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Abstract: In any organization expenditure is generally believed to be related to income generated, among other factors. These 

factors need to be examined so as to know their effect and contribution on expenditure. Consequently, this work aims at modelling 

monthly expenditure and sales of a subsidiary of Nigerian National Petroleum Corporation’s products using linear regression 

model. The data used in this study were monthly expenditure and sales of petro-chemical products for a period of ten years. The 

Dickey-Fuller test statistic was used to test for the stationarity of the data.. Other statistics tests used include the Jaque-Bera, 

Glejser/LM and Durbin-Watson test statistic for testing normality, homoscedasticity and independence of error terms respectively. 

The Variance Inflation Factor (VIF) was also used to examine the presence of multicollinearity. Arising from various linear 
regression assumptions’ violation called for the use of Generalised Two-Stage(OLS, LAD) estimator. The results show that the 

original data is stationary. The OLS estimation results reveal the presence of multicollinearity, non-normality, heteroscedasticity 

and autocorellated error terms in the dataset. Attempting to improve the analysis using Generalised Two-Stage (OLS,LAD) shows 

that the results of the latter estimator are more efficient than the former, in terms of their significant variables. In conclusion, the 

results reveal that sales of Kerosene and Air Transport Kerosene(ATK) are positive and have significant contribution to NNPC 

monthly expenditure. 

 

INTRODUCTION 

Regression analysis is a conceptually simple method for investigating functional relationship among variables. The term regression 

was first introduced by Galton (1877) while studying the relationship between the heights of fathers and sons. The term was 

introduced by him in the paper tagged “Regression towards Mediocrity in Hereditary Status”. Regression analysis attempts to 

establish the „nature of the relationship‟ between variables, the dependent and some set of independent variables. It provides a 
mechanism for prediction. 

 

It is clear from the above definition that regression analysis is a statistical device with the help of which we are in position to 

estimate the unknown value(s) of one variable from known value(s) of another variable. The variables which are used to predict the 

variable of interest are called independent variable or explanatory variable and the variable we are trying to predict is called 

dependent variable or explained variable. In a nutshell, we denote dependent variable by Y and the set of independent variables by 

pXXX ,...,, 21 , where p denotes the number of predictor variables. The true relationship between Y and pXXX ...,,, 21 can be 

approximated by regression model:   

  UxxxfY p  ,...,, 21 ,               (1)   

where U is the random error component with some assumptions.  

Literature Review on Expenditure 

Abby, Jaffrey and Ara (2006) established correlation between Bureau of Labour Statistics (BLS) petroleum-product Consumer Price 

Index (CPI) and changes in consumer spending on those products, as measured by the Consumer Expenditure Survey (CES). 
Odularu (2006) used regression analysis to model Nigerian economy using crude oil data. He discovered that oil sector contributed 

positively to Nigeria economy.  

Abiodun and Solomon (2010) examined world price for Nigerian major agricultural commodities. He emphasized that Nigerian 

income and Nigerian past agricultural output were determinants of agricultural exports. Using Ordinary Least Squares regression 

estimator, the study recommended that priority should be accorded to the boosting of the current level of agricultural output. 

Mehmood and Sadiq (2010) examined the long run as well as short run relationship between the fiscal deficits. The results showed a 

negative relationship between government expenditure and poverty based on time series data from 1976 to 2010. Onwe (2012) 

http://www.ijeais.org/ijaar


International Journal of Academic and Applied Research (IJAAR) 
ISSN: 2643-9603  

Vol. 3 Issue 10, October – 2019, Pages: 20-35 

 

 

http://www.ijeais.org/ijaar 

21 

examined the impacts of changes of policy implementation in oil sector in Nigeria. The negative implications and positive effects of 

such policies were highlighted. 

