# Fuzzy $\rho$ -filter and fuzzy c- $\rho$ -filter in $\rho$ -algebra

#### Habeeb Kareem Abdullah

Department of Mathematics , college of Education for Girls , University of Kufa, Najaf, Iraq E-mail : habeebk.abdullah@uokufa.edu.iq

#### Akeel Kareem Mohammad

Department of Mathematics ,college of computer science and Mathematics ,University of Kufa, Najaf,

Iraq

E-mail: akeelk.alateejawi@student.uokufa.edu.iq

**Abstract**: In this paper we introduce the notions of fuzzy  $\rho$ -filter and fuzzy complete  $\rho$ -filter, in  $\rho$ -algebra. Also, we give some theorems and relationships between them.

**Keywords:** fuzzy  $\rho$ -filter, fuzzy complete- $\rho$ - filter,

**1.Introduction** In 1980, E. Y. Deeba introduced the notation of filters and in the setting of bounded implicative BCK-algebra constructed quotient algebra via a filter [2] It is known that the class of BCK-algebra is proper subclass of the class of BCI-algebra. J. Naggers and H. S. Kim introduced the notion of d-algebra in1999, which is another useful generalization of BCK-algebra [5]. The ideal theory plays an important rule in d-algebra. In 1999 [5] J. Naggers Y. B. Jun and H. S. Kim introduce the notion of d-ideal in d-algebra. in 2017 [4] M. Alradha ,and S. M. Khalil introduced the notion of characterizations of  $\rho$ -algebra and generation permutation topological  $\rho$ -algebra using permutation in symmetric group. The aim of this paper is to introduce some kind of fuzzy  $\rho$ -filter and fuzzy complete- $\rho$ -filter ,also we study the relationships between them .

#### 2. Preliminaries of $\rho$ -algebra

This portion we're introducing definition  $\rho$ -filter and c- $\rho$ -filter in  $\rho$ -algebra, and some of their properties are presented.

## **Definition** (2.1)[4]

A  $\rho$ -algebra is a set  $\mathcal{K}$  with a binary operation " \* " and constant "1" which satisfies the following axioms :

- $\mathcal{K} * \mathcal{K} = 1$
- $1 * \mathcal{K} = 1$
- $\mathcal{K} * \mathbb{Z} = 1$  and  $\mathbb{Z} * \mathcal{K} = 1$  imply  $\mathcal{K} = \mathbb{Z}$ , For all  $\kappa, \mathbb{Z}, \in \mathcal{K}$
- For all  $\mathcal{K} \neq \mathcal{Z}, \mathcal{K}, \mathcal{Z} \in \mathcal{K} \{1\}$ , imply  $\mathcal{K} * \mathcal{Z} = \mathcal{Z} * \mathcal{K} \neq 1$

Remark : (2.2)

In  $\boldsymbol{\rho}$ -algebra,  $\mathcal{K}$  we denoted  $\mathcal{K} * 1$  by  $\mathcal{K}^*$  for every  $\kappa \in \mathcal{K}$ .

## **Definition** (2.3)[3]

A nonempty subset  $\mathcal{F}$  of a  $\boldsymbol{\rho}$ -algebra  $\mathcal{K}$  is said to be  $\boldsymbol{\rho}$ -filter if

- $1 \in \mathcal{F}$
- $(\mathcal{K}^* * \mathcal{Z}^*)^* \in \mathcal{F}$ ,  $\mathcal{Z} \in F$  implies  $\mathcal{K} \in \mathcal{F}$ .

# <u>Definition (2.4)[3]</u>

A subset of a  $\rho$  -algebra X is side to be complete  $\rho$ -filter (c- $\rho$ -filter ) if,

- $1 \in \mathcal{F}$
- $(\mathcal{K}^* * \mathbb{Z}^*)^* \in \mathcal{F}, \forall \mathbb{Z} \in \mathcal{F}$ , implies  $\mathcal{K} \in \mathcal{F}$

**Proposition(2.5):**[3]

In  $\rho$ -algebra  $\mathcal{K}$  every  $\rho$ -filter is a c- $\rho$ -filter.

## **Definition** (2.6):[6]

Let *X* be a non-empty set. A fuzzy set in *X* is a function  $\mu : X \to [0, 1]$ . If  $\mu$  and  $\eta$  be two fuzzy subsets of *X*, then by  $\mu \subseteq \eta$  we mean  $\mu(x) \leq \eta(x)$  for all  $x \in X$ .

