New types of filters in Q-algebra Habeeb Kareem Abdullah¹, Hebaa shaker salman²

Department of Mathematics University of Kufa ¹habeebk.abdullah@uokufa.edu.iq, ²hb.shakir@yahoo.com

Abstract: In this paper, we studied some of the new types of filters, called (Q-filter, complete Q-filter, S-filter, and complete S-filter). Also, we presented and proved several propositions that determine the relationships among them that are discussed in Q-algebra.

Keywords: Q-algebra, Q-filter, S-filter, C-Q-filter, C-S-filter.

1.Introduction

Iseki and Imai presented two notions of abstract algebras: BCI-algebras and BCK-algebras [6]. The notion of BCK-algebras is proper subclass of the notion of BCI-algebras. In 2001, Kim, Neggers and Ahn defined generalization of BCI/ BCH/BCK-algebras as a new notion called Q-algebra[1]. Also they generalized some propositions discussed in BCIalgebras. Y.B.Jun, satisfactory filter of BCK-algebras[2].J.Meng BCK- filter[3]. Abdullah.H.K., Radhi.K.T at (2016) introduced the connotation of T-filter in BCK- algebra,[4]. Abdullah.H.K., Jawad.H.K. at (2018) introduce a new types of Ideal in a Q-algebra,[5].The main purpose of this paper is to define new types of filter and also some of theorems which explain relationships among them in bounded Q-algebra.

2. Basic concept and Notations

In this part, we provide the definition of Q-algebra, bounded, an involutory, Q-filter and some of their properties .

Definition (2.1) [1]

A Q-algebra is a set D with a binary operation * and constant 0 which satisfied the following axioms: (1)d * d = 0(2)d * 0 = d(3) $(d * k) * m = (d * m) * k, \forall d, k, m \in D$ **Remark (2.1) [1]** In a Q-algebra D, we can describe a partial order *relation* \leq by which $d \leq k$ *if and only if* $d * k = 0, \forall d, k \in D$.

Definition (2.2) [4]

If (D,*,0) is a Q-algebra, we call X is bounded if there is an element $e \in D$ satisfying $d \le e$ for all $d \in D$, then e is said to be a unit of X. For every $d \in D$ in bounded Q-algebra D, we denoted e * d by d^* . **Example (2.1)**

A binary operation * with $D=\{0,1,2,3\}$ can be shown in table:

*	0	1	2	3
0	0	0	0	0
1	1	0	0	0
2	2	0	0	0
3	3	3	3	0

Thereafter (D,*,0) be a Q-algebra [1]. Notice that D is bounded with unit 3.

Remark (2.2) [4]

The unit in bounded Q-algebra not be a unique as explain in the following example. **Example (2.2)**

A binary operation * with $D=\{0,1,2\}[1]$, can be shown in table:

,1,2 J[1], cuil be bilowi					
*	0	1	2		
0	0	0	0		
1	1	0	0		
2	2	0	0		

www.ijeais.org

Notice that D is a bounded with two units 1,2.

Remark (2.3)

In Q-algebra, we will study the bounded with one unit only.

Proposition(2.1) [4]

In a bounded Q-algebra $D, a, b \in D$, the following are hold

(1) $e^* = 0, 0^* = e$ (2) $a^* * b = b^* * a$

(3) 0 * b = 0

 $(4)e^**a=0.$

```
Definition(2.3) [4]
```

For bounded Q-algebra D , if the element d of D satisfy $d^{**} = d$, then d is called an involution. If every element of D is an involution, we call D is an involutory Q – algebra.

Example(2.3)

A binary operation * with $D=\{0,1,2,3,4\}$, can be shown in table:

*	0	1	2	3	4
0	0	0	0	0	0
1	1	0	1	0	0
2	2	2	0	0	0
3	3	2	1	0	4
4	4	0	0	0	0

Thereafter (D,*,0) is a bounded Q-algebra with unit 3. Notice D is an involutory.

