimum generalized cross validation (GCV) value of  
1.473032.           

3.2.  Estimation of Polinomial Model 

Similar to section 3.1, in this simulation, for polynomial 
model in (2) we also take sample size of n 100= , and 
correlation values 12 0.5ρ = , 13 0.7ρ = , 23 0.4ρ = , and 

variances 2 2 2
1 2 3 1σ σ σ= = = . Figure 2 gives plots of  

estimated response ( ) versus predictor ( t ) for simulation 

data of polinomial model in (2), i.e., plot  of 

ŷ

1ŷ  versus 
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1t (above), plot of 2ŷ  versus (center), and plot of 2t 3ŷ  

versus (below).  3t
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 Figure 2.  Plots of estimation curves for polinomial model. 

       Based on the simulation results, for trigonometric model 
we obtain estimated optimal smoothing parameters of 1̂ 1λ =  

(for the first response, 1ŷ ), (for the second response, 2̂ 1λ =

2ŷ ), and (for the third response, 3̂ 0.2539217λ = 3ŷ ). Also, 
we get minimum generalized cross validation (GCV) value of  
1.790529. 
 
3.3.  Estimation of Exponential Model 

Similar to sections 3.1 and 3.2, in this simulation, for 
exponential model in (3) we also take sample size of 100n = , 
and correlation values 12 0.5ρ = , 13 0.7ρ = , 23 0.4ρ = , 

and variances . Figure 3 gives plots of  

estimated response ( ) versus predictor ( t ) for simulation 

data of exponential model in (3), i.e., plot  of 
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 Figure 3.  Plots of estimation curves for exponential model. 

       Based on the simulation results, for trigonometric model 
we obtain estimated optimal smoothing parameters of 

6
1̂ 1.295002 10λ −= ×  (for the first response, 1ŷ ), 

8
2̂ 6.890408 10λ −= × (for the second response, 2ŷ ), and 

7
3̂ 7.628884 10λ −= × (for the third response, 3ŷ ). Also, we 

get minimum generalized cross validation (GCV) value of  
1.88195.  
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4.  CONCLUSION 

Based on plots of estimation results given in Fig. 1-3 that 
present plots of estimation curves of multiresponse 
nonparametric regression models from types of trigonometric,  
polynomial, and exponential models show that the smoothing 
spline estimator has good performance and flexibility for 
estimating the regression function of the multiresponse 
nonparametric regression models. It means that the smoothing 
spline estimator is suitable to use in estimating multiresponse 
nonparametric regression models from all types of 
mathematical models. 
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