Fuzzy Magnified Translation QS-ideals of QS-algebras

Dr. Areej Tawfeeq Hameed¹, Dr. Ahmed Hamzah Abed², Akhlas Kadom Abaid³

¹Department of Mathematics, Faculty of Education for Girls, University of Kufa, Iraq. areej.tawfeeq@uokufa.edu.iq1_ areej238@gmail.com ²Department of Mathematics, Faculty of Basic Education, University of Kufa, Iraq.

³Department of Mathematics, Faculty of Education for Girls, University of Kufa, Iraq.

Abstract— Fuzzy magnified translation of QS-subalgebras and fuzzy magnified translation of QS-ideals in QS-algebras are discussed. Relations among fuzzy magnified translations, them are investigated.

Keywords—component; QS-algebra, QS -subalgebras, QS -ideal, Fuzzy QS -subalgebras, Fuzzy QS -ideal, (β, α) -magnified translations of fuzzy QS-subalgebras, (β, α) -magnified translations of fuzzy QS-ideal,

1. INTRODUCTION

Several authors ([8]) have introduced of BCK-algebras as a generalization of the concept of set-theoretic difference and propositional calculus and studied some important properties. K.B. Lee and et al [7]introduced translation fuzzy and fuzzy multiplication of BCK/BCI -algebras. S.M. Mostafa and et al [9] and A.T. Hameed [6], introduced KUS-ideals on KUS-algebras and A.T. Hameed and et al [2], introduced the notion fuzzy QS-ideals of QS-algebras investigated relations among them. A.T. Hameed, and et al ([3-5]) discuss translation and multiplication of fuzzy ideals in some algebras.

In this paper, we discuss (β, α) -magnified translations of fuzzy QS-subalgebras in QS-algebras and we discuss (β, α) -magnified translations fuzzy QS-ideals in QS-algebras. Also, we investigate relations among of fuzzy QS-subalgebra and fuzzy QS-ideals in QS-algebras.

2. Preliminaries

Now, we introduced an algebraic structure of QS-algebra and we give some results and

theorems of it .

Definition 2.1([1]). Let (X; *, 0) be an algebra of type (2,0) with a single binary operation (*). X is called a **QS-algebra** if it satisfies the following identities: for any x, y, $z \in X$,

 $(QS_1): (z * y) * (z * x) = x * y,$ $(QS_2): x * 0 = x,$ $(QS_3): x * x = 0,$ $(QS_4): (x * y) * z = (x * z) * y.$ In X we can define order relation (<

In X we can define order relation (\leq) by : $x \leq y$ if and only if, x * y = 0.

Proposition 2.2([2]). In any QS-algebra (X; *,0), the following properties hold: for all x, y, z \in X;

- a) x * y = 0 and y * x = 0 imply x = y,
- b) (x*y)*x=0*y,
- c) y * x = 0 *imply* 0 * x = 0 * y,
- d) 0*(x*y) = y*x,
- e) 0 * x = 0 implies x = 0,
- f) x = (x * 0) * 0,
- g) (x*y)*0=(x*0)*(y*0).

Definition 2.3([1]) .Let X be a QS-algebra and let S be a nonempty subset of X. S is called a QS-subalgebra of X, if $x * y \in S$, whenever x, $y \in S$.

Definition 2.4([1]). A nonempty subset I of a QS-algebra X is called a QS-ideal of X if it satisfies: for x, y, $z \in X$, (IQS_1) $(0 \in I)$,

 (IQS_2) $(z*y) \in I$ and $(x*y) \in I$ imply $(z*x) \in I$.

Definition 2.5([6]). Let X be a QS-algebra, a fuzzy subset μ in X is called a **fuzzy QS-subalgebra** of X if for all x, $y \in X$, $\mu(x_*y) \ge \min \{\mu(x), \mu(y)\}$.

Definition 2.6([2]). Let X be a QS-algebra, a fuzzy subset μ in X is called a **fuzzy QS-ideal** of X if it satisfies the following conditions:, for all $x, y, z \in X$,

 $(FQS_1) \quad \mu(0) \ge \mu(x),$ (FQS₂) μ (z * x) \geq min { μ (z * y), μ (x * y)}.

3. (β,α)-magnified translations Fuzzy QS-subalgebras of QS-algebra

We shall define the notion of (β, α) -magnified translation fuzzy QS-subalgebras of QS-algebra X and studied its properties as [11].

Definition 3.1. Let μ be a fuzzy subset of a QS-algebra X and let $\alpha \in [0,T]$ and $\beta \in (0, 1]$. A mapping $\mu_{(\beta,\alpha)}^{\mathcal{C}}$: X \rightarrow [0,1] is called a (β,α)-magnified translation of μ if it Satisfies: $\mu_{(\beta,\alpha)}^{\mathcal{C}}(x) = \beta.\mu(x) + \alpha$, for all $x \in X$. **Definition 3.2.** Let X be a QS-algebra, a fuzzy subset μ in X is called a (β , α)-magnified translation fuzzy QS-subalgebra of X if $\mu_{(\beta,\alpha)}^{\mathcal{C}}(x * y) \geq \min\{\mu_{(\beta,\alpha)}^{\mathcal{C}}(x), \mu_{(\beta,\alpha)}^{\mathcal{C}}(y)\}.$ for all x , $y \in X$,

Theorem 3.3. Let μ be a fuzzy QS-subalgebra of QS-algebra X and $\alpha \in [0,T]$, $\beta \in (0,1]$. Then the (β,α) -magnified translation fuzzysubset $\mu_{(\beta,\alpha)}^{C}$ of μ is the (β,α) -magnified translation fuzzy QS- subalgebra of X.

