Convolution of an Extension of Al-Zughair Integral Transform for solving some LPDE'S
 ${ }^{1}$ Ali Hassan Mohammed and ${ }^{2}$ Asraa Obaid Saud

${ }^{1}$ University of Kufa, College of Education of Women, Department of Mathematics Prof: Prof.Ali57hassan@gmail.com
${ }^{2}$ University of Kufa, College of Education of Women, Department of Mathematics asraaobaid7@gmail.com

Abstract: The convolution plays an important role in many different physical applications such as the convolution to Laplace Transform. We offer in this paper the Convolution of an Extension of AlZughair Transform and how to be used in extraction of inverse of an Extension of Al-Zughair Transform and solving some type of Partial differential Equations with variable coefficients.

1.Convolution of Laplace Transform

Definition(1.1)[1]:

The convolution of the two functions $f(x)$ and $g(x)$ defined for $x>0$ plays an important role in a number of different physical applications.
The convolution is given by the integral

$$
(f * g)(x)=\int_{0}^{x} f(\tau) g(x-\tau) d \tau
$$

Convolution theorem(1.2)[2]:

Let $f(x)$ and $g(x)$ are piecewise continuous functions on $[0, \infty)$ and of exponential order α, then

$$
\mathcal{L}[(f * g)(x, t)]=\mathcal{L}[f(x, t)] . \mathcal{L}[g(x, t)]
$$

Definition(1.3)[3]:convolution of AL-Zughair Transform

The convolution of Al-Zughair Transform of the two functions $f(\ln x)$ and $g(\ln x)$ is defined for $\ln x \in[1, e]$ by

$$
(f * x)(\ln x)=\int_{x}^{e} f(\ln u) g\left(\frac{\ln x}{\ln u}\right) \frac{d \ln u}{\ln u}=\int_{x}^{e} f(\ln u) g\left(\frac{\ln x}{\ln u}\right) \frac{d u}{u \ln u}
$$

Where $\ln u \neq 0 f$ and g are piecewise continuous function on [1, e]

2. Convolusion Of an extension of Al-Zughair Transform:

Definition(2.1):

The Convolution of an extension of Al-Zughair Transform of two functions
$f(|\ln t|)$ and $g(|\ln t|)$
is defined for $t \in\left[e, e^{-1}\right]$ by:

$$
\left.\begin{array}{rl}
(f * g)(|\ln u|) & =2 \int_{t}^{e} f(|\ln u|) g(\mid \ln t \\
\ln u
\end{array}\right) \frac{d u}{u \ln u}
$$

Where
$\ln u \neq 0, f$ and g are piecewise continuous functions on $\left[e, e^{-1}\right]$

Theorem(2.2):

Let $f(|\ln t|)$ and $g(|\operatorname{lnt}|)$ be two functions.An Extension of Al-Zughair convolution of $f(|\operatorname{lnt}|)$ and $g(|\ln t|)$ denoted by $E Z[(f * g)(\ln t)]$ is given by the relation

$$
E Z[(f * g)(\ln t)]=E Z[f(|\ln t|)] . E Z[g(|\ln t|)]
$$

Proof:

$E Z[f(|\ln t|)] \cdot E Z[g(|\ln t|)]=\left[\int_{e^{-1}}^{e} \frac{(\ln u)^{\mu}}{u} f(|\ln u|) d u\right] \cdot\left[\int_{e^{-1}}^{e} \frac{(\ln v)^{\mu}}{v} g(|\ln v|) d v\right]$

$$
\begin{aligned}
& =\left[\int_{e^{-1}}^{e}(\ln u)^{\mu} f(|\ln u|) \frac{d u}{u}\right] \cdot\left[\int_{e^{-1}}^{e}(\ln v)^{\mu} g(|\ln v|) \frac{d v}{v}\right] \\
& =\int_{e^{-1}}^{e}\left[\int_{e^{-1}}^{e}(\ln u \cdot \ln v)^{\mu} f(|\ln u|) g(|\ln v|) d \ln v\right] d \ln u
\end{aligned}
$$