Falukasi and Awomuse (2011) assessed the determinants of demand functions for import in Nigeria using variables: Real Gross 

Domestic Product (RGDP), External Reserves (EXTR), Real Exchange Rate (REXCH) and Index of Openness (OPNS)as 

determinant factors. They used the statistical significance of the lagged error correction model, ECM(-1). Fukuda and Hiyoshi 

(2013) discovered the association of household expenditure and marital status with cardiovascular risk factors in Japanese adults. 

Olawuwo, Ogunleye and Olaleye (2013) modeled local government monthly expenditure on income. It was discovered that statutory 

allocation was recommended as principal determinant of local government expenditure in the South West Zone of Nigeria. 

Olukotun, James and Olorunfemi (2013) were able to model the effect of introduction of mobile phones and the students‟ 

expenditure pattern in Anyigba Community, using linear regression. A positive correlation was discovered. Ogunleye, Olaleye and 

Solomon (2014) modeled commercial banks‟ expenditure on sources of profit maximization in Nigeria, it was discovered that 
interest on loans and advances gave the most profitable sources of income. 

Aim and Objectives of the Study 

The aim of this work is to model monthly expenditure and sales of petroleum products of NNPC and diagnose the model in the light 

of its assumptions. The specific objectives are to detect whether or not the assumptions of: 

(i)  normality of error terms, Independence of explanatory variables, Independence of error terms and 

Homoscedasticity of error variance are violated. 

(ii)  when violated, we attempt to correct the violations. 

Time Series Data and Stationarity Test 

Time Series is a set of observations or values that a variable takes at different time. Such data may be collected at regular  time 

interval, such as daily, weekly, monthly, quarterly, annually, quinquennially or decennially (Gujarati, 2007). In statistical inference 

of modeling time series data, the first thing one needs to do is ascertain the stationarity status of the data. 

A time series is said to be stationary if its mean and variance are constant over time and the value of the covariance between the two 

time periods depends only on the lag between the two time periods and not the actual time at which the covariance is computed 

(Gujarati, 2007) 

This can be expressed as follows: 

Let tY be a stochastic time series with the following properties 

Mean     tYE                                                 (2) 

 Variance      22
  tt YEYVar                         (3)  

Covariance      kttk YYE ,                        (4)                  

where k is the covariance or autocovariance at lag k. 

Testing for Stationarity 

There are several methods for testing for stationarity. The followings are some of the methods: 

(i) Graphical Method 

Plotting time series data can give initial clue about the likely nature of the time series. If the time series plot shows an upward trend, 

it suggests that the mean of time series varies; which implies that time series is not stationary, otherwise stationary(Ogunleye et al., 

2014). 

(ii) Autocorrelation Function and Correlogram 
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A simple test of stationary is based on autocorrelation function (ACF). The ACF at lag k, denoted by k is defined as 

 
Variance

klagatianceCok

k

var

0





                          (5) 

Plotting k against k, the graph so obtained is termed population correlogram.Whenever the correlogram of a time series hover 

around zero at various lags, the time series is said to be stationary, otherwise nonstationary (Gujarati, 2007). 

(iii) Unit Root Test 

A test of stationarity that has become widely popular is the Unit Root Test. 

Given ttt UYY  1   11                           (6) 

Where tU  is a white noise error terms. If 1 , that is unit root, meaning the stochastic process is non-stationary. 

Subtracting 1tY from both sides of (6), it becomes 

                             

      = (   )         

    =                                               (7) 

where )1(    and   is first-difference operator. 

So, if 0 , 1 , indicating that the time series under consideration is not stationary but its 1st differences stationary. 

Dickey and Fuller (1979) under the null hypothesis indicated that ,0  the estimated t value of coefficient 1tY  follows the Tau-

statistic. They computed the critical values of the Tau-statistic on the basis of Monte Carlo simulation. The Tau-statistic or test is 

known as Dickey-Fuller (DF) Test (Gujarati, 2007). 
 

Classical Linear Regression Model and Its Assumptions 

Classical Linear Regression Model is a kind of model that shows relationship between dependent and independent variables. The 

Ordinary Least Square (OLS) method is one of most important ways for estimating the parameters of linear models, because of its 

simplicity and rationality. The results are obtained when specific assumptions of the model are not violated. However, when any of 

these assumptions are violated, the results of OLS estimator are affected, especially its efficiency. 

