The Local Fractional Metric Dimension of Corona Product of Complete Graph and Cycle Graph

Siti Aisyah ${ }^{1}$, Ratna Dwi C. ${ }^{2}$, Mohammad Imam Utoyo ${ }^{3}$ and Liliek Susilowati ${ }^{4}$
${ }^{1,2}$ Department of Mathematics, Kaltara University, North Kalimantan, Indonesia
${ }^{1}$ Correspondence author: aisyah_rasyid84@yahoo.com
${ }^{3,4}$ Department of Mathematics, Airlangga University, Surabaya 60115, Indonesia
${ }^{2}$ m.i.utoyo@fst.unair.ac.id, ${ }^{3}$ liliek-s@fst.unair.ac.id

Abstract

A vertex x in a connected graph G is said to resolve a pair of vertices $\{u, v\}$ in G if the distance from u to x is not equal to the distance from v to x. A set S of vertices of G is a resolving set for G if every pair of vertices is resolved by some vertices of S. The smallest cardinality of a resolving set for G is called the metric dimension of G, denoted by $\operatorname{dim}(G)$. For the pair of two adjacent vertices $\{u, v\}$ is called the local resolving neighbourhood and denoted by $R_{l}\{u, v\}$. A real valued function $g_{l}: V(G) \rightarrow[0,1]$ is a local resolving function of G if $g_{l}\left(R_{l}\{u, v\}\right) \geq 1$ for every two adjacent vertices $u, v \in V(G)$. The local fractional metric dimension of G is defined as $\operatorname{dim}_{f l}(G)=\min \left\{\left|g_{l}\right|: g_{l}\right.$ is local resolving function of $\left.G\right\}$, where $\left|\boldsymbol{g}_{l}\right|=\sum_{\boldsymbol{v} \in \boldsymbol{V}} \boldsymbol{g}_{\boldsymbol{l}}(\boldsymbol{v})$. Let \boldsymbol{G} and \boldsymbol{H} be two graphs of order $\boldsymbol{n}_{\boldsymbol{1}}$ and \boldsymbol{n}_{2}, respectively. The corona product $\boldsymbol{G} \odot \boldsymbol{H}$ is defined as the graph obtained from \boldsymbol{G} and \boldsymbol{H} by taking one copy of \boldsymbol{G} and $\boldsymbol{n}_{\mathbf{1}}$ copies of \boldsymbol{H} and joining by an edge each vertex from the $\boldsymbol{i}^{\boldsymbol{t h}}$-copy of \boldsymbol{H} with the $\boldsymbol{i}^{\boldsymbol{t h}}$ vertex of \boldsymbol{G}. In this paper we study the problem of finding exact values for the fractional local metric dimension of corona product of graphs.

Keywords: local fractional metric dimension; resolving function; corona product graphs; complete graph; cycle graph.

1. Introduction

Let $G=(V(G), E(G))$ be a finite, simple, undirected, connected graph. For a graph $G, V(G)$ is the vertex set of G and $E(G)$ is the edge set of G, respectively. For any two vertices x and y of $G, d_{G}(x, y)$ denotes the distance between x and $y, R_{G}\{x, y\}$ denotes the set of vertices z such that $d_{G}(x, z) \neq d_{G}(y, z)$. A resolving set of G is a subset W of $V(G)$ such that $W \cap R_{G}\{x, y\} \neq \emptyset$ for any two distinct vertices x and y of G [6]. The metric dimension of G, denoted by $\operatorname{dim}(G)$, is the minimum cardinality of the resolving sets of G. Metric dimension was first introduced in the 1970s, independently by Harary and Melter in [1] and by Slater in [2].
Let $g: V(G) \rightarrow[0,1]$ be a real valued function. For $W \subseteq$ $V(G)$, define $g(W)=\sum_{v \in W} g(v)$. We call g is resolving function of G if $g\left(R_{G}\{x, y\}\right) \geq 1$ for any two distinct vertices x and y of G. The fractional metric dimension, denoted by $\operatorname{dim}_{f}(G)$, is given by $\operatorname{dim}_{f}(G)=\min \{|g|: g$ is a resolving function of $G\}$, where $|g|=g(V(G))$. Arumugam and Mathew [3], [4] formally introduced the fractional metric dimension of graphs and obtained some basic results. For an ordered set $X=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\} \subseteq V(G)$ of vertices, we use the ordered k-tuple $r(u \mid X)=\left(d\left(u, x_{1}\right), d\left(u, x_{2}\right), \ldots, d\left(u, x_{k}\right)\right)$ as the representation of u with respect to X. If every two adjacent vertices of G has distinct representation with respect to X then X is called as a local resolving set for G. A minimum local resolving set is called local basis for G.A local metric dimension for G, denote by $\operatorname{dim}_{l}(G)$, is the number of vertices in a local basis for G by Okamoto et al. [5]. From the idea of Arumugam and Mathew [3], [4] Okamoto et
al.[5] we define the local resolving neighbourhood as follow.
For the pair $\{u, v\}$ of two adjacent vertices of G, we define the local resolving neighbourhood of the pair $\{u, v\}$ as $R\{u, v\}=\{x \in V(G): d(u, x) \neq d(v, x)\}$. Also, for each vertex $\quad x \in V(G)$, we define the local resolvent neighbourhood of x as $R\{x\}=\{\{u, v\} \in V(G): d(u, v) \neq$ $d(v, x)\}$ is denote by $R_{l}\{u, v\}$ and is called the local resolving neighbourhood of $\{u, v\}$. A real valued function $g_{l}: V(G) \rightarrow[0,1]$ is a local resolving function of G if $g_{l}\left(R_{l}\{u, v\}\right) \geq 1$ for every two adjacent vertices $u, v \in$ $V(G)$. The local fractional metric dimension of G, denote $\operatorname{dim}_{f l}(G)$ is defined as