Let $\ln u \cdot \ln v=\ln t$

$$
\text { If } v=e^{-1} \quad \rightarrow \ln u \cdot(-1)=\ln t
$$

$$
u^{-1}=t
$$

$$
\text { And if } v=e \quad \rightarrow \ln u .(1)=\ln t \quad u=t
$$

Where lnu is fixed in the interior integral

$$
\rightarrow \quad \ln u \cdot d \ln v=d \ln t
$$

$E Z[f(|\ln u|)] \cdot E Z[g(|\ln v|)]=\int_{e^{-1}}^{e}\left[\int_{u^{-1}}^{u}(\ln u)^{\mu} f(|\ln u|) g\left(\left|\frac{\ln t}{\ln u}\right|\right) \frac{d \ln t}{\ln u}\right] d \ln u$

$$
\text { If } g(|\ln t|)=0 \text { for } \ln t<\ln u^{-1} \rightarrow g(|\ln t|)=0 \quad \text { for }(\ln t<\ln u) \rightarrow t<u
$$

$$
\rightarrow E Z[f(|\ln u|)] \cdot E Z[g(|\ln v|)]=\int_{e^{-1}}^{e}\left[\int_{e^{-1}}^{e}(\ln u)^{\mu} f(|\ln u|) g\left(\left|\frac{\ln t}{\ln u}\right|\right) d \ln t\right] \frac{d \ln u}{\ln u}
$$

$$
\begin{gathered}
=\int_{e^{-1}}^{e}\left[\int_{e^{-1}}^{e}(\ln u)^{\mu} f(|\ln u|) g\left(\left|\frac{\ln t}{\ln u}\right|\right) \frac{d \ln u}{\ln u}\right] d \ln t \\
=\int_{e^{-1}}^{e}(\ln t)^{\mu}\left[-\int_{e^{-1}}^{t} f(|\ln u|) g\left(\left|\frac{\ln t}{\ln u}\right|\right) \frac{d \ln u}{\ln u}+\int_{t}^{e} f(|\ln u|) g\left(\left|\frac{\ln t}{\ln u}\right|\right) \frac{d \ln u}{\ln u}\right] d \ln t \\
=\int_{e^{-1}}^{e} \frac{(\ln t)^{\mu}}{t}\left[-\int_{e^{-1}}^{t} f(|\ln u|) g\left(\left|\frac{\ln t}{\ln u}\right|\right) \frac{d \ln u}{\ln u}+\int_{t}^{e} f(|\ln u|) g\left(\left.| | \frac{\ln t}{\ln u} \right\rvert\,\right) \frac{d \ln u}{\ln u}\right] d \ln t \\
=E Z[(f * g)(|\ln u|)]
\end{gathered}
$$

3. Properties of the convolution are given as follows:

$1-f * g=g * f$, the convolution is commutative
2- $c(f * g)=c f * g=f * c g \quad, c$ is constant
3- $f *(g * h)=(f * g) * h$, associative property
4- $f *(g+h)=(f * g)+(f * h)$, distributive property.

Proof (1) :

$$
(f * g)(|\ln u|)=2 \int_{t}^{e} f(|\ln u|) g\left(\left|\frac{\ln t}{\ln u}\right|\right) \frac{d \ln u}{\ln u}
$$

$$
f \text { and } g \text { are piecewise continuous on }\left[e^{-1}, e\right]
$$

Now, let $\ln v=\frac{\ln t}{\ln u} \rightarrow \ln u=\frac{\ln t}{\ln v}, \ln v \neq 0$

$$
\begin{gathered}
\ln t=\ln u \cdot \ln v \rightarrow \ln u \cdot d \ln v+\ln v \cdot d \ln u=0 \\
\frac{d \ln u}{\ln u}=-\frac{d \ln v}{\ln v}, \quad \ln u \neq 0, \ln v \neq 0 \\
i f u=t \rightarrow \ln v=\frac{\ln t}{\ln t}=1 \quad \rightarrow v=e \\
u=e \rightarrow \ln v=\ln t \quad \rightarrow \quad v=t
\end{gathered}
$$

$(f * g)(|\ln u|)=2 \int_{e}^{t} f\left(\left|\frac{\ln t}{\ln u}\right|\right) g(|\ln v|) \frac{-d \ln v}{\ln v}$

Vol. 4 Issue 2, February - 2020, Pages: 15-28

$$
=2 \int_{t}^{e} g(|\ln v|) f\left(\left|\frac{\ln t}{\ln u}\right|\right) \frac{d \ln v}{\ln v}=(g * f)(|\ln u|)
$$

