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Abstract 

In this paper, we have studied the extension of Laplace and Sumudu transforms to 

functions of two variables. Speci cally, we studied these two transforms with their main 

properties as well as their applications in solving ordinary and partial differential 

equations. We provide a proof to the relationship between these two operators, i.e. double 

Laplace and double Sumudu transforms. We apply double Sumudu transform to nd the 

solution of Heat and Wave Equations.  
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1 Introduction 
DEs are useful tools in mathematical models of life problems and applied mathematics. DEs 

have played very important role in different applications of mathematics for a long time and 

with the development of the computer their importance has increased. Thus, the investigation 

and the analysis of DEs had increase in applications leading to several mathe-matical 

problems; therefore,a number of methods (exact and approximated) can be used to nd the 

solution of DEs.The numerical methods can provide approximate solutions rather than the 

analytical solutions of the problems. In most times it may be complex to solve these 

equations analytically and thus are commonly solved by integral transforms such as Laplace 

and Fourier transforms and the advantage of these two methods lies in their ability to 

transform differential equations into algebraic equations, which allows a simple way to nd 

the solution. As we see the integral transform method is an effective way to solve some 

certain differential equations. Thus, in the literature there are a lot of works on the theory and 

applications of Laplace, Fourier, Mellin and other integral transforms (Debnath Bhatta, 2006) 

but a little on the power series transformation such as Sumudu transform, maybe because it is 

little known and not widely used yet. Sumudu transform was proposed originally by 

Watugala for solving ordinary and partial differential equations both in ordi-nary and in 

fractional sense as explained in the previous chapters.Watugala (2002) extended the 

transform to functions of two variables with emphasis on solutions to partial differen-tial 

equations. Kilicman & Gadain (2009) studied the relation between double Laplace and 

double Sumudu transforms and study most of double sumudu transform properties and 

applied it to the solution of ordinary differential equations and control engineering prob-lems. 

Then, K l çman & Eltayeb (2010) applied double Laplace and Sumudu transforms 
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to solve the partial differential equations and show that there is a strong relationship be-tween 

them and there is also a relation between double Sumudu of convolution and double Laplace 

of convolution, Sumudu transform was extended to the distributions and some of their 

properties were studied. Eltayeb & Kilichman (2010a) produced a new equation by us-ing 

convolution and solved it by double Sumudu and double Laplace transforms, compared both 

the Laplace and Sumudu integral transforms and established a relationship between double 

Sumudu transform and double Laplace transforms. Eshag (2017) de ned Sumudu transform 

method and used it to solve the one dimensional heat equation and compare the results with 

the results of double Laplace transform. The double Sumudu transform also studied in 

(Eltayeb & Kilichman, 2010b; Eltayeb & Kilicman, 2010).  
In this paper, we have studied double Sumudu transform with its main 

properties,studied double Laplace transform and its relation with double Sumudu 

transform and applied the double Sumudu transform for solving the heat and wave 

equations among other illustrative examples. 

 

1.1 Definition 
 

The double Sumudu transform can be de ned by (Eltayeb & K l çman, 2010): 
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1.2 Properties of double Sumudu transform 
 

1. The double Sumudu transform of the second partial derivative with respect to x has 

a form (Eltayeb & K l çman, 2010): 
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The integral inside the brackets can be computed individually as follows: 
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By taking Sumudu transform with respect to t , we get the double Sumudu 

transform as follows: 
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3. The double Laplace transform was de ned by (Estrin and Higgins,1951)by the fol-

lowing form:  



e  px 
 st

 f (x; t)dtdx LxLt [ f (x; t); ( p; s)] = F( p; s) = e 
0  0  

 
were x; t > 0 and p; s are complex values. They de ned the rst-order partial deriva-
tive as : 

LxLt [ 
¶ f (x; t) 

; ( p; s)] = pF( p; s)    f (0; s) 
¶ x   

 
4. The double Laplace transform for the second-order partial derivative with respect 

to x can be given by: 
 

LxLt [ 
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2
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; ( p; s)] = p
2
F( p; s)    p f (0; s) 
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By the same way,    
 

