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Abstract: Hypertension has become a serious health problem in Indonesia because of its prevalence, however, the causative 

factors could not be ascertained for about ninety percent of the patients. Various studies have found several risk factors causing 

hypertension to be obesity, family history, stress levels, heart rate, and an unhealthy lifestyle. In this case, the variables are 
considered influential on hypertension through a regression function without a specific pattern, i.e., a regression function of multi-

response nonparametric regression model. The basic idea of multi-response nonparametric regression where there are 

correlations between responses is to let the data decide which regression function fits the best without imposing any specific form 

on it. In this paper we present a theoretically discussion in predicting blood pressures and heart rate affected by stress level that 

can be used for early detection of hypertension by using spline estimator in multi-response nonparametric regression. The 

estimated regression function that draws association between blood pressures, heart rate, and stress level can be obtained by 

taking solution of penalized weighted least square optimization by using reproducing kernel Hilbert space approach. Next, we can 

get the optimal smoothing parameter by minimizing generalized cross validation function. In this paper we obtain predicted model 

of blood pressures and heart rate associated with stress level which can be used for early prediction of hypertension. 

Keywords — Blood Pressures, Heart Rate, Multi-response Nonparametric Regression, Smoothing Parameter, Stress Level. 

 

1. INTRODUCTION  

Hypertension is often referred to as the silent killer 

because it takes the life of affected individuals without 

showing symptoms. However, the factors causing the disease 

(around 90%) are still unknown. The number of people living 

with hypertension is predicted to become 1.56 billion 

worldwide by the year 2025 [1]. The sickness is associated 

with cardiovascular diseases (CVD) risk factors, incidence, 

and mortality [2]. It is also found to be prevalent among 

people of 35 years of age and above, currently smoking, and 

obese [3]. The Seventh Report on the Joint National 

Committee on Prevention, Detection, Evaluation and 
Treatment of High Blood Pressure created a category called 

"pre-hypertension" which was defined as a systolic blood 

pressure (SBP) of 120-139 millimeters of mercury (mmHg) 

and a diastolic blood pressure (DBP) of 80-89 mmHg [1]. 

Pre-hypertension, even in the low range (SBP: 120-130 

mmHg or DBP: 80-85 mmHg), has been confirmed to have a 

higher risk of developing into hypertension [4]. Hypertension 

has been associated with increased risk of coronary artery and 
cardiovascular and cerebrovascular diseases [5-6]. A meta-

analysis also reported that lower blood pressure could also 

lead to cardiovascular and chronic kidney diseases [7-8]. This 

situation is critical in the Southeast Asian region with studies 

reporting in [9-10] as an important risk factor for the 

attributable burden. Several studies have found different risk 

factors for hypertension such as obesity, family history, stress 

levels, heart rate, and an unhealthy lifestyle. In [11], 

researchers used penalized spline to model hypertension risk 

factors for preventing hypertension in Indonesia.  

In statistical modeling, we frequently use estimators to 
estimate models which are expressed as parametric regression 

model or nonparametric regression model not only for uni-

response but also for multi-response. Local polynomial 

estimator has been used by [12] for improving classification 

accuracy of cyst and tumor. Next, [13] identified glaucoma on 

fundus retinal images by using local linear estimator. Also, 

[14] used local linear estimator to classify choroidal 
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neovascularisation on fundus retinal images. Lung tumor 

classification on human chest X-ray by using local linear 

estimator has been discussed by [15]. Image enhancement 

sputum containing mycobacterium tuberculosis using a spatial 
domain filter has been studied by [16]. Further, [17] used local 

linear estimator for modeling maternal mortality and infant 

mortality cases in East Kalimantan. Estimation of dissolved 

oxygen using spatial analysis based on ordinary kriging 

method as effort to improve the quality of Surabaya’s river 

water has been studied by [18]. Spline estimator of 

nonparametric regression was used by [19] to predict 

suspended and attached process behavior in anaerobic batch 

reactor. Truncated spline estimator of nonparametric 

regression was used by [20] for modeling the percentage of 

aids sufferers in East Java province. Least squared spline 

estimator has been used by [21] for modeling poverty 
percentage of non-food per capita expenditures in Indonesia. 