Suppose there is a linear relationship between dependent variable jY , the explanatory variables    and error terms     ,    

                      .  
This relationship can be expressed in matrix form as follow: 

UXY  
                                       (8) 
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where Y  is an  1n dimensional vector observations of dependent variables, X is the   1 pn  matrix of explanatory 

variables, and  , is the   11 p  vector of regression coefficients,U is the  1n  vector of errors with properties 

  0UE ,   nIUUE 2'  and nI  represents the  nn  dimensional identity matrix. 

The assumptions of Classical Linear Regression Model are: 

(i) Error terms, U, have mean zero; E[U] = 0: 

(ii) The error terms, U, have equal variance; i.e., they are homoscedastic,    [   ]      : 

(iii) Error terms, U, are normally distributed; U  N(0, nI2 ) ; 

(iv) There should not be intercorrelation between the explanatory variables; there should be no problem of 

multicollinearity;   0, ji XXCor ,  ji   ; 

(v) Correlation of error terms and explanatory variables should be zero,   0, XUCor ; 

(vi) The error terms of different observations  
ji UU , ,  ji , are independent;   0, ji UUCor . Hence, there is no 

autocorrelation problem ; 

(vii) The regression model is linear ; 

(viii) X values are fixed in repeated sampling; and 

(ix) Number of observation, n, must be greater than the number of parameter to be estimated (Dimitrius and Stephen, 

2011). 

Statistics to Check Assumption of Classical Linear Regression Model 

The following are some of the statistics to check the assumptions of Linear Regression Model. 

Testing for Normality 

The followings are some statistics for testing for normality of a set of data. 

(i) Anderson-Darling Normality Test: 

The test is used to test if a sample of data comes from a population with a specific distribution, usually normal distribution. It is a 
modification of the Kolmogorov-Smirnov test and gives more weight to the tails than the Kolmogorov-Smirnov test. The 

Kolmogorov-Smirnov test is distribution-free test, in the sense that the critical values do not depend on the specific distribution 

being tested but the Anderson-Darling test makes use of a particular distribution most especially normal distribution in calculating 

critical values.It is a measure of how closely a data set follows the normal distribution. The null hypothesis for this test is that the 

data set is normal. The statistic is stated as follows: 

  nzzi
n
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n
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


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                                             (9)

 

where 
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sample variance. The null hypothesis of normality is rejected for large values of 
2A  indicating that if we get A-squared that is fairly 

large then we will get a small p-value and thus reject the null hypothesis(Adejumo, Olawuwo and Ojo, 2014) 

(ii) Jarque-Bera Normality Test 

Jarque and Bera (1987) established a statistic to test the normality of observations. The statistic is based on the skewness and 

kurtosis of the residuals which are calculated using the sample moments. The sample skewness and kutosis coefficients can be 

calculated by 

 
2
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
S        (Skewness)                               (10) 
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If there is interception in the 

model, the Jarque-Bera test statistic for null hypothesis that the observations (residuals) are normally distributed is given as 
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                               (12) 

 The Jarque-Bera test has a chi-squared distribution with 2 degrees of freedom asymptotically. The null hypothesis is 

rejected if the computed chi-squared value exceeds the criticalchi-squared value. 

(iii) The Lilliefors Test 

 The test statistic is 

 )]()([ * xSxFSupLF 
                                                 (13)

 

 where )(* xF is the Standard Normal distribution function 

)(xS is the empirical distribution function(Lilliefors, 1969). 

(iv) The Shapro-Wilk Test 

 The statistic is 

  
 

 










n

i i

n

i ii

xx

xa
W

1

2

2

1 )(
                         (14) 

 where )(ix  is the 
thi order statistic,(smallest number in the sample); 

 x is the sample mean and ia are constants given by Shapiro and Wilk (1965). 