$$
\operatorname{dim}_{f l}(G)=\min \left\{\begin{array}{c}
\left|g_{l}\right|: g_{l} \text { is local resolving } \\
\text { function of } G
\end{array}\right\}
$$

where $\left|g_{l}\right|=\sum_{v \in V} g_{l}(v)$. In this paper we study the local fractional metric dimension of corona product graphs. We begin by giving some basic concepts and notations.

2. Corona Product

Let G and H be two graphs of order n and m, respectively. The corona product $G \odot H$ was defined by [6] as the graph obtained from G and H by taking one copy of G and n copies of H and joining by an edge each vertex from the $i^{t h}$-copy of H with the $i^{t h}$-vertex of G . We will denote by $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ the set of vertices of G and by $H_{i}=\left(V_{i}, E_{i}\right)$ the copy of H such that $v_{i} \sim x$ for every $x \in V_{i}$. Figure 1 shows two examples of corona product graphs where the factors are non-trivial.

Figure 1: From the left, we show the corona graphs $C_{6} \odot P_{3}$ and $P_{3} \odot C_{4}$.

The join $G \odot H$ is defined as the graph obtained from disjoint graphs G and H by taking one copy of G and one copy of H and joining by an edge each vertex of G with each vertex of H. Notice that the corona graph $K_{1} \odot H$ is isomorphic to the join graph $K_{1}+H$.

The fractional metric dimension of corona product graphs was studied in [7], besides the dimensions of strong fractional metric have been studied in [8], [9], the fractional metric dimension of permutation graphs was studied in [10]. In this paper we study the local fractional metric dimension of corona product graphs. We determine the local fractional metric dimension of corona product of graphs for complete graph and cycle graph, there are $K_{n} \odot K_{m}, C_{n} \odot K_{m}$, $K_{n} \odot C_{m}$ and $C_{n} \odot C_{m}$.

Definition 1.1 [11] Let G be a connected graph of order n and H (not necessarily connected) be a graph with $|H| \geq 2$. A graph G corona $H, G \odot H$, is defined as a graph which formed by taking n copies of graphs $H_{1}, H_{2}, \ldots, H_{n}$ of H and connecting $i-t h$ vertex of G to the vertices of H_{i}. Throughout this section, we refer to H_{i} as a $i-t h$ copy of H connected to $i-t h$ vertex of G in $G \odot H$ for every $i=$ $\{1,2, \ldots, n\}$.
We begin by giving some basic concepts and notations.
The following is presented notation (index) on the graph $G \odot H$.
a. The set point of $V(G)$ is $U_{0 i}=\left\{v_{0 i}: v_{0 i} \in V(G)\right\}$ with $i=1,2, \ldots, n$.
b. The set point of $V(H)$ is $U_{j i}=\left\{v_{i j}: v_{j} \in V(H)\right\}$ with

$$
j=1,2, \ldots, m
$$

Figure 1 shows example of corona product graphs.

3. Result

In this section, we investigate the value of $\operatorname{dim}_{f l}(G \odot$ $H)$ when G and H is a complete graph and cycle graph. Previously we called the results of local fractional metric dimensions on special graphs.
Theorem 2.1. For any graph G of order n,
a. \quad For the path graph $\left(P_{n}\right), \operatorname{dim}_{f l}\left(P_{n}\right)=1$.
b. Forcomplete $\operatorname{grah}\left(K_{n}\right), \operatorname{dim}_{f l}\left(K_{n}\right)=\frac{n}{2}$.
c. For the cycle graph $\left(C_{n}\right)$, we have

$$
\operatorname{dim}_{f l}\left(C_{n}\right)= \begin{cases}\frac{n}{n-1}, & \text { if } n \text { is odd } \\ 1, & \text { if } n \text { is even }\end{cases}
$$

d. For the star $\operatorname{graph}\left(S_{n}\right), \operatorname{dim}_{f l}\left(S_{n}\right)=1$.
e. For the bipartite graph $\left(K_{n, m}\right), \operatorname{dim}_{f l}\left(K_{n, m}\right)=1$
f. Let G be a connected graphs of order n. Then $\operatorname{dim}_{f l}(G)=1$ if and only if G is bipartite graph.
g. Let G be a connected graphs of order n. Then $\operatorname{dim}_{f l}(G)=\frac{n}{2}$ if and only if G is complete graph.