Proposition(2.2)

In bounded an involutory Q-algebra D, if

(1) If $a \le b^*$ then $b^{**} \le a^*$

 $(2) a \ast b = b^* \ast a^*$

 $(3) a * b^* = b * a^*$

 $(4) a^* * b^* \leq b * a$

Definition (2.4)

Let (D,*,0) be a Q-algebra, if F is a nonempty subset of D that satisfy two condition

(1) $e \in F$ (2) $(a^* * b^*)^* \in F$ and $b \in F$ implies $a \in F$., for all $a, b \in D$, then F is said to be a Q-filter of D. **Example(2.4):**

A binary operation * with $D=\{0,1,2,3\}$ can be shown in table :

*	0	1	2	3
0	0	0	0	0
1	1	0	1	0
2	2	2	0	0
3	3	0	3	0

Thereafter $(D_{*},0)$ be a bounded Q-algebra with unit 3. If $F=\{1,3\}$ be a Q-filter.

Proposition(2.3):

If F is a Q - filter and 0 belong to filetr, then F = D.

Proof:

It is clear $(a^* * 0^*)^* = (a^* * e)^* = 0^* = e \in F$, for all $a \in D$

Proposition(2.4):

The intersection collection of Q-filter is a Q –filter.

Proof:

Let { $F_i, i \in \Delta$ } be a collection of Q-filter in bounded Q-algebra D, so $e \in F_i, \forall i \in \Delta$, $e \in \bigcap_{i \in \Delta} F_i$ Now, Let $(a^* * b^*)^* \in \bigcap_{i \in \Delta} F_i, y \in \bigcap_{i \in \Delta} F_i$ then $(a^* * b^*)^* \in F_i, b \in F_i, \forall i \in \Delta$, because F_i is a Q-filter, $\forall i \in \Delta$, so $a \in F_i, \forall i \in \Delta$. Thus $a \in \bigcap_{i \in \Delta} F_i$. **Remark(2.4):** By seeing, the union of the two C-Q-filter, it is unnecessary to be a C-Q-filter, which can be shown in the next example **Example(2.5):**

A binary operation * with $D=\{0,1,2,3,4\}$ can be shown in table:

	-	-		-	
*	0	1	2	3	4
0	0	0	0	0	0
1	1	0	1	0	0
2	2	2	0	2	0
3	3	3	3	0	0
4	4	4	3	2	0

Thereafter (D,*,0) is a bounded Q-algebra with unit 4 if $F_1 = \{2,4\}$ and $F_2 = \{3,4\}$, so we can easily show that both F_1 , F_2 are a Q-filter in D, then $F_1 \cup F_2 = \{2,3,4\}$ is not a Q-filter in D, because $(0^* * 2^*)^* = (4 * 3)^* = 2^* = 3 \in F_1 \cup F_2$, but $0 \notin F_1 \cup F_2$.

Proposition (2.5):

Let X be bounded *Q*-algebra and *F* is a *Q*-filter of X. If $x^* \le y^*$, $y \in F$ implies $x \in F$.

Proof:

Let *F* is a *Q*_filter, $x^* \le y^*$, [by Remark(2.1)].

So $(x^* * y^*)^* = (0)^* = e$, thus $x \in F$.

Definition (2.5) [1]:

If f is a mapping of a Q-algebra N into Q-algebra V, then mapping f will called

(1) homomorphism if $f(a * b) = f(a) * f(b), \forall a, b \in X$.

(2) epimorphism if f is a surjective homomorphism.

(3) monomorphism if f is an injective homomorphism.

(4) isomorphism if f is a surjective and injective homomorphism.

Proposition (2.6) [4]:

If f is an epimorphisim from bounded Q-algebra N into bounded Q-algebraV, then

(1) f(e) = e', both e and e' are the units of N and V, respectively.

(2) $f(a^*) = (f(a))^*, \forall a \in N$

(3) If f is isomorphism, then $f^{-1}(b^*) = (f^{-1}(b))^*$ for all $b \in V$.

3. Complete Q-filter

In this part, we provide the definition of complete Q-filter, and study its relationship with Q-filter in Q-algebra.