Testing for Autocorrelation 

The following is a method for detecting autocorrelation 

Durbin-Watson Test for Autocorrelation:  
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Of all the available tests for the existence of serial correlation in a dataset, Durbin-Watson statistic is the most popular and to certain 

degree reliable. The procedure is as follows: 

Step I: Define the hypothesis as follow:  

  0 :0 H (Meaning that there is no first order autocorrelation) 

  0 :1 H (Meaning that first order autocorrelation exists) 

Step II: Fit in the estimated parameters into the model as follows: 

UXXXY pp   ...22110
              

Step III:Calculate Ŷ  from the values of the explanatory variables (Xs) 

Step IV:List the values of observation under YandY ˆ  

Step V: Calculate YYU t
ˆ  and also obtain 2

tU  , and list them out 

Step VI: Calculate 1 tt UU
 and also obtain 

2

1)(  tt UU
 

Step VII: Calculate   
∑          

  
   

∑   
  

   
                                                                          

Step VIII: By the help of computed d above, use the mathematical relationship d )1(2  to obtain ̂ . The interpretation is that 

if ̂  is approximately zero, then autocorrelation does not exist in the dataset or better still, its presence can be tolerated. 

In summary, an approximate relationship between d and   is d )1(2  showing that d has a range of 0 to 4 respectively. Since 

̂  provides an estimate of , it is clear that d is close to 2 when ̂  = 0 and d is near to 0 when ̂  = 1. The closer the samples 

value of d to 2, the stronger the evidence that there is no autocorrelation present in the error. Evidence of autocorrelation is indicated 

by the deviation of d from 2. In the case of small samples, the following decision rules are designed by Durbin and Watson: 

* If d Ld , we reject the null hypothesis of no autocorrelation and accept that there is positive autocorrelation of 

order one ( orderst1 ). 

* If d )4( Ld , we reject the null hypothesis of no autocorrelation and accept that there is negative 

autocorrelation of order one ( orderst1 ). 

* If Ud <d )4( Ud , we accept the null hypothesis of no autocorrelation. 

* If Ld <d Ud , the test is inconclusive. 

(Ogunleye et al.,2014) 

Testing for Multicollinearity 

The following are methods for testing for multicollinearity. 

 

(i)  Auxiliary Regressions 

Since multicollinearity arises because one or more of the regressors are exact or approximately linear combinations of the other 

regressors, one way of finding out which x variable is related to other x variables is to regress each ix  on the remaining x variables 
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and compute the corresponding
2R , which we designate as 

2

iR ; each one of these regressions is called auxiliary regression. The 

regression is an auxiliary to the main regression of y on the x’s. The relationship between Fand 
2

iR  is established as follows: 

);1(),2(2

2

~
)1()1(

)2(





 pnp

i

i
i F

pnR

pR
F                                                        (15) 

It should be noted that 'n' stands for sample size, 'p' stands for the number of explanatory variables, and 
2

iR  is the coefficient of 

determination in the regression of variable ix . The decision rule is such that if the computed iF  is greater than the corresponding 

critical value (Ftab.) at a chosen significant level, then the particular ix  is collinear with other x’s; otherwise it is not.  

Instead of formally testing all auxiliary 
2R  value, one may adopt Klien‟s rule of thumb, which suggests that that multicollinearity 

may be a troublesome problem only if 
2

iR  obtained from an auxiliary regression is greater than the overall 
2R  (the one obtained 

from the regression of yon all the regressors)(Klien, 1962). 

 

(ii)  Eigen Values and Condition Index 

 This is another way to suspect the existence of multicollinearity in a data set. When Eigenvalues are obtained, we can 

compute the condition index (CI) by first calculating 'k' as follows: 

eigenvalueMinimum

eigenvalueMaximum
k 

                         

  Then, we can now calculate the condition index as follows: 

  k
eigenvalueMinimum

eigenvalueMaximum
CI                          

It has been reported in some literature that if k is between 100 and 1000, there is moderate to strong multicollinearity but if it 

exceeds 1000, there is severe multicollinearity. Alternatively, if CI is between 10 and 30, there is moderate to strong 

multicollinearity but if CI exceeds 30, there is severe multicollinearity(Gujarati, 2007). 