## Definition (2.9):[1]

Let  $\mu$  and  $\eta$  be two fuzzy sets in *X*. Then :

1-  $(\mu \cap \eta)(x) = min\{\mu(x), \eta(x)\}$ , for all  $x \in X$ .

2-  $(\mu \cup \eta)(x) = max\{\mu(x), \eta(x)\}$ , for all  $x \in X$ .

 $\mu \cap \eta$  and  $\mu \cup \eta$  are fuzzy sets in *X*.

In general, if  $\{\mu_i, i \in \Delta\}$  is a family of fuzzy sets in *X*, then :

 $\bigcap_{i \in \lambda} \mu_i(x) = \inf\{\mu_i(x), i \in \lambda\}, \text{ for all } x \in X \text{ and }$ 

 $\bigcup_{i \in \lambda} \mu_i(x) = \sup\{\mu_i(x), i \in \lambda\}, \text{ for all } x \in X.$ 

which are also fuzzy sets in *X*.

# <u>3.1 Fuzzy *p*-filter</u>

In this portion, we introduce concept fuzzy  $\rho$ -filter, and give some its examples and properties.

# Definition (3.1)

In  $\boldsymbol{\rho}$ -algebra  $\mathcal K$  A fuzzy set  $\mu$  is said to be fuzzy  $\boldsymbol{\rho}$ -filter of , if

(1)  $\mu(1) \geq \mu(\mathcal{K}) , \forall \kappa \in \mathcal{K}$ 

(2)  $\mu(\mathcal{K}) \geq \min\{\mu((\mathcal{K}^* * Z^*)^*), \mu(Z)\}, \forall \kappa, Z \in \mathcal{K}$ 

#### *Example (3. 2):*

- (I) every constant fuzzy set in  $\rho$ -algebra is fuzzy  $\rho$ -filter
- (II) Let  $\mathcal{K} = \{1, b, a, c, d\}$  and a binary operation \* is defined by

| * | 1 | а | b | С |
|---|---|---|---|---|
| 1 | 1 | 1 | 1 | 1 |
| а | а | 1 | С | с |
| b | b | С | 1 | а |
| С | С | С | а | 1 |

Then  $(\mathcal{K}, *, 1)$  is a  $\rho$  -algebra and. Let  $\mu$  be the fuzzy set defined by

$$\mu(\mathcal{K}) = \begin{cases} 0.9 & if \ \mathcal{K} = 1, a \\ 0.5 & if \ \mathcal{K} = b, c \end{cases}$$

Then  $\mu$  is fuzzy  $\rho$ -filter in  $\mathcal{K}$ . Since

- $\mu (1) = 0.9 \ge \mu(\mathcal{K}), \forall k \in \mathcal{K}$  $\mu(b) = 0.5 \ge \min\{\mu((b^* * 1^*)^*), \mu(1)\} = 0.5$  $\mu(b) = 0.5 \ge \min\{\mu((b^* * a^*)^*), \mu(c)\} = 0.5$  $\mu(c) = 0.5 \ge \min\{\mu((c^* * 1^*)^*), \mu(1)\} = 0.5$
- $\mu(c) = 0.5 \ge \min\{\mu((c^* * a^*)^*), \mu(c)\} = 0.5$

#### *Example (3.3):*

Let  $\mathcal{K} = \{1, b, a, c\}$  and a binary operation \* is defined by



| 1 | 1 | 1 | 1 | 1 |
|---|---|---|---|---|
| а | а | 1 | а | С |
| b | b | а | 1 | b |
| С | С | С | b | 1 |

 $\mu(\mathcal{K}) = \begin{cases} 0.7 & if \quad \mathcal{K} = 1, b\\ 0.6 & if \quad \mathcal{K} = c, a \end{cases}, \text{ Then } \mu \text{ is not fuzzy } \boldsymbol{\rho}\text{-filter in } X \text{ since} \\ \mu(c) = 0.6 \ge \min \left\{ \mu((c^* * b^*)^*), \mu(b) \right\} = 0.7 \end{cases}$ 

# Proposition (3.4):

Let {  $\mu_i : i \in \Delta$  } be a family of fuzzy  $\rho$ -filters in  $\rho$ -algebra  $\mathcal{K}$ . the intersection of a family of fuzzy  $\rho$ -filters is fuzzy  $\rho$ -filters

Proof:

•  $\mu_i(1) \ge \mu_i(1), \forall i \in \Delta$ 

 $\inf\{\mu_i(1)\} \ge \inf\{\mu_i(\mathcal{K})\}$ 

So  $\bigcap_{i \in \Delta} \mu_i(1) \ge \bigcap_{i \in \Delta} \mu_i(\mathcal{K})$ 

• let  $\mathcal{K}, \mathbb{Z} \in \mathcal{K}$ , then  $\mu_i(\mathcal{K}) \ge \min\{\mu_i((\mathcal{K}^* * \mathbb{Z}^*)^*), \mu_i(\mathbb{Z})\}$ 

Thus  $\inf\{\mu_i(\mathcal{K})\} \ge \inf\{\min\{\mu_i((\mathcal{K}^* * \mathcal{Z}^*)^*), \mu_i(\mathcal{Z})\}\}\$ 

$$\geq \{\min\{\inf \mu_i((\mathcal{K}^* * \mathcal{Z}^*)^*), \inf \mu_i(\mathcal{Z})\}\}\$$

So  $\bigcap_{i \in \Delta} \mu_i$   $(\mathcal{K}) \ge \min\{\bigcap_{i \in \Delta} \mu_i ((\mathcal{K}^* * \mathbb{Z}^*)^*), \bigcap_{i \in \Delta} \mu_i (\mathbb{Z})\}$ 

## **Remark** (3. 5):

The union of two fuzzy  $\rho$ -filters it is not fuzzy  $\rho$ -filter in general, as it is shown in the next example.

# *Example (3. 6):*

Let  $\mathcal{K} = \{1, b, a, c\}$  and a binary operation \* is defined by

| * | 1 | а | b | С |
|---|---|---|---|---|
| 1 | 1 | 1 | 1 | 1 |
| а | а | 1 | С | С |
| b | b | С | 1 | а |
| С | С | С | а | 1 |

Then  $(\mathcal{K}, *, 1)$  is a  $\rho$ -algebra. Let  $\mu$  and  $\eta$  be the fuzzy sets defined as the following

$$\mu(\mathcal{K}) = \begin{cases} 0.9 & \text{if } \mathcal{K} = 1, a \\ 0.3 & \text{if } \mathcal{K} = b, c \end{cases}, \ \eta(\mathcal{K}) = \begin{cases} 0.6 & \text{if } \mathcal{K} = 1, b \\ 0.5 & \text{if } \mathcal{K} = a, c \end{cases}$$

Then  $\mu$ , is fuzzy  $\rho$ -filters, by example (3.2)(II) and  $\eta$  is fuzzy  $\rho$ -filters since

 $\eta(a) = 0.5 \ge \min\{\eta((a*1)^*), \eta(1)\} = 0.5$  $\eta(a) = 0.5 \ge \min\{\eta((a*b)^*), \eta(c)\} = 0.5$  $\eta(c) = 0.5 \ge \min\{\eta((c*1)^*), \eta(1)\} = 0.5$  $\eta(c) = 0.5 \ge \min\{\eta((c*b)^*), \eta(b)\} = 0.5$ 

But
$$(\mu \cup \eta)(\mathcal{K}) = \begin{cases} 0.9 & if \quad \mathcal{K} = 1, a \\ 0.6 & if \quad \mathcal{K} = b \\ 0.5 & if \quad \mathcal{K} = c \end{cases}$$

is not fuzzy  $\rho$ -filter since  $(\mu \cup \eta)(c) = 0.5 \ge$ 

 $\min\{\mu \cup \eta\}((c * b)^*), \mu \cup \eta)(b)\} = 0.6$ 

# <u>4- Fuzzy complete p-filter</u>

In this section, we describe fuzzy c- $\rho$ -filter of  $\rho$ -algebra and study their relationship with fuzzy  $\rho$ -filter.

# definition (4.1)

Let  $\mathcal{F}$  be c- $\rho$ -filter of  $\rho$ -algebra  $\mathcal{K}$ . A fuzzy subset  $\mu_F$  of X is said to be fuzzy complete  $\rho$ -filter (fuzzy c- $\rho$ -filter), at  $\mathcal{F}$ , if

- $\mu_{\mathcal{F}}(1) \geq \mu_{\mathcal{F}}(\mathcal{K}) , \forall \mathcal{K} \in \mathcal{K}$
- $\mu_{\mathcal{F}}(\mathcal{K}) \ge \min \{\mu_{\mathcal{F}}((\mathcal{K}^* * \mathcal{Z}^*)^*), \mu_{\mathcal{F}}(y)\}, \forall \mathcal{Z} \in \mathcal{F}\}$