Proof(2):

$$
\begin{aligned}
& c(f * g)(|\ln t|)=2 c \int_{t}^{e} f(|\ln u|) g\left(\left|\frac{\ln t}{\ln u}\right|\right) \frac{d \ln u}{\ln u} \\
= & 2 \int_{t}^{e} c f(|\ln u|) g\left(\left|\frac{\ln t}{\ln u}\right|\right) \frac{d \ln u}{\ln u}=(c f * g)(|\ln u|)
\end{aligned}
$$

by the same method we can prove $c(f * g)(|\ln u|)=(f * c g)(|\operatorname{lnu}|)$
Proof (3):

$$
\begin{gathered}
f *(g * h)(|\ln t|)=2 \int_{t}^{e} f(|\ln u|)(g * h)\left(\left|\frac{\ln t}{\ln u}\right|\right) \frac{d \ln u}{\ln u}, \quad \ln u \neq 0 \\
=2 \int_{t}^{e} f(|\ln u|)\left(2 \int_{t / u}^{e} g(|\ln u|) h\left(\frac{\ln t / \ln u}{\ln v}\right) \frac{d \ln v}{\ln v}\right) \frac{d \ln u}{\ln u}, \\
\ln v \neq 0 \\
=2 \int_{t}^{e} f\left(\left\lvert\, \ln v=\frac{\ln \tau}{\ln u} \rightarrow\left(2 \int _ { t } ^ { u } g (| \frac { \operatorname { l n } \tau } { \operatorname { l n } u } |) h \left(\frac{\ln \tau}{\ln u}, \ln u \neq 0\right.\right.\right.\right. \\
\left.=2 \int_{t}^{e}\left(2 \int_{\tau}^{e} f(|\ln u|) g\left(\left|\frac{\ln \tau}{\ln u}\right|\right) \frac{d \ln \tau}{\ln u \cdot \ln v}\right) \frac{d \ln u}{\ln u}\right) h\left(\left|\frac{\ln t}{\ln \tau}\right|\right) \frac{d \ln u}{\ln u} \\
=2 \int_{t}^{e}(f * g)(|\ln \tau|) h\left(\left|\frac{\ln t}{\ln \tau}\right|\right) \frac{d \ln \tau}{\ln \tau} \\
=((f * g) * h)(|\ln t|)
\end{gathered}
$$

Proof(4):

$$
\begin{gathered}
f *(g+h)(|\ln t|)=2 \int_{t}^{e} f(|\ln u|)(g+h)\left(\left|\frac{\ln t}{\ln u}\right|\right) \frac{d \ln u}{\ln u} \\
=2 \int_{t}^{e} f(|\ln u|)\left(g\left(\frac{\ln t}{\ln u}\right) \frac{d \ln u}{\ln u}+h\left(\frac{\ln t}{\ln u}\right) \frac{d \ln u}{\ln u}\right) \\
=2 \int_{t}^{e} f(|\ln u|) g\left(\frac{\ln t}{\ln u}\right) \frac{d \ln u}{\ln u}+2 \int_{t}^{e} f(|\ln u|) h\left(\frac{\ln t}{\ln u}\right) \frac{d \ln u}{\ln u} \\
=(f * g)(|\ln t|)+(f * h)(|\ln t|)
\end{gathered}
$$

1. Table of an extension of Al-Zughair integral transform for fundamental

 functions.International Journal of Engineering and Information Systems (IJEAIS)
ISSN: 2643-640X
Vol. 4 Issue 2, February - 2020, Pages: 15-28