Theorem 2.2. Let $K_{n} \odot K_{m}$ be a connected graph with $n, m \geq 3$, then

$$
\operatorname{dim}_{f l}\left(K_{n} \odot K_{m}\right)=\left|V\left(K_{n}\right)\right| \operatorname{dim}_{f l}\left(K_{m}\right)
$$

Proof. The graph $K_{n} \odot K_{m}$ is a connected graph. Let $f_{l}: V\left(K_{n} \odot K_{m}\right) \rightarrow[0,1]$ is a local resolving function. Any two adjacent vertices $u, v \in V\left(K_{n} \odot K_{m}\right)$. There are three possibilities u and v.
i. If u, v in the same leaf, then there is $i \in\{1,2, \ldots, n\}$ and $j, k \in\{1,2,3, \ldots, m\}$ with $j \neq k$ such that $u=v_{j i}$ and $v=v_{k i}$, we get $R_{l}\{u, v\}=\left\{v_{j i}, v_{k i}\right\}$ local resolving function are $f_{l}\left(v_{j i}\right)+f_{l}\left(v_{k i}\right) \geq 1$. Therefore, obtained

$$
(m-1) \sum_{v \in U_{i}} f_{l}(v) \geq\binom{ m}{2}
$$

because the number of points in the parent is n then,

$$
\begin{gathered}
(m-1)\left(\sum_{v \in U_{1}} f_{l}(u)+\sum_{v \in U_{2}} f_{l}(u)+\cdots+\sum_{v \in U_{n}} f_{l}(u)\right) \\
\geq n\binom{m}{2} \\
\Leftrightarrow(m-1)\left(\sum_{z \in V\left(K_{n} \odot K_{m}\right)} f_{l}(z)-\sum_{v \in U} f_{l}(v)\right) \\
\geq n\binom{m}{2}
\end{gathered}
$$

because $\sum_{v \in U} f_{l}(v) \geq 0$, then

$$
\begin{equation*}
\sum_{z \in V\left(K_{n} \odot K_{m}\right)} f_{l}(z) \geq n \frac{m}{2} \tag{1}
\end{equation*}
$$

ii. If u, v in parent, then there are $i, j \in\{1,2, \ldots, n\}$ with $i \neq j$, such that $u=v_{0 i}$ and $v=v_{0 j}$. Local resolving neighborhood
$R_{l}\{u, v\}=\left\{v_{0 i}, v_{1 i}, \ldots, v_{m i}, v_{0 j}, v_{1 j}, \ldots, v_{m j}\right\} \quad$ so that $f_{l}\left(R_{l}\{u, v\}\right)=\sum_{u \in U_{i}} f_{l}(u)+\sum_{u \in U_{j}} f_{l}(u)+f_{l}\left(v_{0 i}\right)+$ $f_{l}\left(v_{0 j}\right) \geq 1$. Therefore, obtained

$$
\begin{align*}
& (n-1) \sum_{v \in U} f_{l}(v)+(n-1) \sum_{v \in U_{i}} f_{l}(u) \geq\binom{ n}{2} \\
& \Leftrightarrow(n-1) \sum_{z \in V\left(K_{n} \odot K_{m}\right)} f_{l}(z) \geq \frac{n!}{(n-2)!.2!} \\
& \Leftrightarrow(n-1) \sum_{z \in V\left(K_{n} \odot K_{m}\right)} f_{l}(z) \geq \frac{n(n-1)}{2} \\
& \Leftrightarrow \sum_{z \in V\left(K_{n} \odot K_{m}\right)} f_{l}(z) \geq \frac{n}{2} . \tag{2}
\end{align*}
$$

iii. If u in parent and v in leaf of u, then there are $i \in\{1,2, \ldots, n\}$ and $j \in\{1,2,3, \ldots, m\}$, such that $u=v_{0 i}$ and $v=v_{j i}$. Local resolving neighborhood $R_{l}\{u, v\}=$ $V\left(K_{n} \odot K_{m}\right)-\left(V\left(U_{i}\right) \backslash\left\{v_{j i}\right\}\right)$ so that $f_{l}\left(R_{l}\{u, v\}\right)=$ $\sum_{z \in V\left(K_{n} \odot K_{m}\right)} f(z)-\left(\sum_{u \in U_{i}} f_{l}(u)-f_{l}\left(v_{j i}\right)\right) \geq 1$.
Therefore, obtained

$$
m \sum_{z \in V\left(K_{n} \odot K_{m}\right)} f_{l}(z)-(m-1) \sum_{j=1}^{m} f_{l}\left(v_{j i}\right) \geq m
$$

because the number of points in the parent is n, then

$$
\begin{gathered}
n m \sum_{z \in V\left(K_{n} \odot K_{m}\right)} f_{l}(z)-(m-1) \sum_{i=1}^{n} \sum_{j=1}^{m} f_{l}\left(v_{j i}\right) \geq \\
n m .
\end{gathered}
$$

because $\sum_{i=1}^{n} \sum_{j=1}^{m} f_{l}\left(v_{j i}\right) \geq 0$, then

$$
\begin{aligned}
& n m \sum_{z \in V\left(K_{n} \odot K_{m}\right)} f_{l}(z) \geq n m \sum_{z \in V\left(K_{n} \odot K_{m}\right)} f_{l}(z)- \\
& (m-1)\left(\sum_{i=1}^{n} \sum_{j=1}^{m} f_{l}\left(v_{j i}\right)\right) \geq n m .
\end{aligned}
$$

therefore,

$$
\begin{equation*}
\sum_{z \in V\left(K_{n} \odot K_{m}\right)} f_{l}(z) \geq 1 . \tag{3}
\end{equation*}
$$

Based on the results of the description above, in order to all conditions the maximum values taken from equations (1) - (3) are:

As a result:
$\operatorname{dim}_{f l}\left(K_{n} \odot K_{m}\right)$
$=\min \left\{\sum_{z \in V\left(K_{n} \odot K_{m}\right)} f_{l}(z): f_{l}\right.$ local resolving function $\}$ $=n \frac{\mathrm{~m}}{2}$.