Definition(3.1):

Let (D,*,0) be a Q-algebra, if F is a non empty subset of D that satisfy (1) $e \in F$ (2) $(a^* * b^*)^* \in F$, $\forall b \in F$ implies $a \in F$., for all $a, b \in D$, then F is said to be a complete -Q-filter of D.

Example(3.1):

A binary operation * with $D=\{0,1,2,3,4\}$ can be shown in table :

0	1	2	3	4
0	0	0	0	0
1	0	0	0	0
2	0	0	0	0
3	0	0	0	0
4	3	3	2	0
	0 1 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

(D,*,0) be a bounded Q -algebra with unit .

Thereafter (1) Let $F=\{1,4\}$ is C-Q-filter, since

 $(2^* * 4^*)^* = (3 * 0)^* = 3^* = 2 \notin F$

 $(0^* * 1^*)^* = (4 * 3)^* = 2^* = 3 \notin F$

 $(3^* * 4^*)^* = (2 * 0)^* = 2^* = 3 \notin F.$

(2) Let $F_2 = \{2,4\}$ then F is not a C-Q –filter , because

 $(1^* * 2^*)^* = (3*3)^* = 4 \in F$

 $(1^* * 4^*)^* = (3 * 0)^* = 2 \in F \text{ but } 1 \notin F.$

Proposition(3.1):

Every Q-filter is a C-Q-filter.

Proof:

Assume F is a Q-filter in bounded Q-algebra, $(a^* * b^*)^* \in F, \forall b \in F$, because F is a Q-filter, so $a \in F$. Hence F is a C-Q-filter.

Remark(3.1):

In a converse way of Proposition (3.1) is not correct like in the Example (3.1)(1), a subset F is not a Q-filter, because $(2^* * 1^*)^* = (3 * 3)^* = 0^* = 4 \in F, 1 \in F \text{ but } 2 \notin F.$

Remark(3.2):

By seeing, the intersection and the union of the two C-Q-filter, it is unnecessary to be a C-Q-filter. For e. g Example(3.3):

Assume $F_1 = \{0, 2, 4\}$ and F_2 , $= \{0, 3, 4\}$, By example (2.5), we can show easily that F_1, F_2 are a C-Q-filter in D, but $F_1 \cap$ $F = \{0,4\}_2$ does not C-Q-filter in D, because

 $(1^* * 0^*)^* = (4 * 4)^* = 0^* = 4 \in F_1 \cap F_2, (1^* * 4^*)^* = (4 * 0)^* = 4^* = 0 \in F_1 \cap F_2,$ but $1 \notin F \cap_1 F_2$

And also $F_1 \cup F_2 = \{0, 2, 3, 4\}$ do not C-Q-filter in D, because

 $(1^* * 0^*)^* = 4 \in F_1 \cup F_2, (1^* * 2^*)^* = 3 \in F_1 \cup F_2, (1^* * 3^*)^* = 2 \in F_1 \cup F_2$ and

 $(1^* * 4^*)^* = 0 \in F_1 \cup F_2$, but $1 \notin F_1 \cup F_2$.

Proposition(3.2):

Consider g is an isomorphism mapping from a bounded Q-algebra N into a bounded Q-algebra V. Let P be a C-Q-filter in N ,then g(P) be a C-Q-filter in V.

Proof:

Suppose that g is an isomorphism mapping from a bounded Q-algebra N into a bounded Q-algebra V, P is a C-Q-filter in N,

If $e_n \in P$, then $g(e_n) = e_V \in g(P)$ [by Proposition(2.6)(1)].

Now let $(a^* * b^*)^* \in g(P)$, $\forall b \in g(P)$, thus $g^{-1}(a^* * b^*) \in P$, $\forall g^{-1}(b) \in P$ (because g is surjective)

But $g^{-1}((a^* * b^*)^*) = ((g^{-1}(a))^* * (g^{-1}(b))^*)^*$ [by Proposition(2.6)(3)]

There for $((g^{-1}(a))^* * (g^{-1}(b))^*)^*) \in P, \forall (g^{-1}(b)) \in P$

Because P is C-O-filter in N, then $q^{-1}(a) \in P$.