Multi-response nonparametric regression model provides 

powerful tools to model the functions which represent 

association between two or more dependent variables and 

independent variables. There are many researchers who have 

considered nonparametric models for modeling medical data. 

In [22] researchers used local linear of bi-variate longitudinal 

data to model the admission test of State Islamic College in 

Indonesia.  Truncated spline estimator in multi-response 

semiparametric regression was used by [23] for modeling 

computer based national examination in West Nusa Tenggara, 
Indonesa.  Standard growth chart of weight for height to 

determine wasting nutritional status in East Java based on 

semiparametric least square spline estimator has been studied 

by [24]. Modeling of HIV and AIDS in Indonesia by using 

bivariate negative binomial regression have been discussed by 

[25]. Penalized spline estimator has been used by [26] to 

estimate median growth charts for height of children in East 

Java province of Indonesia. Penalized spline estimator with 

multi-smoothing parameters in bi-response multi-predictor 

nonparametric regression model for longitudinal data has been 

discussed by [27]. Spline for estimating nonparametric 
functions from bivariate data with the same correlation of 

errors has been studied by [28]. Methods for estimating 

nonparametric regression model with spatially correlated 

errors were proposed by [29]. Next, [30] and [31] have studied 

spline estimators in multi-response nonparametric regression 

model with equal correlation of errors and unequal correlation 

of errors, respectively. Multi-response nonparametric 

regression model approach to design child growth chart has 

been used by [32]. A mathematical statistics method for 

estimating regression curve of the multi-response 

nonparametric regression model in case of heteroscedasticity 

of variance was proposed by [33]. Estimating regression 
function of the homoscedastic multi-response nonparametric 

regression in which the number of observations were 

unbalance has been discussed by [34]. Next, [35-37] proposed 

smoothing spline estimator for estimating of the multi-

response nonparametric regression model by using 

reproducing kernel Hilbert space (RKHS). In addition, [38] 

discussed construction of covariance matrix in case of 

homoscedasticity of variances of errors.  Also, [39] discussed 

estimating of both covariance matrix and optimal smoothing 

parameter. Further, [40] used spline to show ability of 
covariance matrix. But, these researchers have not discussed 

estimating of smoothing parameter in multi-response 

nonparametric regression model when the variances of errors 

are not the same for cross-section data. In addition, all these 

researchers have not theoretically discussed application of the 

estimated model on the real case data.  

Therefore, in this paper, we discuss theoretically methods 

to estimate regression function and optimum smoothing 

parameter of the multi-response nonparametric regression 

model if it is applied to blood pressures and heart rate affected 

by stress level. 

2. MATERIAL AND METHODS 

We consider multi-response nonparametric regression 

model as follows: 

 ( )ki k ki kiy f t   , 1,2,...,k p , 1,2,..., ki n  (1) 

where 
2( )ki kiVar   [33, 35-36, 39, 41]. Next, suppose 

that we apply the model in (1) to data of blood pressures and 

heart rate that are affected by stress level such that we have 

the blood pressures and heart rate model as follows: 

( )ki k ki kiy f t   ; 1,2,3k   ;  1,2,..., ki n        (2) 

where 
2( )ki kiVar   , 1iy , 2iy  and 3iy  are response 

variables that represent the first response (i.e., systolic blood 

pressure), the second response (i.e., diastolic blood pressure), 

and the third response (i.e., heart rate), respectively; and 

( )k kif t are unknown regression functions which represent 

function of predictor variable (i.e., stress level).  

The estimated regression function can be obtained by 

taking solution of penalized weighted least square 

optimization by using reproducing kernel Hilbert space 

approach. Next, we can get the optimal smoothing parameter 
by minimizing generalized cross validation function.  Finally, 

we apply the estimated model that we have obtained to the 

real case data, i.e., blood pressures and heart rate affected by 

stress level. In this case, the estimated systolic and diastolic 

blood pressures, and heart rate that we have obtained can be 

used for early prediction of hypertension.   