Function, $f(x)$	$E Z[f(x)]=\int_{e^{-1}}^{e} \frac{(\ln x)^{\mu}}{x} f(\|\ln t\|) d x=F(\mu)$		Regional of convergence
K k is constant	$=\frac{2 k}{\mu+1}$ if μ is an even number	0 if μ is an odd number	$\mu>-1$
$\begin{aligned} & (\|\ln x\|)^{n} \\ & , n \in R \end{aligned}$	$\begin{aligned} = & \frac{2}{\mu+(n+1)} \\ & \text { if }(\mu+n) \end{aligned}$ is an even number	0 if $(\mu+n)$ is an odd number	$\mu>-(n+1)$
$(\ln (\|\ln x\|))^{n}$	$=\frac{(-1)^{n} 2 * n!}{(\mu+1)^{n+1}}$ if μ is an even number	0 if μ is an odd number	$\mu>-1$
$\sin (\operatorname{aln}(\|\ln x\|))$	$=\frac{-2 a}{(\mu+1)^{2}+a^{2}}$ if $\mu \pm a$ is an even Number	0 if $\mu \pm a$ is an odd number	$\mu>-1$
$\cos (\operatorname{aln}(\|\ln x\|))$	$=\frac{2(\mu+1)}{(\mu+1)^{2}+a^{2}}$ if $\mu \pm a$ is an even number	0 if $\mu \pm a$ is an odd number	$\mu>-1$
$\sinh (\operatorname{aln}(\|\ln x\|))$	$=\frac{-2 a}{(\mu+1)^{2}-a^{2}}$ if $\mu \pm a$ is an even Number	0 if $\mu \pm a$ is an odd number	$\begin{gathered} \|\mu+1\|>a \\ a \in \mathbb{R} \end{gathered}$
$\cosh (\operatorname{aln}(\|\ln x\|))$	$=\frac{2(\mu+1)}{(\mu+1)^{2}-a^{2}}$ if $\mu \pm a$ is an even number	0 if $\mu \pm a$ is an odd number	$\begin{gathered} \|\mu+1\|>a \\ a \in \mathbb{R} \end{gathered}$

2. The table here shows some the derivatives:

if $\boldsymbol{\mu}$ is an even number	
$\boldsymbol{n}=\mathbf{1}$	$2 u(x, 1)-(\mu+1) E Z[u(x,\|\ln t\|)]$
$\boldsymbol{n}=\mathbf{2}$	$-2(\mu+2) u(x, 1)+(\mu+2)(\mu+1) E Z[u(x,\|\ln t\|)]$
$\boldsymbol{n}=\mathbf{3}$	$2 u_{t t}(x, 1)+2(\mu+3)(\mu+2) u(x, 1)-(\mu+3)(\mu+2)(\mu+1) E Z[u(x,\|\ln t\|)]$
$\boldsymbol{n}=\mathbf{1}$	if $\boldsymbol{\mu}$ is an odd number
$\boldsymbol{n}=\mathbf{2}$	$-(\mu+1) E Z[u(x, \ln t)]$
$\boldsymbol{n}=\mathbf{3}$	$-2(\mu+3) u_{t}(x, 1)-(\mu+3)(\mu+2)(\mu+1) E Z[u(x,\|\ln t\|)]$

Example (3.1):

To find $E Z^{-1}\left[\frac{1}{(\mu+3)(\mu+5)}\right]$
We have used the usual method

$$
\frac{1}{(\mu+3)(\mu+5)}=\frac{A}{(\mu+3)}+\frac{B}{(\mu+5)}=\frac{A \mu+5 A+B \mu+3 B}{(\mu+3)(\mu+5)}
$$

$$
A+B=0
$$

$5 A+3 B=1$

$$
\begin{gathered}
A=\frac{-1}{2} \quad, \quad B=\frac{1}{2} \\
E Z^{-1}\left[\frac{1}{(\mu+3)(\mu+5)}\right]=E Z^{-1}\left[\frac{1 / 2}{(\mu+3)}+\frac{-1 / 2}{(\mu+5)}\right] \\
=\frac{1}{4}(\ln t)^{2}-\frac{1}{4}(\ln t)^{4}
\end{gathered}
$$

Now, we will use the convolution method we get:

$$
\begin{gathered}
E Z^{-1}\left[\frac{1}{(\mu+3)(\mu+5)}\right]=E Z^{-1}\left[\frac{1}{(\mu+3)} * \frac{1}{(\mu+5)}\right] \\
=\frac{1}{2}(\ln t)^{2} * \frac{1}{2}(\ln t)^{4}
\end{gathered}
$$

