On cub Q-algebra

Habeeb Kareem Abdullah¹ and Mortda Taeh²

Department of Mathematics, University of Kufa <u>habeebk.abdullah@uokufa.edu.iq</u>¹, <u>alnbhanymrtdy05@gmail.com</u>²

Abstract: In this paper, we will introduced new concept of Q-algebra called cub Q-algebra and we have introduced and illustrated several ideas that evaluate their relationship in Q-algebra and we will study some new results of positive implicative and commutative in Q-algebra.

Keywords: Q-algebra, cub Q-algebra

1 Introduction

BCK-algebra and BCI-algebra are two classes of abstract algebras introduced by Y. Imai and K. Iseki [4, 3] In 2001 H.S.Kim([1]) introduced a new notion, known as Q-algebra, which is BCH / BCI/ BCK-algebra generalization. In this paper we examined some important results of the positive implicative, commutative, cub Q-algebra on Q-algebra and we define the binary operation (\land) on Q-algebra and we will clarify the relationship between them.

2 Background

In this section, we recalled the definition of Q-algebra and bounded Q-algebra.

Definition (2.1) [1]

A Q- algebra is a set X with a binary operation * and a constant 0 that fulfilled the following axioms:

1. x * x = 0, $\forall x \in X$. 2. x * 0 = x, $\forall x \in X$. 3. (x * y) * z = (x * z) * y, $\forall x, y, z \in X$.

Remark (2.2)[1]

In a Q-algebra X, we can define a binary relation \leq on X by $x \leq y$ if and only if x * y = 0, $\forall x, y \in X$.

Definition (2.3) [2]

A Q-algebra (X, *, 0) is called bounded if there is an element $\in X$, that satisfies $x \le e, \forall x \in X$. then *e* is said to be a unit .We denoted e * x by x^* , for each $x \in X$ in bounded Q-algebra.

PROPOSITION(2.4) [5]

If X is a bounded Q-algebra then 0 * x = 0, $\forall x \in X$.

3 **Positive Implicative**

In this section we define a binary operation \wedge on a Q-algebra and we define positive implicative of Q-algebra and study the relation between them and some result of positive implicative Q-algebra and study positive implicative of bounded Q-algebra and give some result of them also we study commutative concept of positive implicative Q-algebra.

Definition(3.1)

A Q-algebra (X; *; 0) is called positive implicative if it satisfies:

 $(x * y) * z = (x * z) * (y * z), \forall x, y, z \in X.$

Example(3.2)

Let $X = \{0, a, b, c\}$ be a set with the following table :

*	0	а	b	С
0	0	0	0	0
а	а	0	0	0
b	b	0	0	0
С	С	С	С	0

Then (X;*; 0) is a Q-algebra and it is clear that X is positive implicative Q-algebra.

Remark(3.3)

If X is a Q-algebra we define $x \land y = (x * y) * y$, $\forall x, y \in X$.

PROPOSITION(3.4)

In a positive implicative Q-algebra the following axioms are satisfies $\forall x, y, z \in X$. 1. $x \land y = x * y$ 2. $e \land x = x^*$ 3. $x \land 0 = x$ 4. $x \land x = 0$ 5. $(x \land y) \land z = (x \land z) \land y$ 6. $(x \land y) \land z = (x \land z) \land (y \land z)$ 7. $(y \land x) \land x = y \land x$ 8. $(x \land z) \land (y \land z) = (x \land y) \land (z \land y)$

PROOF

1. $x \wedge y = (x * y) * y$ = (x * y) * (y * y)= (x * y) * 0= x * y2. $e \wedge x = e * x = x^*$ *by*(1) 3. $x \land 0 = x * 0 = x$ *by*(1) 4. $x \wedge x = x * x$ = 0 *by*(1) $5. (x \land y) \land z = (x * y) * z$ = (x * z) * y $= (x \land y) \land z$ $6. (x \land y) \land z = (x \land y) \land z$ by (1) and (x * y) * z = (x * z) * (y * z) $= (x \land z) \land (y \land z)$ (X is positive implactive) Hance $(x \land y) \land z = (x \land z) * (y \land z)$ $7.(y \land x) \land x = (y * x) * x$ = (y * x) * (x * x)= (y * x) $= v \wedge x$ 8. since $(x \land y) \land z = (x \land z) \land y$ by(5)and $(x \land y) \land z = (x \land z) \land (y \land z)$ by(6)and $(x \land z) \land y = (x \land y) \land (z \land y)$ by(6) Hence $(x \land z) \land (y \land z) = (x \land y) \land (z \land y)$

PROPOSITION(3.5)

In positive implicative Q-algebra if $x \leq y$ then the following axioms are hold $\forall x, y, z \in X$.