## **Example** (4. 2):

Let  $\mathcal{K} = \{1, b, a, c, d\}$  and a binary operation \* is defined by

| * | 1 | а | b | С | d |
|---|---|---|---|---|---|
| 1 | 1 | 1 | 1 | 1 | 1 |
| a | а | 1 | а | b | d |
| b | b | а | 1 | b | d |
| С | С | b | b | 1 | d |
| d | d | d | d | d | 1 |

Then  $(\mathcal{K}, *, 1)$  is a  $\boldsymbol{\rho}$ -algebra and  $\mathcal{F} = \{1, c\}$  is c- $\boldsymbol{\rho}$ -filter in  $\mathcal{K}$ . Let  $\mu_F$  be the fuzzy set defined as the following

$$\mu_{\mathcal{F}}(x) = \begin{cases} 0.8 \ if \ x = 1, c, d \\ 0.5 \ if \ x = a, b \end{cases}$$

Then  $\mu_{\mathcal{F}}$  is fuzzy c- $\boldsymbol{\rho}$ -filter at  $\mathcal{F}$ . Since

 $\mu_{\mathcal{F}}(1) = 0.8 \ge \mu_{\mathcal{F}}(\mathcal{K}), \forall x \in \mathcal{K}$  $\mu_{\mathcal{F}}(a) = 0.5 \ge \min\{\mu_{\mathcal{F}}((a^* * 1^*)^*), \mu_{\mathcal{F}}(1)\} = 0.5$  $\mu_{\mathcal{F}}(a) = 0.5 \ge \min\{\mu_{\mathcal{F}}((a^* * c^*)^*), \mu_{\mathcal{F}}(c)\} = 0.5$  $\mu_{\mathcal{F}}(b) = 0.5 \ge \min\{\mu_{\mathcal{F}}((b^* * 1^*)^*), \mu_{\mathcal{F}}(1)\} = 0.5$ 

 $\mu_{\mathcal{F}}(b) = 0.5 \ge \min\{\mu_{\mathcal{F}}((b^* * c^*)^*), \mu_{\mathcal{F}}(c)\} = 0.5$ 

## *Example (4.3):*

Let  $X = \{1, b, a c\}$  and a binary operation " \* " is defined by

| * | 1 | а | b | С |
|---|---|---|---|---|
| 1 | 1 | 1 | 1 | 1 |
| а | а | 1 | а | с |
| b | а | а | 1 | а |
| С | С | С | а | 1 |

Then  $(\mathcal{K}, *, 1)$  is a  $\boldsymbol{\rho}$ -algebra and  $\mathcal{F} = \{1, a\}$  is c- $\boldsymbol{\rho}$ -filter in X but

 $\mu(\mathcal{K}) = \begin{cases} 0.8 & if \ \mathcal{K} = 1, a \\ 0.4 & if \ \mathcal{K} = b, c \end{cases}$ 

 $\mu$  is not fuzzy c- $\rho$ -filter at *since* 

 $\mu_{\mathcal{F}}(b) = 0.4 \ge \min\{\mu_{\mathcal{F}}((b^* * a^*)^*), \mu_{\mathcal{F}}(a)\} = 0.8$ 

 $\mu_{\mathcal{F}}(b) = 0.4 \ge \min\{\mu_{\mathcal{F}}((b^* * 1^*)^*), \mu_{\mathcal{F}}(1)\} = 0.8$ 

## Proposition (4.4)

Every fuzzy  $\rho$ -filter is fuzzy c- $\rho$ -filter,.

#### Proof:

Let  $\mathcal{F}$  be c- $\rho$ -filter and let  $\mu$  be a fuzzy  $\rho$ -filter, since

- $\mu(1) \geq \mu(\mathcal{K}), \forall \mathcal{K} \in \mathcal{K}.$
- $\mu(\mathcal{K}) \geq \min\{\mu((\mathcal{K}^* * \mathbb{Z}^*)^*), \mu(\mathbb{Z})\}, \forall \mathcal{K}, \mathbb{Z} \in \mathcal{K},$

since  $\mathcal{F} \subseteq \mathcal{K}$  then  $\mu(\mathcal{K}) \ge \min\{\mu((\mathcal{K}^* * \mathbb{Z}^*)^*), \mu(\mathbb{Z})\}\$ ,  $\forall \mathbb{Z} \in \mathcal{F}$  Thus  $\mu$  is fuzzy c- $\rho$ -filter, at  $\mathcal{F}$ .