Because ordo of K_{n} is n and $\operatorname{dim}_{f l}\left(K_{m}\right)=\frac{m}{2}$ then

$$
\operatorname{dim}_{f l}\left(K_{n} \odot K_{m}\right)=\left|V\left(K_{n}\right)\right| \operatorname{dim}_{f l}\left(K_{m}\right)
$$

Theorem 2.3. Let $C_{n} \odot K_{m}$ be a connected graph with $n, m \geq 3$, then $\operatorname{dim}_{f l}\left(C_{n} \odot K_{m}\right)=\left|V\left(C_{n}\right)\right| \operatorname{dim}_{f l}\left(K_{m}\right)$.
Proof. The graph $C_{n} \odot K_{m}$ is a connected graph. Let $f_{l}: V\left(C_{n} \odot K_{m}\right) \rightarrow[0,1]$ is a local resolving function. Any two adjacent vertices $u, v \in V\left(C_{n} \odot K_{m}\right)$. There are three possibilities u and v.
i. If u, v in the same leaf, then there is $i \in\{1,2, \ldots, n\}$ and $j, k \in\{1,2,3, \ldots, m\}$ with $j \neq k$ such that $u=v_{j i}$ and $v=v_{k i}$, we get $R_{l}\{u, v\}=\left\{v_{j i}, v_{k i}\right\}$ local resolving function are $f_{l}\left(v_{j i}\right)+f_{l}\left(v_{k i}\right) \geq 1$. Therefore, obtained

$$
(m-1) \sum_{v \in U_{i}} f_{l}(v) \geq\binom{ m}{2}
$$

because the number of points in the parent is n then,

$$
\begin{gathered}
(m-1)\left(\sum_{v \in U_{1}} f_{l}(u)+\sum_{v \in U_{2}} f_{l}(u)+\cdots+\sum_{v \in U_{n}} f_{l}(u)\right) \\
\geq n\binom{m}{2} \\
\Leftrightarrow(m-1)\left(\sum_{z \in V\left(C_{n} \odot K_{m}\right)} f_{l}(z)-\sum_{v \in U} f_{l}(v)\right) \\
\geq n\binom{m}{2}
\end{gathered}
$$

because $\sum_{v \in U} f_{l}(v) \geq 0$, then

$$
\begin{equation*}
\sum_{z \in V\left(C_{n} \odot K_{m}\right)} f_{l}(z) \geq n \frac{m}{2} . \tag{4}
\end{equation*}
$$

ii. If u, v in parent, then there are $i, j \in\{1,2, \ldots, n-1\}$ with $i \neq j$, such that $u=v_{0 i}$ and $v=v_{0(i+1)}$ or $u=v_{0 n}$ and $v=v_{01}$. Local resolving neighborhood

$$
R_{l}\{u, v\}=\left\{\begin{array}{cl}
V\left(C_{n} \odot K_{m}\right), & n \text { genap } \\
V\left(C_{n} \odot K_{m}\right)-\left\{v_{k}\right\} \cup U_{k}, & n \text { gasal }
\end{array},\right.
$$

Therefore, obtained
$f_{l}\left(R_{l}\{u, v\}\right)$
$=\left\{\begin{array}{cc}\sum_{z \in V\left(C_{n} \odot K_{m}\right)} f_{l}(z) \geq 1, & \text { ngenap } \\ \sum_{z \in V\left(C_{n} \odot K_{m}\right)} f_{l}(z)-\left(f_{l}\left(v_{k}\right)+\sum_{v \in V\left(U_{k}\right)} f_{l}(v)\right) \geq 1, & n \text { gasal }\end{array}\right.$.
iii. If u in parent and v in leaf of u, then there are $i \in\{1,2, \ldots, n\}$ and $j \in\{1,2,3, \ldots, m\}$, such that $u=v_{0 i}$
and $v=v_{j i}$. Local resolving neighborhood $R_{l}\{u, v\}=$ $V\left(C_{n} \odot K_{m}\right)-\left(V\left(U_{i}\right) \backslash\left\{v_{j i}\right\}\right)$ so that $f_{l}\left(R_{l}\{u, v\}\right)=$ $\sum_{z \in V\left(C_{n} \odot K_{m}\right)} f(z)-\left(\sum_{u \in U_{i}} f_{l}(u)-f_{l}\left(v_{j i}\right)\right) \geq 1$.
Therefore, obtained

$$
m \sum_{z \in V\left(C_{n} \odot K_{m}\right)} f_{l}(z)-(m-1) \sum_{j=1}^{m} f_{l}\left(v_{j i}\right) \geq m
$$

because the number of points in the parent is n, then

$$
\begin{gathered}
n m \sum_{z \in V\left(C_{n} \odot K_{m}\right)} f_{l}(z)-(m-1) \sum_{i=1}^{n} \sum_{j=1}^{m} f_{l}\left(v_{j i}\right) \geq \\
n m .
\end{gathered}
$$

because $\sum_{i=1}^{n} \sum_{j=1}^{m} f_{l}\left(v_{j i}\right) \geq 0$, then

$$
\begin{aligned}
& n m \sum_{z \in V\left(C_{n} \odot K_{m}\right)} f_{l}(z) \geq n m \sum_{z \in V\left(C_{n} \odot K_{m}\right)} f_{l}(z)- \\
& (m-1)\left(\sum_{i=1}^{n} \sum_{j=1}^{m} f_{l}\left(v_{j i}\right)\right) \geq n m .
\end{aligned}
$$

therefore,

$$
\begin{equation*}
\sum_{z \in V\left(C_{n} \odot K_{m}\right)} f_{l}(z) \geq 1 \tag{6}
\end{equation*}
$$