(iii)Tolerance and Variance Inflation Factors (VIF) 

As 
2

iR , the coefficient of determination in the regression of variable ix  on the remaining regressors in the model increases toward 

unity, that is, as the collinearity of ix  with the other regressors increases, Variance Inflation Factor (    ) also increases and in the 

limit it can be infinite.      simply measures how the variance of a particular regressor ix  inflates or increases in association with 

other regressors. Some authors use      as an indicator of multicollinearity. The larger the value of iVIF , the more 'troublesome' or 

collinear the variable ix . It has been reported in some literaturethat if iVIF  of a particular variable is less than 10, that variable is 

said to be collinear. iVIF can be computed using the following relation. 

21

1

i

i
R

VIF


                           (16) 

Of course, one could use 'Tolerance Factor' TF as a measure of multicollinearity in view of its intimate connection with iVIF . The 

closer iTF  to zero, the greater the degree of multicollinearity of that variable with other regressors. On the other hand, the closer 

iTF  is to 1, the greater the evidence of that ix  is not collinear with the other regressors. Some believe that if the value of iTF  is 

between 0.10 and 0.20, then there is presence of multicollinearity. iTF can be computed using the following relation: 

21 ii RTF                            (17)    
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(Farrar and Glauber, 1967) 

(iv)   Chi-Squared Test for Multicollinearity 

It should be noted that multicollinearity is a modeling error; it is a condition of deficient data. One of the three stage-test of Farrar 

and Glauber (1967) for the detection of existence of multicollinearity is the use of chi-square test. The test is tailored as followed:
  

Hypothesis: 

:0H  No multicollinearity  

Vs 

:H1  Multicollinearity exists 

  Test statistic: 

    RIn  . 52
6

1
1-n-   2









 pcal       ~    
2

;2)1( 


pp
                   (18) 

Where  R is the determinant of correlation matrix of all the predictor variables and p is the number of all the predictor variables.  

Decision Rule: Reject the null hypothesis if  2

cal is greater than
2

;2)1( 


pp
. Otherwise, do not reject. 

Testing for Heteroscedasticity 

 These are some of the various methods that could be used for testing heteroscedasticity. 

 

(i) White General Hetetroscedasticity Test 

It is a test that does not rely on the normality assumption and is easy to implement. Consider the following three variable regression 
model: 

                                              (19) 

The White test procedures are as follows: 

Step 1:- Given the data, we estimate (19) and obtain the residuals,  ̂ ,  
Step 2:- We then run the following (auxiliary) regression 

  ̂ 
                                                         (20) 

That is the squared residuals from the original regression are regressed on the original X variables and product(s) of the 

regressors. Higher power of regressors can also be introduced. Obtain the     from this (auxiliary) regression. 

Step 3:- Under the null hypothesis that there is no heteroscedasticity, it can be shown `that sample size (n) times the    
obtained from auxiliary regression asymptotically follows the Chi-Square distribution with degree of freedom equal to the 

number of regressor in the auxiliary regression. That is, 

            (Asymptotically)                                 
Step 4:- If the Chi-Square value obtains in (20) exceeds the critical Chi-Square value at the chosen level of significance, 

the conclusion is that there is heteroscedasticity, otherwise there is none (Gujarati, 2007). 

(ii) Glejser Heteroscedasticity Test 

Gujarati (2007) discussed Glejser‟s suggestion about heteroscedasticity test by regressing the absolute value of residual,  ̂ , from 

OLS regression on X variable that is thought to be closely associated with     
 . The following functional forms are used: 

 | ̂ |       √                             (21) 

 | ̂ |       
 

  
                            (22) 

 | ̂ |       
 

√  
                                      (23) 

where    are the error terms. 
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It was discovered that for large samples, the proceeding models gives generally satisfactory result in detecting heteroscedasticity.  