And so on $a \in g(P)$, which means g(P) is a C-Q-filter in V.

Proposition(3.3):

Consider h is an epimorphism mapping from a bounded Q-algebra N into a bounded Q-algebra V. Let σ be a C-Q-filter in V. Then $h^{-1}(\sigma)$ be a C-Q-filter in N.

Proof:

Suppose that h is an epimorphism mapping from a bounded Q-algebra N into a bounded Q-algebra V, σ is a C-Q-filter in V, so $e_v \in \sigma$, then $h(e_n) = e_v \in \sigma$,

so $e_n \in h^{-1}(\sigma)$, [by Proposition(2.6)(1)])

Now let $(a^* * b^*)^* \in h^{-1}(\sigma)$, $\forall b \in h^{-1}(\sigma)$, so $h(a^* * b^*)^* \in \sigma$, $\forall h(b) \in \sigma$,

but $h((a^* * b^*)^*) = (((h(a))^* * (h(b))^*)^*) \in \sigma, \forall (h(b)) \in \sigma, [by proposition(2.6)(2)]$

Because σ is a C-Q-filter, so $h(a) \in \sigma$, therefore $a \in h^{-1}(\sigma)$.

Hence $h^{-1}(\sigma)$ is a C-Q-filter in N.

4. S-filter

In this part, we provide the definition of S-filter and study its relationships with Q-filter in Q-algebra.

Definition(4.1):

Let (D,*,0) be a Q-algebra , if F is a nonempty subset of D that satisfy two condition (1) e∈F

(2) $(b^{**} * a^*)^* \in F$, $b \in F$ implies $a^* \in F$. Then F is said to be a complete -Q-filter of D. Example(4.1):

A binary operation * with $D=\{0,1,2,3\}$ can be shown in table:

*	0	1	2	3
0	0	0	0	0
1	1	0	0	0
2	2	0	0	0
3	3	1	3	0

Thereafter (D, *, 0) be a bounded Q-algebra with unit 3, $F = \{0, 1, 3\}$ is an S-filter,

International Journal of Engineering and Information Systems (IJEAIS) ISSN: 2643-640X Vol. 3 Issue 11, November – 2019, Pages: 15-22

but $F_1 = \{2,3\}$ is not S-filter , because $(2^{**} * 1^*)^* = 3 \in F_1$, but $1^* = 1 \notin F_1$. And also, $F_2 = \{0,3\}$ is not S-filter , because $(0^{**} * 1^*)^* = 3 \in F_2$, but $1^* = 1 \notin F_2$. **Proposition**(4.1): (D,*,0) is a bounded Q-algebra. If F is a subset of D and $a^* \in F$, for any $a \in D$, then F is an S-filter. **Proof:** $(1)0^* = e \in F$ [by proposition(2.1)(1)] (2)Let $(b^{**} * a^*)^* \in F$, $b \in F$, $a \in D$, because $c^* \in F$, $\forall c \in D$. It follows that $a^* \in F$. **Proposition**(4.2): Every Q-filter is an S-filter. **Proof:** Suppose F is a Q-filter in bounded Q-algebra, $((b^{**} * a^*)^*) \in F$, $b \in F$. Because $a^{**} * b^* = b^{**} * a^*$ [by Proposition(2.1)(2)]. And so on $(a^{**} * b^*)^* \in F$, $b \in F$, because F be a Q-filter, Thereafter $a^* \in F$. Hence F is an S-filter. **Remark (4.1):** Conversely, Proposition (4.3) is unnecessary to be valid as shown in the next example. **Example (4.2):** By Example (4.1), let $F = \{0, 1, 3\}$ be a S-filter, then F be not Q-filter. Because $(2^* * 1^*)^* = (3 * 1)^* = 1^* = 1 \epsilon F$ but $2 \notin F$. **Proposition**(4.3): Every S-filter in an involutory Q-algebra D is a Q-filter. **Proof:** Suppose *F* is a *S*-filter in *D*, $(a^* * b^*)^* \in F$, $b \in F$. Then $(b^{**} * a^{**})^* = (a^{***} * b^*)^* = (a^* * b^*)^* \in F$. [because *D* is an involutory]. So *F* is an S-filter $b \in F$, then $a^{**} \in F$. But $a^{**}=a$, thereafter $a \in F$, and so on *F* is a *Q*-filter.