If $f(|\ln u|)=\frac{1}{2}(\ln t)^{2}$ and $g(|\ln t|)=\frac{1}{2}(\ln t)^{4}$

$$
\begin{gathered}
(f * g)(|\ln u|)=2 \int_{t}^{e} \frac{1}{2}(\ln u)^{2} \frac{1}{2}\left(\left|\frac{\ln t}{\ln u}\right|\right)^{4} \frac{d \ln u}{\ln u} \\
=\frac{1}{2}(\ln t)^{4} \int_{t}^{e}(\ln u)^{-3} d \ln u \\
= \\
=\frac{1}{2}(\ln t)^{4}\left[\left.\frac{(\ln u)^{-2}}{-2}\right|_{t} ^{e}\right] \\
= \\
\frac{1}{4}(\ln t)^{2}-\frac{1}{4}(\ln t)^{4}
\end{gathered}
$$

Example (3.2):

To find $E Z^{-1}\left[\frac{1}{(\mu+5)^{2}(\mu+4)}\right]$
We have used the usual method

$$
\begin{aligned}
\frac{1}{(\mu+5)^{2}(\mu+4)} & =\frac{A}{(\mu+5)}+\frac{B}{(\mu+5)^{2}}+\frac{C}{(\mu+4)} \\
& =\frac{A(\mu+5)(\mu+4)+B(\mu+4)+C(\mu+5)^{2}}{(\mu+5)^{2}(\mu+4)}
\end{aligned}
$$

$A+C=0$
$9 A+B+10 C=0$
$20 A+4 B+25 C=1$
$A=-1, B=-1, C=1$

$$
\begin{aligned}
E Z^{-1}\left[\frac{1}{(\mu+5)^{2}(\mu+4)}\right] & =\frac{-1}{(\mu+5)}+\frac{-1}{(\mu+5)^{2}}+\frac{1}{(\mu+4)} \\
= & \frac{-1}{2}(\ln t)^{4}+\frac{1}{2}(\ln t)^{4}(\ln (\ln t))+\frac{1}{2}(\ln t)^{3}
\end{aligned}
$$

Now, we will use the convolution method we get

$$
\begin{gathered}
E Z^{-1}\left[\frac{1}{(\mu+5)^{2}(\mu+4)}\right]=E Z^{-1}\left[\frac{1}{(\mu+5)^{2}} * \frac{1}{(\mu+4)}\right] \\
=\frac{-1}{2}(\ln t)^{4}(\ln (\ln t)) * \frac{1}{2}(\ln t)^{3}
\end{gathered}
$$

If $f(|\ln t|)=\frac{-1}{2}(\ln t)^{4}(\ln (\ln t))$ and $g(|\ln t|)=\frac{1}{2}(\ln t)^{3}$

$$
(f * g)(|\ln t|)=2 \int_{t}^{e} \frac{-1}{2}(\ln u)^{4} \ln ((|\ln u|)) \frac{1}{2}\left((|\ln t|)^{3} \frac{d \ln u}{\ln u}\right.
$$

$$
=-\frac{(\ln t)^{3}}{2} \int_{t}^{e} \ln |\ln u| d \ln u
$$

$$
u=\ln |\ln u| \quad d v=d \ln u
$$

$$
d u=\frac{1}{\ln u} d \ln u \quad v=\ln u
$$

$$
=-\frac{(\ln t)^{3}}{2}\left[\left.\ln u(\ln (|\ln u|))\right|_{t} ^{e}-\int_{t}^{e} d \ln u\right]
$$

$$
=-\frac{(\ln t)^{3}}{4}[-\ln t(\ln (|\ln t|))-1+\ln t]
$$

$$
=\frac{(\ln t)^{4}}{2}(\ln (|\ln t|))+\frac{(\ln t)^{3}}{2}-\frac{(\ln t)^{4}}{2}
$$

Example(3.3):

To solve the PDE by an Extension of Al-Zughair transform

$$
\begin{gathered}
(\ln t) u_{t}(x,|\ln t|)+4 u(x,|\ln t|)= \begin{cases}(\ln t)^{-3}(\ln (|\ln t|)) & \text { if } \mu \text { is an even } n o . \\
(\ln t)^{-5} & \text { if } \mu \text { is an odd no. }\end{cases} \\
u(x, 1)=0
\end{gathered}
$$