Estimation Methods under Violations of Classical Linear Regression (CLR) Model 

The following are some remedial measures to handle violations of CLR model.  

Non-Normality of Error Term 

The followings are some of the methods that could be used to handle non-normality 

(i) Least Absolute Deviation (LAD) 

The ordinary least square estimator is optimal when the disturbance in the equation is normally distributed. But when the 

disturbance is not normally distributed, other estimators are better. If the distribution is known, the efficient estimator is maximum 

likelihood with the correct distribution function. However, in many cases, one may suspect that ones data distribution is “fat-tailed” 

or contains outliers, without knowing exactly its form. In this setting, the LAD estimator, which minimizes the sum of absolute 

deviations of the residuals, may be more efficient.  
Least Absolute Deviation is also known as Least Absolute Value (LAV).  LAD minimizes the sum of the absolute value of residual 

with respect to the coefficient vector, B: 

 Min∑ |        | 
                                                  (24) 

The property of the LAD estimator is that there are K residuals that are exactly zero. LAD is robust to an outlier in Y-direction. 
However, LAD estimator does not protect against outlying X (Judge, Carter, William, Helmut and Tsoung-Chao, 1998). 

(ii) M-Estimator 

The class of M-Estimator was introduced by Huber in 1964 (Marquardt and Snee, 1975). M-Estimator,     is defined as a solution of 

the minimization problem. 

 ∑     
 
                with respect to                                             (25) 

                      

    
[      ]                                          (26) 

 

where          is a properly chosen function. The class M-Estimator cover also the maximal likelihood estimator of parameter   in 

the parametric model          Θ}; if        is the density function of    then MLE is a solution of the maximization 

 ∑ (           )            
   Θ                       (27) 

If   in (25) is differentiable in   with continuous derivative               
 

  
(        )  then    is a root or roots of the equation 

 ∑                   
    Θ                        (28) 

 

Hence, 

 

 
∑     

 
           

[      ]        Θ            (29) 

From (26) and (29) that the M-functional corresponding to    is defined as the solution of the minimization of       . 

Non-Homoscedasity of Error Term 

The estimator below is used to handle non-homoscedasity. 
 

(i) Weighted Least Square 

Consider the two variable case 

                                                                        (30) 
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where the error terms are heteroscedastistic, that is         
              we will assume all the other classical assumptions still 

hold. 

Dividing each observation of the linear model by   , we get 

  

  
   

 

  
   

  

  
 

  

  
       

   
       

       
         

    
                                  (31) 

Note that     
    (

  

  
)     then the residuals of this transformed model are homoscedastic. Hence, if we know   

 , the 

BLUE is simply the OLS with the transformed model is 

  ̂       
∑   

   
  

   

∑   
   

 
              

  ̂        ̅   ̂        ̅
              

with    
  

  
  

⁄        
  

  
  

⁄ .  

The name weighted least squares comes from the fact that the estimator can be obtained by solving the following minimization 
problem 

    ∑
 

  
   

  
                            (32) 

 Suppose heteroscedasticity is present in the form of an unknown function of the regressors which can be approximated by a 

quadratic relationship. Alin and Riccardo (2010) provided an heteroscedastity correction which offers the possibility of consistent 

standard errors and more efficiently parameter estimates as compared with OLS. 

The procedure involves (a) OLS estimation of the model of interest, followed by (b) an auxiliary regression to generate an estimate 

of the error variance, then finally (c) weighted least squares, using as weight the reciprocal of the estimated variance.  

In the auxiliary regression (b) we regress the log of the squared residuals from the first OLS on the original regressors and their 

squares. The log transformation is performed to ensure that the estimated variances are non-negative. Call the fitted values from this 

regression u*. The weight series for the final WLS is then formed as 1/exp(u*). 