3. RESULTS AND DISCUSSION 

In this section, we present results and discussion about 
theoretically methods for both estimating regression function 
and estimating optimal smoothing parameter of the model of 
blood pressures and heart rate affected by stress level by using 
spline estimator in multi-response nonparametric regression.  

3.1  Estimation of Regression Function of Blood Pressures 
and Heart Rate Model 

Firstly, we consider a paired data set that follows the blood 

pressures and heart rate model as given in (2), i.e.,: 
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( )ki k ki kiy f t    ; 1,2,..., ki n ; 
k k ka t b  ;        (3) 

where k   represents the number of response,  
kn n  for   

1,2,3k   and 
1 2 3, ,f f f  are unknown regression functions  

assumed to be smooth in Sobolev space 
2 [ , ]m

k kW a b , and
ki  

are zero-mean independent random errors with variance  
2

ki . 

The main objective of nonparametric regression analysis is 

estimate unknown regression functions 
2 [ , ]m

k k kf W a b  in 

model (3). Next, suppose that 1 2 3( , , )y y y y  , 

1 2 3( , , )f f f f  , 1 2 3( , , )      , and  1 2 3( , , )t t t t    

where 1( ,..., )k k kny y y   , 1( ( ),..., ( ))k k k k knf f t f t   ,  

1 2( , ,..., )k k k kn     , 
1 2( , ,..., )k k k knt t t t   . Therefore, 

for 1,2,...,i n    and 1,2,3k   we can write equation (3) 

in the following equation:  

  y f                                                (4) 

where ( ) 0E   (zero mean), and 2 1( ) [ ( )]Cov W  
2 2 2

1 1 2 2 3 3( ( ), ( ), ( ))diag W W W   . Estimating of the 

functions f   in (4) by using smoothing spline estimator 

appears as a solution to the penalized weighted least-square 

(PWLS) minimization problem, i.e., determine f̂  that can 

make the following PWLS minimum: 

1 2 3 2

3
1

1 1 1 1 1 3 3 3 3 3
, ,

1

{( ) ( ) ( ) ... ( ) ( )
m k

f f f W
k

Min n y f W y f y f W y f




                     

1 3

1 3

(2) 2 (2) 2

1 1 3 3( ( )) ... ( ( )) }
b b

a a
f t dt f t dt                            (5) 

for pre-specified value 1 2 3( , , )     . Note that, in 

equation (5), the first term represents the sum squares of errors 

and it penalizes the lack of fit. While, the second term which 

is weighted by   represents the roughness penalty and it 

imposes a penalty on roughness. It means that the curvature of 

f  is penalized by it. In equation (5), k ( 1,2,3)k  is 

called as the smoothing parameter. The solution will be vary 

from interpolation to a linear model, if k  varies from 0 to 

 . So that, if k  , the roughness penalty will 

dominate in (5), and the smoothing spline estimate will be 

forced to be a constant.  If  0k  , the roughness penalty 

will disappear in (5), and the spline estimate will interpolate 

the data. Thus,  the trade-off between the goodness of fit given 

by: 
3

1

1 1 1 1 1 3 3 3 3 3

1

( ) ( ) ( ) ... ( ) ( )k

k

n y f W y f y f W y f



        

and smoothness of the estimate given by: 

  1 2 3

1 2 3

(2) 2 (2) 2 (2) 2

1 1 2 2 3 3( ( )) ( ( )) ( ( ))
b b b

a a a
f t dt f t dt f t dt       

is controlled by the smoothing parameter
k . The solution for 

minimization problem in (5) is a smoothing spline estimator 

where its function basis is a “natural cubic spline” with 

1 2, ,...,
knt t t ( 1,2,3)k 

 
as its knots. Based on this concept, 

a particular structured spline interpolation that depends on 

selection of the smoothing parameter 
k  value becomes a 

appropriate approach of the functions 
kf ( 1,2,3)k   in 

model (1). Let 1 2 3( , , )f f f f   where 

1 2( ( ), ( ),..., ( ))k k k k k k knf f t f t f t  , 1,2,3k  , be the 

vector of values of function 
kf ( 1,2,3)k   at the knot points 

1 2, ,...,
knt t t ( 1,2,3)k  . If we express the model of paired 

data set into a general smoothing spline regression model, we 

will get the following expression: 

     kiktki fLy
k

 ,  1,2,..., ki n ; 1,2,3k          (6) 

where kf Hk  (Hk represents Hilbert space) is an unknown 

smooth function, and 
kt

L Hk is a bounded linear functional.  