Proposition(4.4):

If *F* is an *S*-filter in a bounded Q-algebra *D* and $a \in F$ then $a^{**} \in F$

Proof:

Suppose F is an S-filter in D, $a \in F$ implies $(a^{**} * a^{**})^* = 0^* = e \in F$, then $a^{**} \in F$. Remark(4.2):

Conversely, Proposition (4.4) is unnecessary to be valid as shown in the next example. **Example(4.3):**

A binary operation * with the set $D=\{0,1,2,3,4\}$ can be defined in following table :

(•, •,	-,0,.,.				Jung e
*	0	1	2	3	4
0	0	0	0	0	0
1	1	0	1	1	0
2	2	2	0	0	0
3	3	3	0	0	0
4	4	3	1	1	0

Thereafter (D, *, 0) be bounded Q-algebra with unit 4. If $F = \{1, 3, 4\}$ then $a^{**} \in F$ is hold, $\forall a \in F$. But F is not S-filter, because $(1^{**} * 4^*)^* = (1 * 0)^* = 1^* = 3 \in F$, but $4^* = 0 \notin F$.

Proposition(4.5)

Let *F* be *S*-filter of involuntary Q-algebra *D*, $b \le a^*$ and $b \in F$ then $a^* \in F$. **Proof**:

Assume *F* be *S*-filter, $b \le a^*$, $b \in F$ [by Proposition(2.1)(1)].

So $(b^{**} * a^*)^* = 0^* = e \in F$ thus $a^* \in F$.

Proposition(4.6):

Let *F* be an *S*-filter and $0 \in F$ then $a^* \in F$, for all $a \in D$.

Proof:

It is clear by $(0^{**} * a^*)^* = e \in F$.

Proposition(4.7):

The intersection of family of S-filter is S-filter.

Proof:

Let $\{F_{\alpha}, \alpha \in \Delta\}$ be a family of S-filter in bounded Q-algebra D, So $e \in F_{\alpha}, \forall \alpha \in \Delta$ then $e \in \bigcap_{\alpha \in \Delta} F_{\alpha}$ Now, Let $(b^{**} * a^{*})^{*} \in \bigcap_{\alpha \in \Delta} F_{\alpha}, y \in \bigcap_{\alpha \in \Delta} F_{\alpha}$ then $(b^{**} * a^{*})^{*} \in F_{\alpha}, y \in F_{\alpha}, \forall \alpha \in \Delta$, because F_{α} is S-filter, $\forall \alpha \in \Delta$, then $a^{*} \in F_{\alpha}, \forall \alpha \in \Delta$. Hence $a^{*} \in \bigcap_{\alpha \in \Delta} F_{\alpha}$.

Remark(4.4):

Seeing that the union of two S-filters are unnecessary to be S-filter as the following example show.

Example(4.4):

In example (4.3). A subset $F_1 = \{1, 4\}$ and $F_2 = \{2, 3, 4\}$ are S-filter, while $F_1 \cup F_2 = \{1, 2, 3, 4\}$ is not S-filter because $(1^{**} * 4^*)^* = 1^* = 3 \in F_1 \cup F_2$, $1 \in F_1 \cup F_2$ but $4^* = 0 \notin F_1 \cup F_2$.

Proposition(4.8):

Consider h is an isomorphism mapping from a bounded Q-algebra N into a bounded Q-algebra V, if G is an S-filter, then the image of S-filter is an S-filter.