## <u>Remark(4. 5):</u>

The conversely of Proposition (4.4) is not true in general as in the example (4. 2).  $\mu_F$  is fuzzy c- $\rho$ -filter

at  $\mathcal{F} = \{1, c\}$ , but  $\mu_F$  is not fuzzy  $\boldsymbol{\rho}$ -filter, since,

$$\mu_F(b) = 0.5 \ge \min\{\mu_F((b^* * d^*)^*), \mu_F(d)\} = 0.8$$

## proposition (4.6):

Let *F* be c- $\rho$ -filter in  $\rho$ -algebra  $\mathcal{K}$ . If { $\mu^i_F$ :  $i \in \Delta$ } is a family of fuzzy c- $\rho$ -filters at  $\mathcal{F}$ , then  $\bigcap_{i \in \Delta} \mu^i_F$  is fuzzy c- $\rho$ -filter. at  $\mathcal{F}$ 

Proof : Since

•  $\mu^{i}_{\mathcal{F}}(1) \ge \mu^{i}_{\mathcal{F}}(\mathcal{K}), \forall \mathcal{K} \in \mathcal{K}. \text{ and } \forall i \in \Delta$ , then

$$\inf\{\mu^{i}{}_{\mathcal{F}}(1)\} \ge \inf\{\mu^{i}{}_{\mathcal{F}}(\mathcal{K})\}, \text{ so } \cap_{i \in \Delta} \mu^{i}{}_{\mathcal{F}}(1) \ge \cap_{i \in \Delta} \mu^{i}{}_{\mathcal{F}}(\mathcal{K}), \forall \mathcal{K} \in \mathcal{K}\}$$

•  $\mu^{i}_{\mathcal{F}}(\mathcal{K}) \geq \min\{\mu^{i}_{\mathcal{F}}((\mathcal{K}^{*} * \mathbb{Z}^{*})^{*}), \mu^{i}_{\mathcal{F}}(\mathbb{Z})\}, \forall \mathbb{Z} \in \mathcal{F}$ 

Thus,  $\inf\{\mu_{\mathcal{F}}^{i}(\mathcal{K})\} \geq \inf\{\min\{\mu_{\mathcal{F}}^{i}((\mathcal{K}^{*} * \mathcal{Z}^{*})^{*}), \mu_{\mathcal{F}}^{i}(\mathcal{Z})\}\}, \forall \mathcal{Z} \in \mathcal{F}$ 

$$\geq \{\min\{\inf \mu^{i}_{\mathcal{F}}((\mathcal{K}^{*} * \mathcal{Z}^{*})^{*}), \inf \mu^{i}_{\mathcal{F}}(\mathcal{Z})\}\}, \forall \mathcal{Z} \in \mathcal{F}$$

So 
$$\bigcap_{i \in \Delta} \mu^{i}_{\mathcal{F}}(\mathcal{K}) \geq \min\{\bigcap_{i \in \Delta} \mu^{i}_{\mathcal{F}}((\mathcal{K}^{*} * \mathcal{Z}^{*})^{*}), \bigcap_{i \in \Delta} \mu^{i}_{\mathcal{F}}(\mathcal{Z})\}, \forall \mathcal{Z} \in \mathcal{F}$$

Then  $\bigcap_{i\in\Delta} \mu^i_{\mathcal{F}}$  is fuzzy c- $\rho$ -filter at  $\mathcal{F}$ 

## <u> Remark (4.9):</u>

*i* n general, the union of two fuzzy c- $\rho$ -filters it is not necessarily fuzzy c- $\rho$ -filter, as it is shown in the following example.

#### *example (4.10):*

Let  $\mathcal{K} = \{1, a, b, c\}$  and a binary operation \* is defined by

| * | 1 | а | b | С |
|---|---|---|---|---|
| 1 | 1 | 1 | 1 | 1 |
| а | а | 1 | а | а |

| b | b | а | 1 | b |
|---|---|---|---|---|
| С | с | а | b | 1 |

It is clear that  $(\mathcal{K}, *, 1)$  is a  $\boldsymbol{\rho}$ -algebra and  $\mathcal{F} = \{1, c\}$  is c- $\boldsymbol{\rho}$ -filter in X. Let  $\mu_{\mathcal{F}}$  and  $\eta_{\mathcal{F}}$  be two fuzzy sets defined as the following