1. $(y \land x) \land y = 0$ 2. If $x * z \le y$ then $0 \le z * y \quad \forall x, y, z \in X$ 3. $x^* * y = y^*$ 4. y * [(y * x) * y] = y. 5. (z * y) * x = z * y

PROOF

 $1. (y \land x) \land y = (y \land y) \land (x \land y)$ $= 0 \wedge 0$ 2. since (x * z) * y = 0= (x * y) * (z * y)= 0 * (z * y)= 0hence $0 \leq z * y$ $3. x^* * y = (e * x) * y$ = (e * y) * (x * y)= (e * y) * 0= e * y $= v^*$ 4. y * [(y * x) * y] = y * ((y * y) * (x * y))= y * (0 * 0)= y * 0= v5.(z * y) * x = (z * x) * y= (z * y) * (x * y)= (z * y) * 0= z * y= 0

REMARK(3.6)

Positive implicative and bounded Q-algebra are independent concepts as in the following examples.

EXAMPLE(3.7)

Let $X = \{0, a, b, c, d, h\}$ and a binary operation * is defined by

*	0	а	b	С	d	h
0	0	0	0	0	0	0
а	а	0	а	0	0	0
b	b	b	0	0	0	0
С	С	0	С	0	0	С
d	d	d	d	d	0	d
h	h	b	а	0	0	0

then its clear (X; *; 0) is bounded Q-algebra but not positive implicative, since (c * h) * b = c * b

$$= c$$

$$\neq (c * b) * (h * b)$$

$$= c * a$$

$$= 0$$

EXAMPLE(3.8)

Let $X = \{0, 1, 2, 3\}$ and the operation * is as follows.

*	0	a	b	С
0	0	0	0	0
а	а	0	0	а
b	b	b	0	b
С	С	С	С	0

Then (X, *, 0) is a positive implactive Q-algebra , but not bounded Q-algebra Since $\nexists e \in X \ s.t \ x * \ e = 0, \ \forall x \in X$.

PROPOSITION (3.9)

If X is a positive implicative bounded Q-algebra then $\forall x, y, z \in X$ the following rustles hold

 $1. (x \land y) \land x = 0$

 $2. x \wedge e = 0$

3. $((y * z) * (x * z)) \le (y * x)$

4. y * [(y * x)* y] = y.

PROOF

1. $(x \land y) \land x = (x \land x) \land (y \land x)$ = $0 \land (y \land x)$ = 0 (by proposition(3.4), 6)

2. $x \wedge e = x \wedge e$ (by proposition(3.4), 1) = 0

3.
$$((y * z) * (x * z)) * (y * x) = ((y * x) * z) * (y * x)$$
 (X is Positive implicative)
= $((y * x) * (y * x)) * (z * (y * x))$
= $0 * (z * (y * x))$

= 0

4.
$$y * [(y * x) * y] = y * ((y * y) * (x * y))$$

= $y * (0 * (x * y))$
= $y * 0$
= y

PROPOSITION(3.10)

If X is positive implicative bounded Q-algebra and if $x \le y$ then

$1. x * z \le y * z,$	$\forall x, y, z \in X.$
$2.\left((y \ast x) \ast x\right) \le y,$	$\forall x, y \in X$.

PROOF

$$1. (x * z) * (y * z) = (x * y) * z$$

= 0 * z
= 0
$$2. ((y * x) * x) * y = ((y * x) * y) * (x * y)$$

= ((y * x) * y) * 0
= (y * x) * y
= (y * y) * x
= 0 * z
= 0

DEFINITION(3.11)

A Q-algebra (X, *, 0) is said to be commutative if it satisfies $\forall x, y \in X, (x * y) * y = (y * x) * x. \quad s.t (x \neq 0, y \neq 0) \quad (That is x \land y = y \land x)$

EXAMPLE(3.12)

Let $X = \{0, a, b\}$ with the table as follows :

*	0	а	b
0	0	b	а
а	а	0	b
b	b	а	0

Then X is Q-algebra and also is commutative .

REMARK(3.13)

Positive implicative and commutative Q-algebra are independent concepts as in the following example.