5. The double Laplace transform for the second order partial derivative with respect 

to x can be given by 
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6. The double Laplace transform of a mixed partial derivatives can be deduced from 

the single Laplace transform as below: 
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2 The Relation between double Laplace and double Sumudu transforms 
 

The double Laplace and Sumudu transforms have a strong relation may be expressed 

either as:  
1- 

 

 

or 
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represent the operation of double Laplace transform.In fact this relation is best 

by the fact that these two transforms interchange the images of sin(x + t) and 
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We note that the relationship between double Sumudu of convolution and double 

Laplace transform of convolution is: 
 

S2[( f   g)(t; x); (u; v)] = 
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uv 

where y x    
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    Table 1: Double Sumudu transform          
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3 Partial Defferential Equations 
 

Example 3.1. Solve the following linear rst order partial differential equation 
 

    aux + buy = 0;    (1) 

With initial and boundary conditions:     

u(x; 0) = f (x);    x > 0;   u(0; y) = 0;    y > 0 

Applying double Sumudu transform Equation (1) gives  

    aS2[ux] + S2[uy] = 0  

or,     
  

(u; v)   S[u(0; y)] ] + b[ 
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or, 
1  

u(u;
 

v) =
 

f
 

(u)
 buav + 1  

where  
f (u) = S[u(x; 0)] = S[ f (x)]   

The inverse sumudu transform to Equation (2) with respect to (v) gives 
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The inverse transform to Equation (2) with respect to (u) yields the solution  
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Example 3.2. Solve the following rst-order partial differential equation 

ux = uy; 
 

with initial and boundary conditions: 

u(x; 0) = f (x); x > 0; u(0; y) = g(y) ; y > 0: 

The application of double Sumudu transform to Equation (3) gives  

           S2[ux] = S2[uy]  
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Example 3.3. Fourier’s Heat Equation in a Quarter Plane The standard heat equation is 
 

ut   = kuxx;    x > 0;    t > o; (5) 

u(x; o)   =   0; u(0; t) = 2T0;    x > 0;    t > 0;  

ux(0; t)   = 0; t > 0;    u(x; t)   ! 0  as  x  ! ¥  

where T0 is a constant 

We apply the double Sumudu transform Equation (5)to 

obtain S2(ut ) = kS2(uxx) 
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The  rst term above vanishes because of u(x; t)   ! 0 as x ! ¥. Hence, 
 

1  p 
      

u(x; t) = T0S 
kvx 

] 

 

  [e  

Now, inversion yields the solution           

u(x; t) = T0er f c( 

 x  

(7) 

  
 

) 

 

2p 

  

kt   
Debnath (2016) solved Equation (5) using Laplace transform with the following solution 

 

u(x; t) = T0er f c( 

x 

(8) 2
p

kt 
) 

  
Hence, the two solutions in equations (7) and (8) are identical 

 

Example 3.4. D’Alembert’s Wave Equation in a Quarter Plane The standard 

wave equa-tion is 
 

c
2
uxx   =   utt ;    x > 0;    t > 0 (9) 
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with initial and boundary conditions 
 

u(x; 0) = f (x); ut (x; 0) = g(x); x > 0 
 

u(0; t) = 0; ux(0; t) = 0 
 

We apply the double Sumudu transform u(u; v) = S2[u(x; t)] de ned by  
 

  
1 

     
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to the wave Equation (9) 
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Taking the inverse of double 

 

u(x; t) = S2 

g(v) = S[ut (0; t)] = S[g(t)] 
 

f (u) = S[u(x; 0)] = S[ f (x)]  
 
Sumudu transform for Equation (10) 
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(12) 

This is the celebrated D’Alembert solution of the wave equation,where we have used 
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S 
1 

a 

f (x + a) and S 
1
[ug(u)] =  0

t
 g(t)dt [ f (u)e u ] =  

 
Debnath (2016) solved Equation (9) using Laplace transform with the following solution 

 
 

1 
  

1 
x+ct  

u(x; t) = [ f (x + ct) + f (x ct)] + g(t)dt: (13) 
2 2c    x  ct  

 
Hence, the two solutions in equations (12) and (13) are identical 
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