Prime Ideal in Q-Algebra

Habeeb Kareem Abdullah¹ and Mortda Taeh²

¹Department of Mathematics, University of Kufa <u>habeebk.abdullah@uokufa.edu.iq</u> ²alnbhanymrtdy05@gmail.com

Abstract: In this paper, we presented a summary of the definition of prime ideal in Q-algebra and what is related to the generated ideal and the finite \cap – steructer in Q-algebra.

.Keywords: Fuzzy, Prime, Ideal, Q-Algebra

1 Introduction

BCK-algebra and BCI-algebra are two classes of abstract algebras introduced by Y. Imai and K. Iseki [4, 3] In 2001 H.S.Kim([1]) introduced a new notion, known as Q-algebra, which is BCH /BCI / BCK-algebra generalization. Iseki [5], introduced the concept of prime ideal in commutative BCK-algebras and Palasinski[6], generalized this definition for any lower BCK-semi lattices. In this paper, we presented a definition of the generated on Q-algebra with an example that fulfills the definition and some proposition of the generated , as well as the effect of the definition of (Λ) on the generator and some properties that are realized and which are not realized and give some solutions to the proposition that are not realized ,especially when X is commutative bounded Q-algebra, we also presented the definition of the prime ideal in Q-algebra with an example that fulfills the definition and gave a proposition if the number of element of Q-algebra (n), then (n - 1) is always a prime ideal. Likewise, we dealt with the relationship of intersection with prime ideal , as well as the converse when X is a commutative bounded Q-algebra and give an equivalent between the intersection and definition of the prime ideal , then we present the relationship of the prime ideal to the generated. We also presented the definition of the finite \cap – stricter on the Q- algebra of and gave some of its proposition and its relationship to the prime ideal.

2 Background

In this section, we recalled the definitions of Q-algebra, bounded Q-algebra, commutative, and ideal in Q-algebra, and some of the features we need in the paper.

Definition (2.1) [1]

A Q- algebra is a set X with a binary operation * and a constant 0 that fulfilled the following axioms:

1. x * x = 0, $\forall x \in X$. 2. x * 0 = x, $\forall x \in X$. 3. (x * y) * z = (x * z) * y, $\forall x, y, z \in X$.

Remark (2.2)[1]

In a Q-algebra X, we can define a binary relation \leq on X by $x \leq y$ if and only if x * y = 0, $\forall x, y \in X$.

Definition (2.3) [2]

A Q-algebra (X, *, 0) is called bounded if there is an element $\in X$, that satisfies $x \le e, \forall x \in X$. then *e* is said to be a unit .We denoted e * x by x^* , for each $x \in X$ in bounded Q-algebra.

Definition(2.4)[7]

a Q-algebra (X, *, 0) is said to be commutative if it satisfies $\forall x; y \in X, (x * y) * y = (y * x) * x$ such that $x \neq 0, y \neq 0$ (*That is* $x \land y = y \land x$).

Definition (2.5) [8]

Let (X, *, 0) be a Q-algebra and I be a none empty subset of X. Then I is called an ideal of X if for any $x, y \in X$.

1.0 \in *I* 2.*x* * *y* \in *I* and *y* \in *I* imply *x* \in *I*

Proposition(2.6)

Let \tilde{I} be an ideal of a bounded Q-algebra (X, *, 0). If $x \in I$ then $x \land y \in I$, $\forall y \in X$.

Proof:

Let $x \in I$ and $y \in X$ $(x \land y) * x = ((x * y) * y) * x$ = ((x * y) * x) * y = ((x * x) * y) * y = (0 * y) * y = 0 * y = 0Since $0 \in I$ and $x \in I$ then $x \land y \in I$

Corollary(2.7)

If I is an ideal of a commutative Q-algebra (X, *, 0) and $x \in I$, then $y \land x \in I$, $\forall y \in X$.

Proof :

it's clear by above Proposition

Proposition(2.7)

Let (X, *, 0) be a bounded Q-algebra and I be an ideal in Q-algebra then if $e \in I$ then I = X. Proof: Let $x \in X$, since $e \in I$ and $x * e = 0 \in I$ then $x \in I$ (by Definition (2.5)) Hence I = X.