Based on the results of the description above, in order to all conditions the maximum values taken from equations (4) - (6) are:

$$
\sum_{z \in V\left(C_{n} \odot K_{m}\right)} f_{l}(z) \geq n \frac{m}{2} .
$$

As a result:

$$
\begin{aligned}
& \operatorname{dim}_{f l}\left(C_{n} \odot K_{m}\right) \\
& =\min \left\{\sum_{z \in V\left(C_{n} \odot K_{m}\right)} f_{l}(z): f_{l} \text { local resolving function }\right\} \\
& =n \frac{m}{2} .
\end{aligned}
$$

Because ordo of C_{n} is n and $\operatorname{dim}_{f l}\left(K_{m}\right)=\frac{m}{2}$ then

$$
\operatorname{dim}_{f l}\left(C_{n} \odot K_{m}\right)=\left|V\left(C_{n}\right)\right| \operatorname{dim}_{f l}\left(K_{m}\right)
$$

Theorem 2.4. Let $K_{n} \odot C_{m}$ be a connected graph with $n \geq 3$ and $m>4$, then

$$
\operatorname{dim}_{f l}\left(K_{n} \odot C_{m}\right)=\frac{1}{4}\left|V\left(K_{n}\right)\right|\left|V\left(C_{m}\right)\right|
$$

Proof. The graph $K_{n} \odot C_{m}$ is a connected graph. Let $f_{l}: V\left(K_{n} \odot C_{m}\right) \rightarrow[0,1]$ is a local resolving function. Any two adjacent vertices $u, v \in V\left(K_{n} \odot C_{m}\right)$. There are three possibilities u and v.
i. If u, v in the same leaf, then there is $i \in\{1,2, \ldots, n\}$ and $j \in\{1,2,3, \ldots, m-1\}$ such that $u=v_{j i}$ and $v=v_{(j+1) i}$, or $u=v_{m i}$ and $u=v_{1 i}$. Local resolving neighborhood

$$
\begin{aligned}
& R_{l}\left\{v_{j i}, v_{(j+1) i}\right\} \\
& =\left\{\begin{array}{cc}
\left\{v_{m i}, v_{j i}, v_{(j+1) i}, v_{(j+2) i}\right\}, & j=1 \\
\left\{v_{(j-1) i}, v_{j i}, v_{(j+1) i}, v_{(j+2) i}\right\}, & j=2,3, \ldots, m-2 \\
\left\{v_{(j-1) i}, v_{j i}, v_{(j+1)}, v_{1 i}\right\}, & j=m-1 \\
\left\{v_{(j-1) i}, v_{j i}, v_{1 i}, v_{2 i}\right\}, & j=m
\end{array}\right.
\end{aligned}
$$

from here obtained

$$
\begin{aligned}
& f_{l}\left(R_{l}\left\{v_{j i}, v_{(j+1) i}\right\}\right) \\
& =\left\{\begin{array}{ccc}
f_{l}\left(v_{m i}\right)+f_{l}\left(v_{j i}\right)+f_{l}\left(v_{(j+1) i}\right)+f_{l}\left(v_{(j+2) i}\right) \geq 1, & j=1 \\
f_{l}\left(v_{(j-1) i}\right)+f_{l}\left(v_{j i}\right)+f_{l}\left(v_{(j+1) i}\right)+f_{l}\left(v_{(j+2) i}\right) \geq 1, & j=2,3, \ldots, m-2 \\
f_{l}\left(v_{(j-1) i}\right)+f_{l}\left(v_{j i}\right)+f_{l}\left(v_{(j+1) i}\right)+f_{l}\left(v_{1 i}\right) \geq 1, & j=m-1 \\
f_{l}\left(v_{(j-1) i}\right)+f_{l}\left(v_{j i}\right)+f_{l}\left(v_{(j+1) i}\right)+f_{l}\left(v_{(j+2) i}\right) \geq 1, & j=m
\end{array}\right.
\end{aligned}
$$

based on the description above,

$$
\begin{aligned}
& 4 \sum_{j=1}^{m} f_{l}\left(v_{j i}\right) \geq m \\
\Leftrightarrow & \sum_{j=1}^{m} f_{l}\left(v_{j i}\right) \geq \frac{m}{4}
\end{aligned}
$$