If μ is an even number

Take EZ to both sides

$$
\begin{gathered}
2 u(x, 1)-(\mu+1) E Z[u(x,|\ln t|)]+4 E Z[u(x,|\ln t|)]=\frac{-2}{(\mu-2)^{2}} \\
-(\mu+1) E Z[u(x,|\ln t|)]+4 E Z[u(x,|\ln t|)]=\frac{-2}{(\mu-2)^{2}} \\
-(\mu-3) E Z[u(x,|\ln t|)]=\frac{-2}{(\mu-2)^{2}} \\
E Z[u(x,|\ln t|)]=\frac{2}{(\mu-2)^{2}(\mu-3)}
\end{gathered}
$$

Take EZ ${ }^{-1}$ to both sides

$$
u(x,|\ln t|)=E Z^{-1}\left[\frac{2}{(\mu-2)^{2}(\mu-3)}\right]
$$

Now we will get the solution by the convolution method

$$
\begin{gathered}
u(x,|\ln t|)=E Z^{-1}\left[\frac{2}{(\mu-2)^{2}} * \frac{1}{(\mu-3)}\right] \\
=\frac{-1}{2}(\ln t)^{-3}(\ln (|\ln t|)) *(\ln t)^{-4} \\
u(x,|\ln t|)=2 \int_{t}^{e} \frac{-1}{2}(|\ln u|)^{-3}(\ln (|\ln u|))\left(\left|\frac{\ln t}{\ln u}\right|\right)^{-4} \frac{d \ln u}{\ln u} \\
=-(\ln t)^{-4} \int_{t}^{e}(\ln (|\ln u|)) d \ln u \\
u=\ln (|\ln u|) \quad d v=d \ln u \\
d u=\frac{1}{\ln u} d \ln u \quad v=\ln u
\end{gathered}
$$

$$
\begin{aligned}
& =-(\ln t)^{-4}\left[\ln u\left(\left.\ln (|\ln u|)\right|_{t} ^{e}-\int_{t}^{e} d \ln u\right]\right. \\
& =(\ln t)^{-3}(\ln (|\ln t|))-(\ln t)^{-4}[-1+\ln t] \\
& =(\ln t)^{-3}(\ln (|\ln t|))+(\ln t)^{-4}-(\ln t)^{-3}
\end{aligned}
$$

if μ is an odd number

$$
(\ln t) u_{t}(x,|\ln t|)+4 u(x,|\ln t|)=(\ln t)^{-5}
$$

Take EZ to both sides

$$
\begin{gathered}
-(\mu+1) E Z[u(x,|\ln t|)]+4 E Z[u(x,|\ln t|)]=\frac{2}{(\mu-4)} \\
-E Z[u(x,|\ln t|)][(\mu+1)-4]=\frac{2}{(\mu-4)} \\
E Z[u(x,|\ln t|)]=\frac{-2}{(\mu-3)(\mu-4)}
\end{gathered}
$$

Take $E Z^{-1}$ to both sides

$$
u(x,|\ln t|)=E Z^{-1}\left[\frac{-2}{(\mu-3)(\mu-4)}\right]
$$

Now we will get the solution by the convolution method

$$
\begin{gathered}
u(x,|\ln t|)=E Z^{-1}\left[\frac{-2}{(\mu-3)} * \frac{1}{(\mu-4)}\right] \\
=-(\ln t)^{-4} * \frac{1}{2}(\ln t)^{-5} \\
\begin{aligned}
u(x,|\ln t|)= & 2 \int_{t}^{e}-(|\ln u|)^{-4} \frac{1}{2}\left(\left|\frac{\ln t}{\ln u}\right|\right)^{-5} \frac{d \ln u}{\ln u} \\
& =-(\ln t)^{-5} \int_{t}^{e} d \ln u \\
= & -(\ln t)^{-5}[1-\ln t]
\end{aligned}
\end{gathered}
$$

$$
=-(\ln t)^{-5}+(\ln t)^{-4}
$$

Example (2.2.4):