Lack Independence of Explanatory Variables (Multicollinearity Problem) 

Some of the estimators which could be used to correct Multicollinearity problem are: 

(i) Ridge Regression Estimator 

One of the most popular estimators proposed by Hoerl and Kennard (1970) is the Ridge Estimator defined as  

YXKXXR '.)'(ˆ 1
                                   (33) 

OLSpR XXKI  ˆ))'((ˆ 11 
                                  (34) 

where K is a constant  10  K . 
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equation (2.39) is called Ordinary Ridge Regression, ORR, estimator. Nonetheless, when K is a diagonal matrix, the equation (2.34) 

becomes Generalized Ridge Regression, GRR,estimator. 

(ii) Liu Estimator 

Liu (1993) proposed an estimator similar in form but different from ridge estimator of Hoerl and Kennard (1970). 

The Liu Estimator, ̂      is given thus 

  ̂    (      )
  

          ̂                         (35) 

where         . 

Autocorrelation 

The following estimators are used to correct autocorrelation in dataset: 

(i) The Generalised Two-Stage Estimator 

When the assumption of independence of error terms of Classical Linear Regression Model is violated, there is problem of 

autocorrelation. Suppose the error terms follow AR(1), the model becomes: 

 
                         (36) 

 where             ,            

             In this case, the estimator   ̂ of   is given as: 

 ̂                                         (37) 

 
               ( ̂)                          (38) 

This is called Generalised Least Square estimator. Since Ω is not always known, therefore, it has to be estimated. There are 

different methods of doing this. If model is estimated using OLS estimator and  ̂ is further estimated using its residual and it is then 
used to transform the data, the resulting estimator is called Generalised Least Square estimator. An example of this is the Cochrane-

Orcutt estimator, which is an iterative method of estimation (Ayinde, 2006). 

(ii) Feasible Generalised Least Square Estimator (Cochrane-Orcutt) 

The steps involved are as follows: 

1. Estimating of  : This is accomplished by noting that the autoregressive errors process can be viewed as a regression 

through the origin 

  =      +                                                 (39)           

where    are the response variable and      the predictor variable and    the error term. 

2. Fitting  the transformed model 

Using the estimator of  , we next obtain the transformed variable     and     in  

{                       -      } and use OLS with these transformed variables to yield the fitted regression 

function in 

   ̂=   +                                                      (40)  

3. Using Durbin-Watson to test for need to iterate. If transformed model are uncorrelated, the iteration stops (Gujarati, 

2007). 

Estimation under Joint Violations of Linear Regression Model 
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This method is used for estimation when the dataset has more than one violation. It involves combination of robust methods. The 

followings are some of those methods for estimation under joint violation of linear regression model: 

Generalised Two-Stage [OLS, LAD] Estimator 

The estimator is developed following the technique of Generalized Two Stage estimator to handle both problem of autocorrelation 
and non-normality of error terms. The procedure is same as that Generalised Two-Stage except that the LAD estimator is used to 

analyze the data at the second stage. 

The methodology are as follows: 

1st Stage:-  (i) Run the LAD estimator of the model parameters and obtain the Durbin-Watson Statistic,   
∑          

  
   

∑   
 
   

, 

using the residual of the LAD estimator. 

 (ii) Estimate  ̂ from (i) using the relation         ̂). Alternatively,  ̂ obtained from relation   
∑  ̂  ̂   

 
   

∑  ̂ 
  

   
 

could be used to transform the data where, ̂  are the residual as a result of OLS estimator. 

 2nd Stage:- (i) Use the  ̂ in 1st Stage to transform the data. 

(iii) Use the LAD estimator to estimate the parameters of the transformed variable model.  

Result of Stationary Test 

Unit Root Test 

Table 1 shows the result of the unit root test for stationarity in all variables using the Augmented Dickey Fuller (ADF). All the 

variables are stationary at 1% level of significance. 
 