Suppose Hk can be decomposed into two subspaces  Uk  

and  Wk  as follows: 

  Hk = Uk   Wk  

where Uk is orthogonal to Wk, 1,2,3k  . Suppose that 

1 2{ , ,..., }
kk k kmu u u  and 1 2{ , ,..., }

kk k kn    are bases of 

spaces Uk and Wk , respectively. Then, we can express every 

function kf Hk ( 1,2,3k  ) into the following expression: 

    k k kf g h   

where kg   Uk  and kh Wk . Since 1 2{ , ,..., }
kk k kmu u u  is 

basis of space Uk and 1 2{ , ,..., }
kk k kn    is basis of space  

Wk , then for every kf Hk ( 1,2,3k  ) follows:  

        

1 1

k km n

k kj kj ki ki

j i

f d u c 
 

   k k k ku d c   ;          (7) 

where kjd R ; kic R ; 1 2( , ,..., )
kk k k kmu u u u  , 

1 2( , ,..., )
kk k k kmd d d d  , 1 2( , ,..., )

kk k k kn     , and 

1 2( , ,..., )
kk k k knc c c c  .  Furthermore, since 

kitL  is a 

function which is bounded and linear in Hk , and kf   Hk , 

1,2,3k   then we have 

( )
ki kit k t k kL f L g h  ( ) ( )k ki k kig t h t  )( kik tf .   (8) 

Based on model (3), and by applying the Riesz representation 

theorem [42-43], and because of 
kitL Hk is bounded linear 
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functional, then according to [42-43] there is a representer 

ki   Hk  of 
kitL which follows: 

           
, ( )

kit k ki k k kiL f f f t    , 
kf   Hk                  (9) 

where  ,   denotes an inner product. Based on (6) and by 

applying the properties of the inner product, we get: 

       ( ) ,k ki ki k k k kf t u d c     
 

                    
, ,ki k k ki k ku d c         .                      (10) 

Next, by applying equation (10), for 1k  we have: 

1 1 1 1 1 1 1 1( ) , ,i i if t u d c         , 11,2,...,i n ; 

and for 11,2,3,...,i n  we have: 

       11 1 1 11 1 12 1 1( ) ( ( ), ( ),..., ( ))nf t f t f t f t    

                1 1 1 1K d c  ,                                     (11) 

where: 

1

1

1 1 1 1

11 11 11 12 11 1

12 11 12 12 12 1

1

1 11 1 12 1 1

, , ,

, , ,

, , ,

m

m

n n n m

u u u

u u u
K

u u u

  

  

  

      
 
      

  
 
       

, 

1

1

1 1 1 1

11 11 11 12 11 1

12 11 12 12 12 1

1

1 11 1 12 1 1

, , ,

, , ,

, , ,

n

n

n n n n

     

     

     

      
 
      

   
 
       

, 

11 11 12 1( , ,..., )md d d d  ,  and  
11 11 12 1( , ,..., )nc c c c  . In 

the similar process, we obtain: 2 2 2 2 2 2( )f t K d c  ; 

3 3 3 3 3 3( )f t K d c  . Therefore, the regression function 

( )f t  can be expressed as: 

         
1 1 2 3( ) ( ( ), ( ), ( ))f t f t f t f t 

  

                  
1 1 2 2 3 3 1 1 2 2 3 3( , , ) ( , , )K d K d K d c c c       

            
1 2 3 1 2 3( , , )( , , )diag K K K d d d  

 

                     1 2 3 1 2 3( , , )( , , )diag c c c   
 

                 
Kd c  .                                                   (12) 

In equation (12), K  is a ( )N M -matrix and d  is a vector 

of parameters with dimension )1( M  (where 

3

1

3k

k

N n n


  , 
3

1

3k

k

M m m


  ) that are expressed as:

1 2 3( , , )K diag K K K ,  and  
1 2 3( , , )d d d d    , respectively. 