EXAMPLE(3.14)

In Example (3.2), X is positive implicative Q-algebra but not commutative since $(c * b) * b = c * b = c \neq 0 = (b * c) * c$ and in example (3.12) X is commutative Q-algebra but not positive implicative since

$$(a * b) * a = b * a$$

= a $\neq (a * a) * (b * a) = 0 * a$ = b

THEOREM(3.15)

If X is commutative positive implicative Q-algebra then $x * y = y * x \quad \forall x, \in X$

PROOF :

Let $x, y \in X$ then since $x \land y = y \land x$ then x * y = y * x

4 cub Q-algebra

In this section, we presented the concept of cub Q-algebra in Q-algebra. And we showed that not every Q-algebra is cub Q-algebra, and gave us some theories, examples, and connections a among them.

Definition(4.1)

A Q-algebra (X, *, 0) is called cub Q-algebra if ($X, \land, 0$) is a Q-algebra.

Example (4.2)

Let $X = \{0, a, b, c\}$ be a Q-algebra with the table :

*	0	а	b	С
0	0	0	0	0
а	а	0	0	а
b	b	b	0	0
С	С	С	С	0

Then (X, *, 0) is Q-algebra and X is cub Q-algebra since

٨	0	а	b	С
0	0	0	0	0
а	а	0	0	а
b	b	b	0	0
С	С	С	0	0

 $(X, \Lambda, 0)$ is Q-algebra.

REMARK (4.3)

In general not every Q-algebra is cub Q-algebra.

EXAMPLE (4.4)

In Example (3.2.2), X is Q-algebra but not cub Q-algebra because $1 \land 1 = (1 * 1) * 1$ = 0 * 1

 $= 2 \neq 0$

THEOREM(4.5)

A Q-algebra X is cub Q-algebra iff 0 * x = 0, $\forall x \in X$. PROOF \Rightarrow Let X be a cub Q-algebra. Then $x \land x = 0$. Thus (x * x) * x = 0, So 0 * x = 0. \Leftarrow Let 0 * x = 0, then $1.x \land x = (x * x) * x$ = 0 * x= 0 2. $x \land 0 = (x * 0) * 0$ = x * 0= x3. $(x \land y) \land z = (x \land z) \land y$ since $(x \land y) \land z = (((x * y) * y) * z) * z$ = (((x * y) * z) * y) * z= (((x * z) * y) * z) * y= (((x * z) * y) * z) * y= $(x \land z) \land y$

COROLLARY (4.6)

If X is a Q-algebra and x * y = x s.t $x \neq y \forall x \in X$ then X is cub Q-algebra . **Proof**:

Let $x, y \in X$, since x * y = x so 0 * y = 0, $\forall y \in X$. Hence X is cub Q-algebra (by above Theorem)

PROPOSITION(4.7)

If X is cub Q-algebra then $0 \land x = 0$, $\forall x \in X$.

PROOF:

Let $x \in X$. Now, $0 \land x = (0 * x) * x$ Since X is cup Q-algebra then 0 * x = 0 (by Theorem(4.5)). Now $0 \land x = (0 * x) * x = 0 * x = 0$ Thus $0 \land x = 0$ **COROLLARY (4.8)** If (X,*,0) is cub Q-algebra then $(X,\land,0)$ is cub Q-algebra.

PROOF:

It's clear by above proposition.

COROLLARY(4.9)

Every bounded Q-algebra is cub Q-algebra.

PROOF

since X is bounded then 0 * x = 0 (by Proposition(2.4))

so X is cub Q-algebra (by Theorem (4.5))

REMARK(4.10)

The converse of Corollary (4.9) is not be true in general as show in the example.

EXAMPLE (4.11)

If $X = \{0, a, b, c\}$ define with table below

*	0	а	b	С
0	0	0	0	0

а	а	0	а	0
b	b	b	0	b
С	С	С	С	0

٨	0	а	b	С
0	0	0	0	0
а	а	0	а	0
b	b	b	0	b
С	С	С	С	0

 $(X, \Lambda, 0)$ is Q-algebra, but not bounded Q-algebra.

THEOREM(4.12)

Let X be a cub Q-algebra. If (X, *, 0) is bounded then $(X, \wedge, 0)$ is bounded.

PROOF

Let (X, *, 0) be bounded with unit e. Now, $x \land e = (x * e) * e$ = 0 * e = 0Thus $(X, \land, 0)$ is bounded.