Proof:

Assume G be S-filter in N, then $e' \in G$. To prove that h(G) is S-filer in V. (1) Since h(e) = e', $e \in G$ then $e' \in h(G)$ (2)Let $(b^{**} * a^*)^* \in h(G)$, $b \in h(G)$, then $h^{-1}((b^{**} * a^*)^*) \in G$, $h^{1-}(b) \in G$ [since h is surjective]. But $h^{-1}((b^{**} * a^*)^*) = (h^{-1}(b^{**} * a^*))^* = (h^{-1}(b^{**}) * h^{-1}(a^*))^*$ $- ((((h^{-1}(b))^*))^*)$

$$= \left(\left(\left(\left(h^{-1}(b) \right)^* \right)^* * \left(h^{-1}(a) \right)^* \right)^* \right) [by lemma(2.6)(3)]$$

So $\left(\left(\left(\left(h^{-1}(b)\right)^*\right)^* * \left(h^{-1}(a)\right)^*\right)^*\right) \in G, h^{1-}(a) \in G$, because G is S-filter in N, then $\left(h^{-1}(a)\right)^* = h^{-1}(a^*) \in G$. Thus $a^* \in h(G)$, that means h(G) is an S-filter in V.

Proposition(4.9):

Consider h is an epimorphism mapping from bounded Q-algebra N into bounded Q-algebra V, if A be S-filter , then the inverse image of S-filter be S-filter.

Proof:

Suppose that A is an S-filter in V, then $e' \in A$. To show that $h^{-1}(A)$ is S-filer in N. (1)because h(e) = e' and h is a one to one, then $e = h^{-1}(e') \in h^{-1}(A)$ (2)assume that $(b^{**} * a^*)^* \in h^{-1}(A)$, $y \in h^{-1}(A)$. Because (h is onto), then $h(b^{**} * a^*)^* = ((h(b^{**}) * h(a^*))^*) \in A$ and $h(b) \in A$, but

$$h(b^{**} * a^{*})^{*} = \left(\left(h(b^{**}) * h(a^{*})\right)^{*}\right) = \left(\left(\left((h(b))^{*}\right)^{*} * (h(a))^{*}\right)\right) \in A,$$

 $h(b) \in A$. By lemma(2.6)(2)], because A is S-filter in V, then $(h(a))^{+} = h(a^{*}) \in A$.

And so on $a^* \in h^{-1}(A)$, which means $h^{-1}(A)$ is a S-filter in N.

Definition(4.2):

Let (D, *, 0) be a bounded *Q*-algebra, a subset *F* of D is a proper S-filter if $F \neq X$.

Proposition(4.10):

Consider (D, *, 0) be an involutory Q-algebra, a subset F of D be a proper S-filter if and only if $0 \notin F$.

Proof:

Assume that $0 \notin F$, so; follow clearly from F is a proper.

In a Converse way , if *F* is a proper *S*-filter.

Let $0 \in F$, then for some $a \in D$, $(0^{**} * a^{**})^* = e \in F$. (Since F is S-filter). Thus $a^{**} \in F$ i.e. $a \in F$

(because D is involution). It gets F=D, is a contradiction.

Therefore 0∉ F.

5. complete S-filter

In this part ,we provide the definition of complete S-filter, and study its relationship with s-filter in Q-algebra. **Definition(5.1):**

A nonempty subset F of a bounded Q-algebra D is called complete S-filter (C-S – filter) if, (1) $e \in F$;

(2) $(b^{**} * a^*)^* \in F, \forall b \in F \text{ implies } a^* \in F; \text{for all } a, b \in D$

Example(5.1):

A binary operation * with the set $D=\{0,1,2,3\}$ can be defined in following table :

*	0	1	2	3
0	0	0	0	0
1	1	0	0	0
2	2	2	0	0
3	3	3	3	0

Thereafter (D, *, 0) be bounded *Q*-algebra with the unit 3, and $F = \{0, 2, 3\}$ is a C-S filter. Because $(b^{**} * a^*)^* \in F, \forall b \in F$ implies $a^* \in F$ is hold.