Because the number of points in the parent is n, then

$$
\begin{equation*}
\sum_{i=1}^{n} \sum_{j=1}^{m} f_{l}\left(v_{j i}\right) \geq \frac{m}{4} n \tag{7}
\end{equation*}
$$

ii. If u, v in parent, then there are $i, j \in\{1,2, \ldots, n\}$ with $i \neq j$, such that $u=v_{0 i}$ and $v=v_{0 j}$. Local resolving neighborhood
$R_{l}\{u, v\}=\left\{v_{0 i}, v_{1 i}, \ldots, v_{m i}, v_{0 j}, v_{1 j}, \ldots, v_{m j}\right\} \quad$ so that $f_{l}\left(R_{l}\{u, v\}\right)=\sum_{u \in U_{i}} f_{l}(u)+\sum_{u \in U_{j}} f_{l}(u)+f_{l}\left(v_{0 i}\right)+$ $f_{l}\left(v_{0 j}\right) \geq 1$. Therefore,

$$
\begin{align*}
& (n-1) \sum_{v \in U} f_{l}(v)+(n-1) \sum_{v \in U_{i}} f_{l}(u) \geq\binom{ n}{2} \\
& \Leftrightarrow(n-1) \sum_{z \in V\left(K_{n} \odot c_{m}\right)} f_{l}(z) \geq \frac{n!}{(n-2)!\cdot 2!} \\
& \Leftrightarrow(n-1) \sum_{z \in V\left(K_{n} \odot c_{m}\right)} f_{l}(z) \geq \frac{n(n-1)}{2} \\
& \Leftrightarrow \sum_{z \in V\left(K_{n} \odot c_{m}\right)} f_{l}(z) \geq \frac{n}{2} . \tag{8}
\end{align*}
$$

iii. If u in parent and v in leaf of u, then there are $i \in\{1,2, \ldots, n\}$ and $j \in\{1,2,3, \ldots, m\}$, such that $u=v_{0 i}$ and $\quad v=v_{j i}$. Local resolving neighborhood $R_{l}\left\{v_{0 i}, v_{j i}\right\}$

$$
=\left\{\begin{array}{cc}
V\left(K_{n} \odot C_{m}\right)-\left\{v_{(j+1) i}, v_{m i}\right\}, & j=1 \\
V\left(K_{n} \odot C_{m}\right)-\left\{v_{(j-1) i}, v_{(j+1) i}\right\}, & j=2,3, \ldots, m-1 . \\
V\left(K_{n} \odot C_{m}\right)-\left\{v_{(j-1) i}, v_{1 i}\right\}, & j=m
\end{array}\right.
$$

International Journal of Academic and Applied Research (IJAAR)

ISSN: 2643-9603
Vol. 3 Issue 10, October, Pages: 36-41
so that

$$
\begin{aligned}
& f_{l}\left(R_{l}\left\{v_{0 i}, v_{j i}\right\}\right) \\
& =\left\{\begin{array}{l}
\sum_{z \in V\left(K_{n} \odot c_{m}\right)} f(z)-\left(f_{l}\left(v_{(j+1)}\right)+f_{l}\left(v_{m i}\right)\right) \geq 1, \quad j=1 \\
\sum_{z \in V\left(K_{n} \odot C_{m}\right)} f(z)-\left(f_{l}\left(v_{(j-1)}\right)+f_{l}\left(v_{(j+1) i}\right)\right) \geq 1, \quad j=2,3, \ldots, m-1 . \\
\sum_{z \in V\left(K_{n} \odot c_{m}\right)} f(z)-\left(f_{l}\left(v_{(j-1)}\right)+f_{l}\left(v_{1 i}\right)\right) \geq 1, \quad j=m
\end{array}\right.
\end{aligned}
$$

Therefore,

$$
m \sum_{z \in V\left(K_{n} \odot c_{m}\right)} f_{l}(z)-2\left(\sum_{j=1}^{m} f_{l}\left(v_{j i}\right)\right) \geq m .
$$

because the number of points in the parent is n, then

$$
n m \sum_{z \in V\left(K_{n} \odot c_{m}\right)} f_{l}(z)-2\left(\sum_{i=1}^{n} \sum_{j=1}^{m} f_{l}\left(v_{j i}\right)\right) \geq n m
$$

because $\sum_{i=1}^{n} \sum_{j=1}^{m} f_{l}\left(v_{j i}\right) \geq 0 \geq 0$, then

$$
\text { n. } m \sum_{z \in V\left(K_{n} \odot c_{m}\right)} f_{l}(z) \geq n . m \sum_{z \in V\left(K_{n} \odot c_{m}\right)} f_{l}(z)-
$$

$$
2\left(\sum_{i=1}^{n} \sum_{j=1}^{m} f_{l}\left(v_{j i}\right)\right) \geq n m
$$

therefore,

$$
\begin{equation*}
\sum_{z \in V\left(K_{n} \odot c_{m}\right)} f_{l}(z) \geq 1 \tag{9}
\end{equation*}
$$

Based on the results of the description above, in order to all conditions the maximum values taken from equations (7) - (9) are:

$$
\sum_{i=1}^{n} \sum_{j=1}^{m} f_{l}\left(v_{j i}\right) \geq \frac{m}{4} n
$$

As a result:

$$
\begin{aligned}
& \operatorname{dim}_{f l}\left(K_{n} \odot C_{m}\right) \\
& =\min \left\{\sum_{z \in V\left(K_{n} \odot c_{m}\right)} f_{l}(z): f_{l} \text { fungsi pembeda lokal }\right\} \\
& =\frac{m}{4} n .
\end{aligned}
$$

Because ordo of K_{n} is n and ordo of C_{m} is m then

$$
\operatorname{dim}_{f l}\left(K_{n} \odot C_{m}\right)=\frac{1}{4}\left|V\left(C_{n}\right)\right|\left|K_{m}\right| .
$$