To find the solution of the partial differential equation

$$
\begin{aligned}
& (\ln t)^{2} u_{t t}(x,|\ln t|)+(\ln t) u_{t}(x,|\ln t|)+u(x,|\ln t|) \\
& =\left\{\begin{array}{cc}
\cos x \sin \ln (|\ln t|) & \text { if } \mu \text { is an even no. } \\
\ln (|\ln t|) & \text { if } \mu \text { is an odd no. }
\end{array}\right.
\end{aligned}
$$

if μ is an even number

$$
u(x, 1)=0
$$

Take EZ to both sides

$$
\begin{gathered}
-2(\mu+2) u(x, 1)+(\mu+2)(\mu+1) E Z[u(x,|\ln t|)]+2 u(x, 1) \\
-(\mu+1) E Z[u(x,|\ln t|)]+E Z[u(x,|\ln t|)]=\frac{-2 \cos x}{(\mu+1)^{2}+1} \\
(\mu+2)(\mu+1) E Z[u(x,|\ln t|)]-(\mu+1) E Z[u(x,|\ln t|)]+E Z[u(x,|\ln t|)] \\
=\frac{-2 \cos x}{(\mu+1)^{2}+1} \\
E Z[u(x,|\ln t|)](\mu+1)[(\mu+2)-1]+E Z[u(x,|\ln t|)]=\frac{-2 \cos x}{(\mu+1)^{2}+1} \\
E Z[u(x,|\ln t|)]\left[(\mu+1)^{2}+1\right]=\frac{-2 \cos x}{(\mu+1)^{2}+1} \\
E Z[u(x,|\ln t|)]=\frac{-2 \cos x}{\left[(\mu+1)^{2}+1\right]\left[(\mu+1)^{2}+1\right]}
\end{gathered}
$$

take $E Z^{-1}$ to both sides

$$
u(x,|\ln t|)=E Z^{-1}\left[\frac{-2 \cos x}{\left[(\mu+1)^{2}+1\right]\left[(\mu+1)^{2}+1\right]}\right]
$$

Now, we will get the solution by the convolution method:

$$
\begin{gathered}
u(x,|\ln t|)=E Z^{-1}\left[\frac{-2 \cos x}{\left[(\mu+1)^{2}+1\right]} \cdot \frac{1}{\left[(\mu+1)^{2}+1\right]}\right] \\
=\cos x \operatorname{sinln}(|\ln t|) * \frac{-1}{2} \sin \ln (|\ln t|)
\end{gathered}
$$

Now, we will get the solution by the convolution method:

$$
\begin{gathered}
=2 \int_{t}^{e} \cos x \sin \ln (|\ln u|) \frac{-1}{2} \sin \ln \left(\left|\frac{\ln t}{\ln u}\right|\right) \frac{d \ln u}{\ln u} \\
=-\cos x \int_{t}^{e} \sin \ln (|\ln u|)\left[\sin (\ln (|\ln t|)-(\ln (|\ln u|))] \frac{d \ln u}{\ln u}\right. \\
=-\cos x \int_{t}^{e} \sin \ln (|\ln u|)[\sin \ln (|\ln t|) \cos \ln (|\ln u|) \\
-\operatorname{cosln}(|\ln t|) \operatorname{sinln}(|\ln u|)] \frac{d \ln u}{\ln u} \\
=-\cos x \sin \ln (|\ln t|) \int_{t}^{e} \sin \ln (|\ln u|) \cos \ln (|\ln u|) \frac{d \ln u}{\ln u} \\
+\cos x \cos \ln (|\ln t|) \int_{t}^{e}(\sin \ln (|\ln u|))^{2} \frac{d \ln u}{\ln u} \\
=-\left.\cos x \sin \ln (|\ln t|) \frac{(\sin \ln (|\ln u|))^{2}}{2}\right|_{t} ^{e} \\
+\cos x \cos \ln (|\ln t|) \int_{t}^{e} \frac{1-\cos 2 \ln (|\ln u|)}{2} \frac{d \ln u}{\ln u} \\
=\cos x \frac{(\sin \ln (|\ln t|))^{3}}{2}+\cos x \frac{\cos \ln (|\ln t|)}{2}\left[\ln (|\ln u|)-\left.\frac{\sin 2 \ln (|\ln u|)}{2}\right|_{t} ^{e}\right. \\
=\frac{\cos x}{2}(\sin \ln (|\ln t|))^{3}-\frac{\cos x}{2} \ln (|\ln u|) \cos \ln (|\ln t|) \\
+\frac{\cos x}{2} \sin \ln (|\ln t|)(\cos \ln (|\ln t|))^{2}
\end{gathered}
$$