3 Ideal generated by a Set

In this section , we will introduce the definition for the generated ideal in Q-algebra , and some of their properties .

Definition (3.1)

Let (X, *, 0) be a Q-algebra. If $A \subseteq X$, the set $\langle A \rangle$ can be defined as follows : $\langle A \rangle = \cap \{I : I \text{ is an ideal of } X \text{ contain } A \}$ or the least ideal of X containing A, it is called generated by A. If $A = \{x\}$ we call $\langle A \rangle$ generated by x, and we write $\langle A \rangle = \langle x \rangle$.

Example(3.2)

Let $X = \{0, a, b, c, \}$ define the binary operation * on X by the following table :

*	0	а	b	С
0	0	а	b	С
а	а	0	С	b
b	b	С	0	а
С	С	b	а	0

Then (X, *, 0) is a Q-algebra and $\{X, \{0\}, \{0, a\}, \{0, b\}, \{0, c\}\}$ is the set of all ideals of X.

International Journal of Academic and Applied Research (IJAAR) ISSN: 2643-9603 Vol. 4 Issue 10, October - 2020, Pages: 79-87

Let $S1 = \{0, a, b\}$, $S2 = \{b\}$ and $S3 = \{a\}$ be set of X. Then

< S1 >= X $< S2 >= \{0, b\}$ $< S3 >= \{0, a\}$

Proposition(3.3)

Let (X, *, 0) be a bounded Q-algebra and $B \subseteq X$. Then

 $\begin{array}{l} 1.A \subseteq < A > \\ 2. << A >> =< A > \\ 3. if A is ideal then < A >= A and << A >> = A \\ 4. if A \subseteq B then < A > \subseteq < B > \\ 5. < A > \cup < B > \subseteq < A \cup B > \\ 6. if e \in A then < A >= X \end{array}$

PROOF

1. by Definition (3.1)

- 2. Since $\langle A \rangle$ is ideal then $\langle A \rangle = \langle A \rangle$
- 3. by Definition (3.1)
- 4. Let $\in \langle A \rangle$. Since $A \subseteq B$, then $x \in I$ for any I is an ideal containing B,
- so $\in \langle B \rangle$, then $\langle A \rangle \subseteq \langle B \rangle$.
- 5. Since $A \subseteq A \cup B$ then by (4) $\langle A \rangle \subseteq \langle A \cup B \rangle$ and $B \subseteq A \cup B$ then by (4) $\langle B \rangle \subseteq \langle A \cup B \rangle$ Hence $\langle A \rangle \cup \langle B \rangle \subseteq \langle A \cup B \rangle$ 6. Since $e \in A$ then $e \in \langle A \rangle$ by (Definition (3.1)) thus $\langle A \rangle = X$ by (Proposition(2.7))

Proposition(3.4)

Let (X, *, 0) be a bounded Q-algebra then $\langle x \land y \rangle \subseteq \langle x \rangle$

Proof

Let $x \in X$. Since $\langle x \rangle$ is an ideal then $x \land y \in \langle x \rangle$ (by Proposition (2.6)) hanse $\langle x \land y \rangle \subseteq \langle x \rangle$. Corollary (3.5) Let (X, *, 0) be a commutative bounded Q-algebra then $\langle y \land x \rangle \subseteq \langle x \rangle$ Proof: it's clear by above proposition

Remark (3.6)

The converse of Proposition (3,4) is not true in general as shown in the following example.

Example(3.7)

Let $X = \{0, a, b\}$ and a binary operation * is defined by :

*	0	а	b
0	0	0	0
a	а	0	0
b	b	а	0

Then X is a Q-algebra and also commutative, and

 $< a \land b > = < (a * b) * b > = < 0 * b > = < 0 > = \{0\}$

International Journal of Academic and Applied Research (IJAAR) ISSN: 2643-9603 Vol. 4 Issue 10, October - 2020, Pages: 79-87

and $\langle b \rangle = X$ $\langle a \wedge b \rangle \subseteq \langle b \rangle$ but $\langle b \rangle = X \not\subseteq \langle a \wedge b \rangle = \{0\}.$

Corollary (3.8)

Let (*X*,*,0) be a commutative bounded Q-algebra then $\langle x \land y \rangle \subseteq \langle x \rangle \cap \langle y \rangle$ **PROOF** clear by **Proposition (3.4)** and **Corollary (3.5)**.