Theorem 2.5. Let $C_{n} \odot C_{m}$ be a connected graph with $n \geq 3$ and $m>4$, then

$$
\operatorname{dim}_{f l}\left(C_{n} \odot C_{m}\right)=\frac{1}{4}\left|V\left(C_{n}\right)\right|\left|V\left(C_{m}\right)\right|
$$

Proof. The graph $C_{n} \odot C_{m}$ is a connected graph. Let $f_{l}: V\left(C_{n} \odot C_{m}\right) \rightarrow[0,1]$ is a local resolving function. Any two adjacent vertices $u, v \in V\left(C_{n} \odot C_{m}\right)$. There are three possibilities u and v.
i. If u, v in the same leaf, then there is $i \in\{1,2, \ldots, n\}$ and $j \in\{1,2,3, \ldots, m-1\}$ such that $u=v_{j i}$ and $v=v_{(j+1) i}$,
or $u=v_{m i}$ and $u=v_{1 i}$. Local resolving neighborhood

$$
\begin{aligned}
& R_{l}\left\{v_{j i}, v_{(j+1) i}\right\} \\
& =\left\{\begin{array}{cc}
\left\{v_{m i}, v_{j i}, v_{(j+1) i}, v_{(j+2) i}\right\}, & j=1 \\
\left\{v_{(j-1) i}, v_{j i}, v_{(j+1) i}, v_{(j+2) i}\right\}, & j=2,3, \ldots, m-2 \\
\left\{v_{(j-1) i}, v_{j i}, v_{(j+1) i}, v_{1 i}\right\}, & j=m-1 \\
\left\{v_{(j-1) i}, v_{j i}, v_{1 i}, v_{2 i}\right\}, & j=m
\end{array}\right.
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& f_{l}\left(R_{l}\left\{v_{j i}, v_{(j+1) i}\right\}\right) \\
& =\left\{\begin{array}{cc}
f_{l}\left(v_{m i}\right)+f_{l}\left(v_{j i}\right)+f_{l}\left(v_{(j+1) i}\right)+f_{l}\left(v_{(j+2) i}\right) \geq 1, & j=1 \\
f_{l}\left(v_{(j-1) i}\right)+f_{l}\left(v_{j i}\right)+f_{l}\left(v_{(j+1) i}\right)+f_{l}\left(v_{(j+2) i}\right) \geq 1, & j=2,3, \ldots, m-2 \\
f_{l}\left(v_{(j-1) i}\right)+f_{l}\left(v_{j i}\right)+f_{l}\left(v_{(j+1) i}\right)+f_{l}\left(v_{1 i}\right) \geq 1, & j=m-1 \\
f_{l}\left(v_{(j-1) i}\right)+f_{l}\left(v_{j i}\right)+f_{l}\left(v_{(j+1) i}\right)+f_{l}\left(v_{(j+2) i}\right) \geq 1, & j=m
\end{array}\right.
\end{aligned}
$$

based on the description above,

$$
\begin{aligned}
& 4 \sum_{j=1}^{m} f_{l}\left(v_{j i}\right) \geq m \\
& \Leftrightarrow \sum_{j=1}^{m} f_{l}\left(v_{j i}\right) \geq \frac{m}{4}
\end{aligned}
$$

Because the number of points in the parent is n, then

$$
\begin{equation*}
\sum_{i=1}^{n} \sum_{j=1}^{m} f_{l}\left(v_{j i}\right) \geq \frac{m}{4} n \tag{10}
\end{equation*}
$$

ii. If u, v in parent, then there are $i, j \in\{1,2, \ldots, n-1\}$ such that $u=v_{0 i}$ and $v=v_{0(i+1)}$ or $u=v_{n}$ and $v=v_{01}$. Local resolving neighborhood

$$
R_{l}\{u, v\}=\left\{\begin{array}{cl}
V\left(C_{n} \odot C_{m}\right), & n \text { genap } \\
V\left(C_{n} \odot C_{m}\right)-\left\{v_{k}\right\} \cup U_{k}, & n \text { gasal }
\end{array}\right.
$$

so that
$=\left\{\begin{array}{cc}f_{l}\left(R_{l}\{u, v\}\right) & \sum_{z \in V\left(C_{n} \odot c_{m}\right)} f_{l}(z) \geq 1\end{array} \quad\right.$ ngenap \quad.
iii. If u in parent and v in leaf of u, then there are $i \in\{1,2, \ldots, n\}$ and $j \in\{1,2,3, \ldots, m\}$, such that $u=v_{0 i}$ and $v=v_{j i}$. Local resolving neighborhood $R_{l}\left\{v_{0 i}, v_{j i}\right\}$
$=\left\{\begin{array}{cc}V\left(C_{n} \odot C_{m}\right)-\left\{v_{(j+1) i}, v_{m i}\right\}, & j=1 \\ V\left(C_{n} \odot C_{m}\right)-\left\{v_{(j-1) i}, v_{(j+1) i}\right\}, & j=2,3, \ldots, m-1 \\ V\left(C_{n} \odot C_{m}\right)-\left\{v_{(j-1) i}, v_{1 i}\right\}, & j=m\end{array}\right.$
so that