REMARK(4.13)

the converse of Theorem (4.12) is not true in general as shown in Exam-

ple (4.2), X is bounded cub Q-algebra but not bounded Q-algebra.

The converse of Theorem (4.12) is true in Q-algebra if it is satisfy

 $((x * y) * y) * y = x * y, \forall x, y \in X.$ as The following theorem (4.14).

THEOREM(4.14)

Let X be a cup Q-algebra and ((x * y) * y) * y = x * y, $\forall x, y \in X$. Then (X, *, 0) is bounded if $f(X, \Lambda, 0)$ is bounded.

PROOF ⇒ *by Theorem* (4.12)

 $\leftarrow Let (X, \land, 0) be bounded then$ $x \land e = (x * e) * e = 0$ so (x * e) * e) * e = 0 * eand since (x * e) * e) * e = x * e (from the hypothesis)And also 0 * e = 0 (by Theorem(4.5))Hence x * e = 0 and this leads to (X, *, 0) is bounded Q-algebra.

THEOREM(4.15) :

If (X, *, 0) is positive implicative Q -algebra then $(X, \land, 0)$ is Q-algebra

PROOF:

 $1.x \land x = 0 \qquad by (Proposition(3.4), 3)$ $2.x \land 0 = x \qquad by (Proposition(3.4), 2)$ $3.(x \land y) \land z = (x \land z) \land y$ International Journal of Academic and Applied Research (IJA1-10 ISSN: 2643-9603 Vol. 4 Issue 10, October - 2020, Pages: 3-12

since
$$(x \land y) \land z = (((x * y) * y) * z) * z$$

= $(((x * y) * z) * y) * z$
= $(((x * z) * y) * z) * y$
= $(((x * z) * y) * z) * y$
= $(((x * z) * z) * y) * y$
= $(x \land z) \land y$

REMARK (4.16)

The converse of theorem (4.15) does not true in general as shows in the following example

EXAMPLE(4.17)

Let $X = \{0, a, b\}$ define the binary operation * by

*	0	а	b
0	0	0	0
а	а	0	0
b	b	а	0

Then (X, *, 0) is Q - algebra and also $(X, \wedge, 0)$ is Q - algebra we can show by the table

Λ	0	а	b
0	0	0	0
а	а	0	0
b	b	0	0

Then $X, \Lambda, 0$ is Q-algebra but (X, *, 0) is not positive implicative since

(b * a) * a = a * a= 0 \neq (b * a) * (a * a) = a

THEOREM(4.18)

If (X, *, 0) is positive implicative Q-algebra then $(X, \Lambda, 0)$ is positive implicative Q-algebra.

PROOF:

Since (X, *, 0) is positive implicative Q-algebra then $x \land y = x * y$, $\forall x, y \in X$. then $(X, \land, 0)$ is positive implicative Q-algebra.

REMARK (4.19)

The converse of Theorem (4.18) does not true in general as shows in the following example.

EXAMPLE(4.20)

Let $X = \{0, 1, 2, 3\}$ define the binary operation * by

*	0	1	2	3
0	0	0	0	0
1	1	0	0	0

2	2	1	0	0
3	3	3	3	0

Then (X, *, 0) is Q-algebra and $(X, \wedge, 0)$ is positive implicative as shown in the following table

٨	0	1	2	3
0	0	0	0	0
1	1	0	0	0
2	2	0	0	0
3	3	3	3	0

But (X, *, 0) is not positive implicative Q-algebra.

Since (2 * 1) * 1 = 1 * 1

$$= 0$$

≠ (2 * 1) * (1 * 1)

= 1 * 0

= 1

References

- J.Neggers, S. S. Ahn and H.S. Kim, on Q-algebras, Int. J. Math. Math. Sci. 27 (12) (2001), pp.749-757.
- [2] H.K.Abdullah, H.K.Jawad, New types of Ideals in Q-algebra, Journal university of kerbala, Vol.16 No.4 scientific. 2018.
- [3] Y. Iami and K. Iseki, " On Axiom System of Propositional Calculi XIV " Proc. Japan Acad, 42 (1966) 19-20.
- [4] K. Iseki, " An algebra Relation with Propositional Calculus " Proc. Japan Acad, 42 (1966) 26-29.
- [5] H. K.Jawad , Some Types of Fuzzy Pseudo Ideals of Pseudo Q-algebra ,Thesis , University of Kufa , 2019.