Remark(3.9)

The converse of Corollary (3.8) is not true in general as shown in the following example.

Example(3.10)

In Example (3.7) since $\langle a \land b \rangle = \langle (a * b) * b \rangle = \langle 0 * b \rangle = \langle 0 \rangle = \{0\}$ and $\langle a \rangle = X \ also \langle b \rangle = X$ $\langle a \rangle \cap \langle b = X$ but $\langle a \rangle \cap \langle b \rangle \not\subseteq \langle a \land b \rangle$

 $\langle x \rangle \cap \langle y \rangle \not\subseteq \langle x \land y \rangle$

The converse of Proposition (3.4) and corollary (3.8) is true in commutative bounded Q-algebra if it satisfy $x * y = x \ s.t \ x \neq y \quad \forall x, y, \in X$ as following Theorems ((3.11), (3.12)).

Theorem(3..11) Let X be a Q-algebra and $x * y = x \ s.t \ x \neq y \ \forall x, y \in X$. Then $\langle x \land y \rangle \geq \langle x \rangle$

Proof

Let $x, y \in X$ $x \land y = (x * y) * y = x * y = x$ then $< x \land y >=< x >$.

Proposition(3.12)

Let X be a commutative bounded Q-algebra and $x * y = x s. t x \neq y \quad \forall x, y \in X$. Then $\langle x \land y \rangle = \langle x \rangle \cap \langle y \rangle s. t x \neq y \quad \forall x, y \in X$

Proof

Let $x, y \in X$ since $\langle x \rangle = \langle x \land y \rangle \subseteq \langle x \rangle \cap \langle y \rangle$ by Corollary(3.8) and Theorem(3.11) and $\langle x \rangle \cap \langle y \rangle \subseteq \langle x \rangle = \langle x \land y \rangle$ hence $\langle x \land y \rangle = \langle x \rangle \cap \langle y \rangle$.

4 Prime ideal

In this section , we presented a definition of the prime ideal and its relationship to generated , as well as the definition of the finite \cap -steructer and gave some proposition of it , as well as its relationship to the prime ideal.

Definition(4.1)

A proper ideal P of a Q-algebra X is said to be Prime ideal, denoted by [P-ideal] if $x \land y \in P$ impels $x \in P$ or $y \in P$ s. $t x \land y \neq 0$ for any $x, y \in X$.

Example(4.2) :

Let $X = \{0, a, b, c\}$ define binary operation * on X by the following table :

*	0	a	b	e	c
0	0	0	0	0	0
a	a	0	a	0	e
b	b	b	0	0	b
e	e	b	0	0	b
с	с	0	с	0	0

Then X is a Q-algebra and $I = \{0, a, c\}$ is prime ideal.

Proposition(4.3)

Let (X, *, 0) be a Q-algebra and if the number of elements in X is equal to n such that $n \ge 3$, then any ideal having to the number n - 1 is a prime ideal. **Proof** Let $x, y \in X$ s. $t x \land y \ne 0$ and $x \land y \in I$

Let $x, y \in X$ s. $t x \land y \neq 0$ and $x \land y \in I$ Since $x \neq y$ then either $x \in I$ or $y \in I$.

Proposition(4.4)

Let P be a P-ideal of commutative bounded Q-algebra (X, *, 0). If $A \cap B \subseteq P$ then $A \subseteq P$ or $B \subseteq P$ for any ideal A, B of X.