if μ is an odd number

$(\ln t)^{2} u_{t t}(x,|\ln t|)+(\ln t) u_{t}(x,|\ln t|)+u(x,|\ln t|)=\ln (|\ln t|)$

$$
u_{t}(x, 1)=0
$$

$$
\begin{aligned}
2 u_{t}(x, 1)+(\mu & +2)(\mu+1) E Z[u(x,|\ln t|)]-(\mu+1) E Z[u(x,|\ln t|)] \\
& +E Z[u(x,|\ln t|)]=\frac{-2}{(\mu+1)^{2}} \\
(\mu+2)(\mu+1) & E Z[u(x,|\ln t|)]-(\mu+1) E Z[u(x,|\ln t|)]+E Z[u(x,|\ln t|)] \\
& =\frac{-2}{(\mu+1)^{2}}
\end{aligned}
$$

$$
(\mu+1)[(\mu+2)-1] E Z[u(x,|\ln t|)]+E Z[u(x,|\ln t|)]=\frac{-2}{(\mu+1)^{2}}
$$

$$
\left[(\mu+1)^{2}+1\right] E Z[u(x,|\ln t|)]=\frac{-2}{(\mu+1)^{2}}
$$

$$
E Z[u(x,|\ln t|)]=\frac{-2}{(\mu+1)^{2}\left[(\mu+1)^{2}+1\right]}
$$

take $E Z^{-1}$ to both sides

$$
u(x,|\ln t|)=E Z^{-1}\left[\frac{-2}{(\mu+1)^{2}\left[(\mu+1)^{2}+1\right]}\right]
$$

Now, we will get the solution by the convolution method:

$$
\begin{gathered}
u(x,|\ln t|)=E Z^{-1}\left[\frac{1}{(\mu+1)^{2}} * \frac{-2}{\left[(\mu+1)^{2}+1\right]}\right] \\
=\frac{-1}{2} \ln (|\ln t|) * \sin \ln (|\ln t|) \\
u(x,|\ln t|)=2 \int_{t}^{e} \frac{1}{2} \ln (|\ln u|) \sin \ln \left(\left|\frac{\ln t}{\ln u}\right|\right) \frac{d \ln u}{\ln u} \\
=\int_{t}^{e} \ln (|\ln u|) \sin [\ln (|\ln t|)-\ln (|\ln u|)] \frac{d \ln u}{\ln u} \\
=\int_{t}^{e} \ln (|\ln u|) \sin \ln (|\ln t|) \frac{d \ln u}{\ln u}-\int_{t}^{e} \ln (|\ln u|) \sin \ln (|\ln u|) \frac{d \ln u}{\ln u}
\end{gathered}
$$

$$
\begin{gathered}
u=\ln (|\ln u|) \quad d v=\sin \ln (|\ln u|) \frac{d \ln u}{\ln u} \\
d u=\frac{1}{\ln u} d \ln u \quad v=-\cos \ln (|\ln u|) \\
=\sin \ln (|\ln t|) \int_{t}^{e} \ln (|\ln u|) \frac{d \ln u}{\ln u} \\
-\left[-\left.\ln (|\ln u|) \cos \ln (|\ln u|)\right|_{t} ^{e}+\int_{t}^{e} \cos \ln (|\ln u|) \frac{d \ln u}{\ln u}\right] \\
=\left.\sin \ln (|\ln t|) \frac{(\ln (|\ln u|))^{2}}{2}\right|_{t} ^{e}-\ln (|\ln t|) \cos \ln (|\ln t|)-\left.\sin \ln (|\ln u|)\right|_{t} ^{e} \\
=\frac{-1}{2} \sin \ln (|\ln t|)(\ln (|\ln t|))^{2}-\ln (|\ln t|) \cos \ln (|\ln t|)+\sin \ln (|\ln t|)
\end{gathered}
$$

References:

[1] James C. Robinson, "An Introduction to OrdinaryDifferential Equations", Cambridge University Press, New York, 2004
[2] Tom Archibald, Craig Fraser and Ivor Grattan-Guinness "The History of Differential Equations" European Mathematical society, Volume 1, Issue 2004, [3] Mohammed, A.H., Habeeb, N.A., "AL-Zughair transformation and its Uses for Solving Partial Differential Equations" A thesis of MSc. submitted to the Council of University of Kufa, Faculty of Education for girls, 2017.