Example(5.2):

A binary operation * with the set $D=\{0,1,2,3,4,5\}$ can be defined in following table:

www.ijeais.org

0	0	0	0	0	0	0
1	1	0	1	0	0	0
2	2	2	0	2	0	0
3	3	3	0	0	0	0
4	4	4	3	0	0	0
5	5	5	4	0	3	0

Thereafter (D,*,0) be bounded Q-algebra with the unit 5, $F = \{0,1,5\}$ is not a C-S-filter, because $(0^{**} * 4^*)^* = 5 \in F$, $(1^{**} * 4^*)^* = 5 \in F$ and $(5^{**} * 4^*)^* = 5 \in F$, but $4^* = 3 \notin F$.

Proposition(5.1):

In bounded Q-algebra, every S-filter is a C-S-filter.

Proof:

Suppose F be S-filter, $(b^{**} * a^*)^* \in F, \forall b \in F$, since F is S-filter, then $a^* \in F$, and so on F is a C-S-filter.

Remark(5.1):

Conversely, Proposition (5.1) is unnecessary to be valid as shown in the next example.

Example(5.3):

Let $F = \{1,2,3\}$ be a C-S-filter, in Example (5.1), but F unnecessary to be S-filter, because $(1^{**} * 3^*)^* = 3 \in F$, $3^* = 0 \notin F$.

Proposition(5.2):

Every Q-filter is C-S- filter.

Proof:

By Proposition(4.2) and Proposition (5.1).

Remark(5.2):

In general, the converse of Proposition (5.2) unnecessary to be true as in the example(5.1) F={1,2,3} is a c-s-filter, but it is not a Q-filter, because $(0^* * 1^*)^* = 3 \in F$, but $0 \notin F$.

Proposition(5.3):

Every C-Q-filter is C-S-filter.

Proof:

Suppose F be a *C*-*Q*-filter of bounded *Q*-algebra *D*, $(b^{**} * a^*)^* \in F, \forall b \in F$. Because $a^{**} * b^* = b^{**} * a^*$ [by proposition(2.1)(2)] Implies $(a^{**} * b^*)^* \in F, \forall b \in F$. if *F* is a *C*-*Q*-filter from *D*, then $a^* \in F$. Hence *F* is a *C*-*S*-filter.

Remark(5.3):

Conversely, Proposition (5.3) is unnecessary to be valid as shown in the next example. **Example(5.4):** Let $F = \{0, 2, 3\}$ be C-S-filter from D, in Example (5.1), then F is not C-Q-filter, because $(1^* * 0^*)^* = 3 \in F$, $(1^* * 2^*)^* = 3 \in F$ and $(1^* * 3^*)^* = 0 \in F$, but $I \notin F$.

Proposition(5.4):

If F is a C-S-filter in involuntary Q-algebra D, thereafter F is a C-Q-filter. **Proof:** Let F be a C-S-filter of D, $(a^* * b^*)^* \in F$, $\forall b \in F$, Then $(a^* * b^*)^* = (b^{**} * a)^*$ [byproposition(2.1) (2)], because D is an involuntary. Then $(a^* * b^*)^* = (b^{**} * a^{**})$, of supposed F be a C-S-filter. Then $a^{**} \in F$. But $a^{**} = a$, $\forall a \in D$, then $a \in F$. Hence F is a C-Q-filter.

Proposition(5.5):

Consider g is an isomorphism mapping from bounded Q-algebra N into bounded Q-algebra V, if U is a c-S-filter, then the image of C-S-filter is a C-S-filter.

Proof:

Suppose that g is an isomorphism function from bounded Q-algebra N into bounded Q-algebra V. If U is a C-S-filter in N, then $e \in U$. So $g(e)=e' \in g(U)$ [by proposition(2.5)(1)].

Now let $(b^{**} * a^*)^* \in g(u), \forall y \in g(U)$, thereafter $(g^{-1}(b^{**} * a^*)^*) \in U, \forall g^{-1}(b) \in U$,

because [f is a surjective].Let $g^{-1}(b^{**} * a^*)^* = (g^{-1}(b^{**}) * g^{-1}(a^*))^*$, then $g^{-1}(b^{**} * a^*)^* = (((g^{-1}(b))^*)^* * (g^{-1}(a))^*)^*$ [by proposition(2.5)(3)].