Proof

If P is a P-ideal and A, B are ideals of X such that $A \cap B \subseteq P$, suppose that $A \not\subseteq P$, $B \not\subseteq P$, then $\exists x \in A - P$ and $\exists y \in B - P$ then $x \land y \in A$, $x \land y \in B$ (by Proposition (2.6)) So $x \land y \in A \cap B \subseteq P$ then $x \in P$ or $y \in P$ [since P is a P-ideal] is a contradiction, this completes the proof.

Remark(4.5)

The converse of Proposition(4.4) is not true in general as shown in the following example.

Example(4.6)

In Example(3.7) all ideals of X are X and $\{0\}$ Notice that $X \cap \{0\} \subseteq \{0\}$, and $\{0\} \subseteq \{0\}$ but $\{0\}$ is not a P-ideal, since $a \land b = (a * b) * b = 0 * b = 0 \in \{0\}$ but $a \notin \{0\}$ and $b \notin \{0\}$.

Corollary(4.7)

Let (X, *, 0) be a Q-algebra and P be an ideal of X. If P is a prime ideal and $\langle x \rangle \cap \langle y \rangle \subseteq P$ implies $x \in P$ or $y \in P$.

Proof

it's clear by **Proposition(4.4).**

Remark(4.8)

The converse of Corollary(4.7) is not true in general as shown in the following example.

Example(4.9)

In Example (3.7) $< 0 > = \{0\}$ and < a > = < b > = X $< 0 > \cap < a > \subseteq \{0\}$ but $\{0\}$ is not prime ideal.

The converse of Corollary (4.7) is true in commutative bounded Q-algebra if it satisfy x * y = x s.t $x \neq y$ $\forall x, y \in X$ as following theorem ((4.10).

Theorem(4.10)

Let *X* be a commutative bounded Q-algebra and x * y = x s. $t x \neq y \quad \forall x, y \in X$ then P is prime ideal if and only if $\langle x \rangle \cap \langle y \rangle \subseteq P$ implies $x \in P$ or $y \in P$. **Proof** \Rightarrow by Corollary(4.7)

 $\leftarrow \text{Let } x \land y \in P$ $< x \land y \ge P$

since $\langle x \land y \rangle = \langle x \rangle \cap \langle y \rangle$ by **Proposition** (3.11) then $\langle x \rangle \cap \langle y \rangle \subseteq P$ so either $x \in P$ or $y \in P$

Remark(4.11)

If x * y = x s.t $x \neq y \quad \forall x, y \in X$ then Definition(4.1) and Proposition (4.4) are equivalent.

Definition(4.12)

Let X be a Q-algebra then a none empty set F of X is called finite \cap - steructer if $(\langle x \rangle \cap \langle y \rangle) \cap F \neq \phi$, $\forall x, y \in F$.

Example(4.13)

In Example(3.2) if $F = \{0, a, b\}$ then F is finite \cap - steructer since $(\langle a \rangle \cap \langle b \rangle) \cap F \neq \phi$ and $(\langle a \rangle \cap \langle 0 \rangle) \cap F \neq \phi$ and if $F = \{a, b\}$ then F is not finite \cap - steructer since $(\langle a \rangle \cap \langle b \rangle) \cap F = \{0, a\} \cap \{0, b\}) \cap F = \{0\} \cap F = \phi$

Proposition(4.14)

Let (X, *, 0) is Q-algebra. If $0 \in F$ then F is finite \cap – *steructer* **Proof** Let $x, y \in X$. < x > , < y > are ideals then $0 \in < x > , < y >$ then $(< x > \cap < y >) \cap F \neq \phi$ for all $x, y \in F$ hence F is finite \cap – *steructer*.

Remark(4.15)

The converse of Proposition(4.14) is not true in general as shown in the following example.

Example(4.16)

In example (3.2) if $F = \{a, b\}$ then F is a finite \cap - steructer because $\langle a \rangle = \langle b \rangle X$ and $X \cap F = \{a, b\} \neq \phi$ but $0 \notin F$

Corollary(4.17)

If (X, *, 0) is a Q-algebra then X is a finite $\cap -$ steructer. **Proof** since $0 \in X$ and by Proposition(4.14) then X is a finite $\cap -$ steructer.