Also,  is a )( NN  -matrix, and c  is a )1( N -vector of 

parameters which are expressed as: 

1 2 3( , , )diag     ,  and  1 2 3( , , )c c c c    , respectively.  

Therefore, we can write model in (3) as follows: 

              y Kd c    . 

We use the RKHS method to obtain the estimation of f , by 

solving the following optimization: 

    

2 2
1 1

2 22 2

1,2,3 1,2,3

( ) ( )( )
k k k kf f

k k

Min W Min W y f  
 
 

      
    

      
H H

,   (13) 

with constraint: 

 
k

k

b

a
kkk

m

k dttf 2)( )]([  , 0k .                 (14) 

To solve the optimization (13) with constraint (14) is 

equivalent to solve the optimization PWLS: 

2

3
1 2 ( ) 2

[ , ]
1

1,2,3

( ) ( )( ) [ ( )]
k

m
kk k k

b
m

k k k k
af W a b

k
k

Min N y f W y f f t dt 






 
   

 
 

, (15) 

where k , 1,2,3k   are smoothing parameters that control 

trade-off between goodness of fit represented by: 

           1 2( ) ( )( )N y f W y f     

and the roughness penalty measured by: 

       
1 3

1 3

( ) 2 ( ) 2

1 1 1 1 3 3 3 3[ ( )] ... [ ( )]
b b

m m

a a
f t dt f t dt    . 

To get the solution to (15), we first decompose the roughness 

penalty as follows: 

      11

2

11

2

1

)(

1 ,)]([
1

1

PfPfPfdttf
b

a

m

      

             
1 1 1 1 1 1 1 1, ( )c c c c      

1 1 1c c 
 
 

It implies:  

      
1

1

( ) 2

1 1 1 1 1 1 1 1[ ( )]
b

m

a
f t dt c c    .                              (16) 

Next, by similar way, we get: 

     
2

2

( ) 2

2 2 2 2 2 2 2 2[ ( )]
b

m

a
f t dt c c    , 

    
3

3

( ) 2

3 3 3 3 3 3 3 3[ ( )]
b

m

a
f t dt c c     .                          (17) 

Based on (16) and (17), we have penalty: 

 
3

( ) 2

1

[ ( )] }
k

k

b
m

k k k k
a

k

f t dt


   c c                         (18) 

where 
1 2 31 2 3( , , )n n ndiag I I I    . We can express the 

goodness of fit in (15) as follows: 

       
1 2( ) ( )( )N y f W y f    =    

     

1 2( ) ( )( )N y Kd c W y Kd c     . 

If we combine the goodness of fit and the roughness penalty, 

we will have optimization PWLS: 

                 

 
3

3

2( ) ( )( )
n

m
c R

d R

Min y Kd c W y Kd c c N c
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                  =  
3

3

( , )
n

m
c R

d R

Min Q c d




.                                         (19) 

To get the solution to (19), firstly we must take the partially 

differential of ( , )Q c d  and then their results are equaled to 

zeros as follows: 

   

( , )
0

Q c d

c





 

1 2ˆ ( )( )c M W y Kd  .    (20) 

   

( , )
0

Q c d

d





   

           

1 2 1 1 2ˆ [ ( ) ] ( )d K M W K K M W y     .          (21) 

Next, if we substitute (21) into (20) , we obtain: 

  1 2 1 2 1 1 2ˆ ( )[ ( ( ) ) ( )]c M W I K K M W K K M W y        .   (22) 

Finally, based on (12), (21) and (22), we get the smoothing 

spline estimator which can be expressed as follows:  

         

1

2

3

1, 1

2, 2

3, 3

ˆ ( )

ˆ ˆ ˆ ˆ( ) ( ) ( )

ˆ ( )

f t

f t f t Kd c H y

f t



 





 
 
    
 
 
 

              (23)                      

where 
1 2 1 1 2 1 2

~
( ) [ ( ) ] ( ) ( )H K K M W K K M W M W        

 

                

1 2 1 1 2[ ( ( ) ) ( )]I K K M W K K M W     , 

and ˆ ( )f t  is smoothing spline with a natural cubic spline as 

a basis function with knots at 1 2, ,...,
knt t t ( 1,2,3)k  , for a 

fixed smoothing parameter 0  .  ( )H   is a positive-

definite (symmetrical) smoother matrix that depends on 

smoothing parameter  and the knot points 1 2, ,...,
knt t t

( 1,2,3)k  . Yet, it does not depend on y .  