$$
\begin{aligned}
& f_{l}\left(R_{l}\left\{v_{0 i}, v_{j i}\right\}\right) \\
& =\left\{\begin{array}{lc}
\sum_{z \in V\left(c_{n} \odot c_{m}\right)} f(z)-\left(f_{l}\left(v_{(j+1)}\right)+f_{l}\left(v_{m i}\right)\right) \geq 1, & j=1 \\
\sum_{z \in V\left(C_{n} \odot c_{m}\right)} f(z)-\left(f_{l}\left(v_{(j-1)}\right)+f_{l}\left(v_{(j+1) i}\right)\right) \geq 1, & j=2,3, \ldots, m-1 . \\
\sum_{z \in V\left(C_{n} \odot c_{m}\right)} f(z)-\left(f_{l}\left(v_{(j-1)}\right)+f_{l}\left(v_{1 i}\right)\right) \geq 1, & j=m
\end{array}\right.
\end{aligned}
$$

Therefore,

$$
m \sum_{z \in V\left(C_{n} \odot c_{m}\right)} f_{l}(z)-2 \sum_{j=1}^{m} f_{l}\left(v_{j i}\right) \geq m
$$

because the number of points in the parent is n, then

$$
n m \sum_{z \in V\left(C_{n} \odot c_{m}\right)} f_{l}(z)-2 \sum_{i=1}^{n} \sum_{j=1}^{m} f_{l}\left(v_{j i}\right) \geq n m
$$

because $\sum_{i=1}^{n} \sum_{j=1}^{m} f_{l}\left(v_{j i}\right) \geq 0$, then

$$
n m \sum_{z \in V\left(C_{n} \odot c_{m}\right)} f_{l}(z) \geq n . m \sum_{z \in V\left(C_{n} \odot c_{m}\right)} f_{l}(z)-
$$

$$
2\left(\sum_{i=1}^{n} \sum_{j=1}^{m} f_{l}\left(v_{j i}\right)\right) \geq n m
$$

therefore,

$$
\begin{equation*}
\sum_{z \in V\left(C_{n} \odot c_{m}\right)} f_{l}(z) \geq 1 \tag{12}
\end{equation*}
$$

Based on the results of the description above, in order to all conditions the maximum values taken from equations $(10)-(12)$ are:

$$
\sum_{i=1}^{n} \sum_{j=1}^{m} f_{l}\left(v_{j i}\right) \geq \frac{m}{4} n
$$

As a result:
$\operatorname{dim}_{f l}\left(C_{n} \odot C_{m}\right)$
$=\min \left\{\sum_{z \in V\left(C_{n} \odot c_{m}\right)} f_{l}(z): f_{l}\right.$ local resolving function $\}$
$=\frac{m}{4} n$.
Because ordo of C_{n} is n and ordo of C_{m} is m then

$$
\operatorname{dim}_{f l}\left(C_{n} \odot C_{m}\right)=\frac{1}{4}\left|V\left(C_{n}\right)\right|\left|C_{m}\right|
$$

3. CONCLUSION

In this paper we have given local fractional metric dimension number of corona product of complate graphs and cycle graph, namely complete corona complete, cycle corona complete, complete corona cycle and cycle corona cycle. We conclude this paper with open problems on corona product of other graphs.

4. ACKLOWLEDGMENT

We gratefully acknowledge the support from DIKTI Indonesia trough the "Penelitian Dosen Pemula" RISTEKDIKTI 2019 research project.

References

[1] M. Feng, B. Lv, and K. Wang, "On the fractional metric dimension of graphs," Discret. Appl. Math., vol. 170, pp. 55-63, 2014.
[2] G. Chartrand, L. Eroh, and M. A. Johnson, "Resolvability in graphs and the metric dimension of a graph," vol. 105, pp. 99-113, 2000.
[3] S. Arumugam and V. Mathew, "The fractional metric dimension of graphs," Discrete Math., vol. 312, no. 9, pp. 1584-1590, 2012.
[4] S. Arumugam, V. Mathew, and J. Shen, "ON FRACTIONAL METRIC DIMENSION OF GRAPHS," vol. 5, no. 4, pp. 1-8, 2013.
[5] F. Okamoto, L. Crosse, B. Phinezy, and P. Zhang, "The local metric dimension of a graph," vol. 135, no. 3, pp. 239-255, 2010.
[6] I. G. Yero, D. Kuziak, and J. A. Rodr, "On the metric dimension of corona product graphs," vol. 1, pp. 1-13, 2010.
[7] M. Feng and K. Wang, "On the fractional metric dimension of corona product graphs and lexicographic product graphs arXiv: 1206. 1906v1 [math . CO] 9 Jun 2012," pp. 1-10.
[8] C. X. Kang, "On the fractional strong metric dimension of graphs," Discret. Appl. Math., vol. 213, pp. 153-161, 2016.
[9] C. X. Kang, I. G. Yero, and E. Yi, "The fractional strong metric dimension in three graph products The fractional strong metric dimension in three graph products arXiv: 1608.05495v1 [math . CO] 19 Aug 2016," no. August, 2016.
[10] E. Yi, "The Fractional Metric Dimension of Permutation Graphs," vol. 31, no. 3, pp. 367-382, 2015.
[11] H. Iswadi, E. T. Baskoro, and R. Simanjuntak, "On the Metric Dimension of Corona Product of Graphs," pp. 1-13.