Proposition(4.18)

Let X be a commutative bounded Q-algebra and x * y = x s.t $x \neq y \quad \forall x, y \in X$ then F is a finite \cap – steructer if $\langle x \land y \rangle \cap F \neq \phi$, $\forall x, y \in F$. **Proof :** International Journal of Academic and Applied Research (IJAAR) ISSN: 2643-9603 Vol. 4 Issue 10, October - 2020, Pages: 79-87

It's clear (by Proposition(3.11) and Definition(4.12)).

Proposition(4.19)

Let X be a commutative bounded Q-algebra and x * y = x s. $t x \neq y \quad \forall x, y \in X$ then F is a finite \cap – steructer if $\langle x \rangle \cap F \neq \phi$, $\forall x \in F$. **Proof** It's clear (by Theorem(3.10) and Definition(4.12))

Proposition (4.20)

Let X be a Q-algebra then if P is prime ideal then F = X - P is a finite \cap - steructer

Proof

Let P be a prime ideal of X and $x, y \in F = X - P$, If $(\langle x \rangle \cap \langle y \rangle) \cap F =$, then $\langle x \rangle \cap \langle y \rangle \subseteq P$ then either $x \in P$ or $y \in P$ (P is prime ideal) and which is contradiction because $x, y \in F$.

Remark(4.21)

The converse of Proposition(4.20) is not true in general as shown in the following example.

Example(4.22)

In Example (3.7) $P = \{0\}$ is an ideal and $F = X - \{0\}$ is a finite \cap - steructer but $\{0\}$ is not prime ideal.

The converse of Proposition (4.20) is true in commutative bounded Q-algebra if it satisfy x * y = x s.t $x \neq y \forall x$, $y \in X$ as following theorem ((4.23)

Proposition (4.23)

Let (X, *, 0) is a commutative bounded Q-algebra and x * y = x s.t $x \neq y \forall x$, $y \in X$ then an a proper ideal P is prime ideal if and only if F = X - P is a finite $\cap -$ steructer

Proof

⇒ by Proposition (4.18) ⇐ suppose that F be a finite \cap - steructer and x, $y \in X$ such that $< x > \cap < y > \subseteq P$. If $x \notin P$ and $y \notin P$ Then $x, y \in F$ and $(< x > \cap < y >) \cap F \neq \phi$. Thus $< x > \cap < y > \nsubseteq P$ and this is a contradiction. Hence either $x \in P$ or $y \in P$.

Corollary(4.24)

Let (X, *, 0) be a commutative bounded Q-algebra and x * y = x s.t $x \neq y \forall x$, $y \in X$ then $\forall z \in X$, $z \neq 0$ there exist a prime ideal P of X, such that $z \notin P$.

Proof

Let $x \in X$ s.t $x \neq 0$ and $P = X - \{x\}$. Then $0 \in P$. If $a * b \in P$ and $b \in P$, then $a \neq x$ and $a \in P$ (by x * y = x) thus P is an ideal and X - P is a finite \cap - steructer thus P is prime ideal (by Proposition(4.23))

References

- [1] J.Neggers, S. S. Ahn and H.S. Kim , on Q-algebras , Int . J . Math . Math. Sci . 27 (12) (2001) ,pp.749-757.
- [2] H.K.Abdullah ,H.K.Jawad, New types of Ideals in Q-algebra, Journal university of Karbala, Vol.16 No.4 scientific. 2018.
- [3] Y. Iami and K. Iseki, " On Axiom System of Propositional Calculi XIV " Proc. Japan Acad, 42 (1966) 19-20.
- [4] K. Iseki, " An algebra Relation with Propositional Calculus " Proc. Japan Acad, 42 (1966) 26-29.
- [5] K. Iseki, On some ideals in BCK-algebras, Math. Seminar Notes 3 (1975), 65-70.
- [6] M. Palasinski, Ideal in BCK-algebras which are lower lattices, Bulletin of the Section of Logic 10 (1981), no. 1, 4850.
- [7] H.K.Abdullah., M.T.Shadhan, cub Q-algebra, to appear.