Table 1: Unit Root Test 

VARIABLE ADF 
VALUE 

P-
VALUE 

LAG REMARK 

Expenditure Y -5.5751 0.0000 1 Stationary 

PMS    -4.9998 0.0004 0 Stationary 

Diesel    -4.3576 0.0025 1 Stationary 

Fuel Oil    -3.8736 0.0131 1 Stationary 

Kerosene    -7.2990 0.0000 1 Stationary 

Asphalt    -3.7374 0.0036 1 Stationary 

Benzene (LAB)    -3.7244 0.0038 1 Stationary 

Base Oil    -5.4171 0.0000 1 Stationary 

Gas    -6.0651 0.0000 1 Stationary 

ATK    -4.5547 0.0001 1 Stationary 

Source: Computer Output 

Handling Autocorrelation Multicillinearity, heteroscedaticity and Non-Normality of  

Error Terms Using Generalised Two-Stage (OLS, LAD) Estimator 
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The Generalized Two-Stage (OLS,LAD) estimator is used. The results are presented in Table 2. From Table 2, it can be seen that the 

following were corrected: autocorrelation (Durbin-Watson P-Value > 0.05), heteroscedasticity (Glejser het. P-Value  > 0.05) and 

multicollinearity (all VIF‟s  < 10 ) and problem of non-normality has been corrected by  LAD estimator used. Thus, the effect of 

kerosene, base oil and ATK is significant on the monthly expenditure, using a data collected from subsidiary of Nigerian National 
Petroleum Corporation. 

 

Table 2: Generalised Two Stage (OLS, LAD) Estimator Output 

VARIABLE EST. OF REG. 

COEF. 

STAND 

ERROR 

T RATIO P-VALUE VIF 

 C 22.9258 3.16045 7.2539 0.000  

PMS     0.06239 0.04475 1.3942 0.166 1.432 

Diesel     -0.0052 0.02977 -0.2190 0.827 4.287 

Fuel Oil     0.01621 0.02935 0.55056 0.583 4.228 

Kerosene     0.04388 0.00965 4.54564 0.000 1.165 

Asphalt     0.01519 0.01610 0.94370 0.347 5.628 

Benzene (LAB)     -0.02509 0.01609 -1.5595 0.122 6.445 

Base Oil     -0.02033 0.01048 -1.9400 0.096 1.321 

Gas     0.0000 0.00737 -1.2788 0.204 1.186 

ATK    S 0.75070 0.01774 42.0003 0.000 1.149 

R-squared  

Adj R-squared  

0.8942 

0.8854 

DW Statistic 

DW P-value 

1.8292 

0.7724 

Glejser het. test 

Glejser P-value 

7.2251 

0.6140 

    SBIC 372.32 

Source: Computer Output 

Conclusion 

In this work, monthly expenditure of NNPC, Kaduna has been modeled on the sales of Premium Motor Spirit (PMS),   ; 

Automotive Gas Oil (AGO) also known as Diesel    ; Fuel Oils   ; Kerosene for household use,   Asphalt also known 

Bitumen,    Linear Alkyl Benzene (LAB),     Base Oils,     Liquefied Petroleum Gas (LPG)  and Air Transport Kerosene 

(ATK),     using linear regression model. Various violations of the model assumptions including non-normality of error terms, 

autocorrelation, multicollinearity and heteroscedasticity are evident in the OLS regression output. All violations detected in the 

dataset had been corrected and Generalised Two-Stage (OLS, LAD) estimator was used to handle afore-mentioned OLS violations. 

Results reveal that the sales of kerosene and ATK have positive and significant effect on monthly expenditure while that of base oil 

is negative and significant. 

Consequently, the sale of kerosene and ATK has been observed to determine monthly expenditure. 

 

Recommendation 

One of the principal objectives of any organization is to reduce the cost of production. Expenditure is a part of cost of production, 

which needs to be minimized. Hence, the sales of kerosene, base oil and ATK should be looked into, since it is observed that they 

give significant contribution to the Corporation‟s Monthly expenditure. 
 

Contribution to Knowledge 

Development of Generalised Two-Stage (OLS, LAD) estimator to handle autocorreation and non-normality of error terms/outliers 
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