 $\text{define } \mu_{\mathcal{F}}(\mathcal{K}) = \begin{cases} 0.8 & \text{ if } \mathcal{K} = 1, c \\ 0.5 & \text{ if } \mathcal{K} = a, b, \end{cases} \quad \eta_{\mathcal{F}}(\mathcal{K}) = \begin{cases} 0.6 & \text{if } \mathcal{K} = 1, b \\ 0.3 & \text{if } \mathcal{K} = a, c \end{cases}$ 

Then  $\mu_{\mathcal{F}}$ ,  $\eta_{\mathcal{F}}$  are fuzzy c- $\rho$ -filters at  $\mathcal{F}$  since

 $\mu_{\mathcal{F}}(1) = 0.8 \ge \mu_{\mathcal{F}}(\mathcal{K}), \forall \mathcal{K} \in \mathcal{K}, \text{ and}$  $\mu_{\mathcal{F}}(a) = 0.5 \ge \min\{\mu_{\mathcal{F}}((a * 1)^*), \mu_{\mathcal{F}}(1)\} = 0.5$  $\mu_{\mathcal{F}}(a) = 0.5 \ge \min\{\mu_{\mathcal{F}}((a * c)^*), \mu_{\mathcal{F}}(c)\} = 0.5$  $\mu_{\mathcal{F}}(b) = 0.5 \ge \min\{\mu_{\mathcal{F}}((b * 1)^*), \mu_{\mathcal{F}}(1)\} = 0.5$  $\mu_{\mathcal{F}}(b) = 0.5 \ge \min\{\mu_{\mathcal{F}}((b * c)^*), \mu_{\mathcal{F}}(c)\} = 0.5$ 

Also

$$\eta_{\mathcal{F}}(1) = 0.6 \ge \eta_{\mathcal{F}}(\mathcal{K})$$
,  $\forall \mathcal{K} \in \mathcal{K}$ , and

$$\eta_{\mathcal{F}}(a) = 0.3 \ge \min\{\eta_{\mathcal{F}}((a * 1)^*), \eta_{\mathcal{F}}(1)\} = 0.3$$

$$\eta_{\mathcal{F}}(a) = 0.3 \ge \min\{\eta_{\mathcal{F}}((a * c)^*), \eta_{\mathcal{F}}(c)\} = 0.3$$

$$\eta_{\mathcal{F}}(c) = 0.3 \ge \min\{\eta_{\mathcal{F}}((c*1)^*), \eta_{\mathcal{F}}(1)\} = 0.3$$

$$\eta_{\mathcal{F}}(c) = 0.6 \ge \min\{\eta_{\mathcal{F}}((c * c)^*), \eta_{\mathcal{F}}(c)\} = 0.6$$

But 
$$(\mu_{\mathcal{F}} \cup \eta_{\mathcal{F}})(\mathcal{K}) = \begin{cases} 0.8 & if \quad \mathcal{K} = 1, c \\ 0.6 & if \quad \mathcal{K} = b \\ 0.5 & if \quad \mathcal{K} = a \end{cases}$$

is not fuzzy c- $\rho$ -filter at  $\mathcal{F}$  since  $(\mu_{\mathcal{F}} \cup \eta_{\mathcal{F}})(a) = 0.5 \ge \min\{(\mu_{\mathcal{F}} \cup \eta_{\mathcal{F}})((a * c)^*), (\mu_{\mathcal{F}} \cup \eta_{\mathcal{F}})(c)\} = 0.6$ 

## References

[1] D. Dubois and H. Prade, Fuzzy Sets and Systems, Academic Press. INC. (London) LTD., Academic Press. INC. fifth Avenue, New York,

[2] E.Y.Deeba, Filter theory of BCK-algebra, Math. Japon, Vol. 25(1980), pp. 631-639.

[3] H.K. Abdullah and A.K. Mohammad, Some Types filter of p-algebra, submit

[4] S. M. Khalil and M. Alradha, Characterizations of  $\rho$ -algebra and Generation Permutation Topological  $\rho$ -algebra Using Permutation in Symmetric Group, American Journal of Mathematics and Statistics, 7(4) (2017), 152-159.

[5] J. Neggers, and H. S. Kim, On *d*-algebra, Mathematica Slovaca, 49 (1), (1999)19-26

[6] L. A. Zadeh , Fuzzy set, Inform. And Control. 8(1965), pp. 338-353