Based on estimated model we have in (23), we conclude 

that the estimated model is a linear function in observation. In 

addition, by taking expectation of equation (23), i.e., 

ˆ( ( ))E f t  we obtain that the estimated regression function 

in (23) is a biased estimator. Further discussion about this 

estimator can be obtained on [42-48].  

3.2. Estimation of Optimal Smoothing Parameter 

Researcher [43] has shown that in uniresponse spline 

nonparametric regression, if smoothing parameter ( ) value 

is very small )0(   then it will give a very rought 

estimator of nonparametric regression function. In contrary, if  

smoothing parameter ( ) value is very large )(   then 

it will give a very smooth estimator of nonparametric 
regression function. Therefore, we need to select optimal 

smoothing parameter ( )  in order to obtain estimator that is 

suitable with data. For this need, some researchers have 

proposed some selection methods, for instance [49] proposed 

cross validation (CV) method, [50] proposed unbiased risk 

(UBR) method, and [43] proposed generalized cross 
validation (GCV) method. Not only does uni-response spline 

nonparametric regression, but also multi-response spline 

nonparametric regression depends on smoothing parameter 

k , 1,2,3k  . 

In this section we discuss selection method for selecting 
the optimal smoothing parameter in multi-response 
nonparametric regression model for data of blood pressures 
and heart rate affected by stress level. Regression function 
estimator of multi-response nonparametric regression model 
for data of blood pressures and heart rate as given in equation 
(23) can be expressed as follows: 

 
2

1 2 3
ˆ ( ) ( , , ; )f t H y                                        (24)                                     

where 
2 2 2 2

1 2 3( , , )     .  MSE (Mean Square Error) of 

(24) can be determined as follows: 

2

2

1 2 3 3

1

ˆ ˆ( ( )) ( )( ( ))
( , , ; )

k

k

y f t W y f t
MSE

n

 
   



 




         

   2 2 2

1 2 3 1 2 3

3

1

( , , ; ) ( ) ( , , ; )

k

k

y H y W y H y

n

        




 




            

   2 2 2

1 2 3 1 2 3( , , ; ) ( ) ( , , ; )N NI H y W I H y

N

        
    

     

   
2

1
2 22

1 2 3( ) ( , , ; )NW I H y

N

    

 .                                         

where  
1

2 2( )W   is a diagonal matrix, and 
3

1

k

k

N n


 .                                                

Next, we define a quantity (further it is called as GCV 
function) as follows: 

   

 

2
1

1 2 22
1 2 3

2

1 2 3 2
1 2

1 2 3

( ) ( , , ; )

( , , ; )

( , , ; )

N

N

N W I H y

G

N trace I H

    

   
   








 
 

 

The optimal smoothing parameter 
opt  is obtained by taking 

the solution of the following optimization:  
2

1( ) 2( ) 3( )( , , ; )opt opt opt optG      

  
   

 1 2 3

2
1

1 2 22
1 2 3

2
, , 1 2

1 2 3

( ) ( , , ; )

( , , ; )

N

R R R

N

N W I H y

Min

N trace I H
  

    

   
  



   

 
 
 

  
  
  

 

,      
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where 
2 2 2

1 2 3v v v v     for  
1 2 3( , , )v v v v , and 

1( ) 2( ) 3( )( , , )opt opt opt opt     .  

4.  CONCLUSION 

In estimating of the regression function that draws the 

association between blood pressures, heart rate and stress level 
by using spline estimator in the multiresponse nonparametric 

regression model depends on the optimal smoothing parameter 

1( ) 2( ) 3( )( , , )opt opt opt opt     . In addition, by determining 

predicted values of blood pressures (systolic and diastolic 

blood pressures) and heart rate which are affected by stress 

level, we can predict and prevent from suffering of 

hypertension earlier.  
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