International Journal of Engineering and Information Systems (IJEAIS) ISSN: 2643-640X Vol. 3 Issue 11, November – 2019, Pages: 15-22

Therefore $(((g^{-1}(b))^*)^* * (g^{-1}(a))^*)^* \in U$, $\forall g^{-1}(b) \in U$. Because U is a C-S-filter in N, then $(g^{-1}(a))^* = g^{-1}(a^*) \in U$. Thus $a^* \in g(U)$, which means g(U) is a C-S-filter in V.

Proposition(5.6):

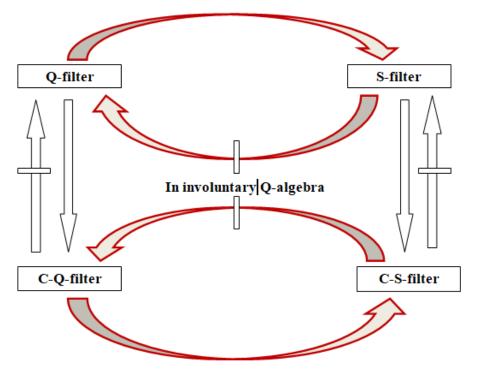
Consider h is an epimorphism mapping from bounded Q-algebra N into bounded Q-algebra V, if G is C-S-filter in V, then inverse image of C-S-filter is C-S-filter .

Proof:

Assume that f is an epimorphism from bounded Q-algebra N into bounded Q-algebra V, and G is a C-S-filter in V. If $e \in G$ then h(e) = e, thus $e \in h^{-1}(G)$ [by proposition(2.5)(1)]. Now let $(b^{**} * a^*)^* \in h^{-1}(G), \forall b \in h^{-1}(G), So h((b^{**} * a^*)^*) \in G, \forall h(b) \in G,$ because[h is an onto]. If $h((b^{**} * a^*)^*) = ((((h(b))^*)^* * (h(a))^*)^*) \in G, \forall h(b) \in G.$ [by proposition(2.5)(2)], because G is a C-S-filter then $((h(a))^*) = h(a^*) \in G.$ Thus $a^* \in h^{-1}(G)$, which mean $h^{-1}(G)$ is a C-S-filter in N.

Remark(5.4):

The following diagram shows the relation among Q-filter, S-filter, C-Q-filter and C-S-filter in bounded Q-algebra .



References

[1] Neggers J, Ahn SS, kim HS. on Q-algebra. International Journal of Mathematics and Mathematical Sciences (IJMMS). 2001; 27(12):749-757.

[2] Y.B.Jun, "satisfactory filter of BCK-algebra", Scientiae MathematicaeJaponicae online, Vol.g, 2003, PP.1-7.

[3] Abdullah.H.K,Radhi. K.T, T-filter.in BCK- algebra, Jounrnal university of kerbala. 2017; 15(2): 36-43

[4] Abdullah.H.K, Jawad. H.K, New types of Ideals in Q-algebra, Journal university of kerbala, Vol.16 No.4 scientific. 2018 [5] J.Meng. "Bck-filter", Math. Japan, Vol.44,1996, PP. 199-129.

[6] Y.Lmai and K.Iseki, On axiom system of propositional calculi XIV, proc, Japan . Academy . 42 (1966), pp. 19 - 22.

[7] Y.Huang, On Involutory BCK-algebras, Soochow Journal of Mathematics, Vol. 32, No. 1, (2006), pp. 51-57.

[8] Q.P. Hu and X. Li, On BCH-algebras, Math. Seminar Notes 11 (1983), pp. 313-320.

[9] E.Y.Deeba, Filter theory of BCK-algebra, Math. Japon, Vol. 25(1980), pp. 631-639.

[10]Y.B.Jun, Satisfactory Filters of BCK-algebras, Scientiae Mathematicae Japonicae Online Vol. 9, (2003) pp. 1-7.

[11]A.H.Kareem. and H.Z.Ahmed, Complete BCK-ideal, European Journal of Scientific Research, Vol. 137, No. 3 (2016), pp.302-314.