Proof. Assume μ be a fuzzy QS-subalgebra of X and $\alpha \in [0,T]$, $\beta \in (0,1]$, let x, $y \in X$. Then $\mu^{\mathcal{C}}_{(\beta,\alpha)}(x * y) = \beta . \mu(x * y) + \alpha \ge \beta . \min\{\mu(x), \mu(y)\} + \alpha = \min\{\beta . \mu(x), \beta . \mu(y)\} + \alpha$

 $=\min\{\beta.\mu((x)+\alpha,\beta.\mu((y)+\alpha)\}=\min\{\mu^{\mathcal{C}}_{(\beta,\alpha)}(x),\mu^{\mathcal{C}}_{(\beta,\alpha)}(y)\}.$

Hence $\mu^{\mathcal{C}}_{(\beta,\alpha)}$ is a (β,α) -magnified translation fuzzy QS- subalgebra of X. \triangle

Theorem 3.4. Let μ be a fuzzy subset of QS-algebra X such that the (β, α) - magnified translation fuzzy subset $\mu_{(\beta,\alpha)}^{C}$ of μ is a fuzzy QS-subalgebra of X for some $\alpha \in [0,T], \, \beta \in (0,1].$ Then μ is a fuzzy QS-subalgebra of X .

Proof. Assume $\mu_{(\beta,\alpha)}^{\mathcal{C}}$ be a (β,α) -magnified translation fuzzy QS-subalgebra of X for some $\alpha \in [0,T]$, $\beta \in (0,1]$. Let x, $y \in X$, then

 $\beta.\mu(x*y) + \alpha = \mu_{(\beta,\alpha)}^{C}(x*y) \ge \min \{\mu_{(\beta,\alpha)}^{C}(x), \mu_{(\beta,\alpha)}^{C}(y)\}$

 $= \min \{\beta.\mu(x) + \alpha, \beta.\mu(y) + \alpha\} = \min \{\beta.\mu(x), \beta.\mu(y)\} + \alpha$

= β .min{ $\mu(x)$, $\mu(y)$ }+ α and so $\mu(x * y) \ge \min{\{\mu(x), \mu(y)\}}$.

Hence μ is a fuzzy QS-subalgebra of X . \triangle

Definition 3.5([10]). For a fuzzy subset μ of a QS-algebra X, $\alpha \in [0,T]$, $\beta, t \in [0,1]$ with $t \ge \alpha$, let $U_{(\beta,\alpha)}(\mu; t) := \{x \in X \mid t \in X\}$

 $\mu(\mathbf{x}) \ge \underline{\mathbf{t}} - \alpha$ }, where $\beta \neq 0$.

If μ is a fuzzy QS- subalgebra of X, then it is clear that $U_{(\beta,\alpha)}(\mu; t)$ is a QS-subalgebra of X for all $t \in Im(\mu)$ with $t \ge \alpha$. But, if we do not give a condition that μ is a fuzzy QS-subalgebra of X, then $U_{(\beta,\alpha)}(\mu; t)$ is not a QS-subalgebra of X as seen in

the following example.

Example 3.6. by Consider a QS-algebra $X = \{0, a, b, c\}$ with the following Cayley table:

*	0	а	b	с
0	0	а	b	с
а	а	0	с	b
b	b	с	0	а
с	с	b	а	0
0371				

Define a fuzzy subset μ of X by:

Ī	Х	0	а	b	с
	μ	0.8	0.5	0.6	0.5

Define a fuzzy subset λ of X

Х	0	а	b	c
λ	0.7	0.6	0.4	0.3

Then λ is not a fuzzy QS- subalgebra of X since λ (a * b) = 0.3 < 0.4 = min{ λ (a), λ (b)}. For α = 0.1, β = 1 and t = 0.5, we obtain $U_{(\beta,\alpha)}(\lambda; t) = \{0, a, b\}$ which is not a QS- subalgebra of X since $a * b = c \notin U_{(\beta,\alpha)}(\lambda; t)$.

Proposition 3.7. Let μ be a fuzzy subset of a QS-algebra X and $\alpha \in [0,T]$, $\beta \in (0,1]$. Then the (β,α) -magnified translation fuzzy subset $\mu_{(\beta,\alpha)}^{C}$ of μ is a fuzzy QS-subalgebra of X if and only if $U_{(\beta,\alpha)}(\mu; t)$ is a QS-subalgebra of X for all $t \in Im(\mu)$ with $t \ge \alpha$ and $\beta \neq 0$.

Proof. Necessity is clear {assume that $\mu_{(\beta,\alpha)}^{C}$ is a fuzzy QS-algebra by Theorem(4.4), then μ is a fuzzy QS-algebra, by

Definition(4.5) then $U_{(\beta,\alpha)}(\mu; t)$ is a fuzzy QS-sub algebra}. To prove the sufficiency, assume that there exist x, y $\in X$ such that

 $\mu_{(\beta,\alpha)}^{C}(x \ast y) < \gamma \leq \min\{ \mu_{(\beta,\alpha)}^{C}(x), \ \mu_{(\beta,\alpha)}^{C}(y) \}. \text{ Then } \mu(x) \geq \frac{\gamma - \alpha}{\beta} \text{ and } \mu(y) \geq \frac{\gamma - \alpha}{\beta}, \text{ but } \mu(x \ast y) < \frac{\gamma - \alpha}{\beta}. \text{ This shows that } x, y \in U_{(\beta,\alpha)}(\mu; \gamma) \text{ and } x \ast y \notin U_{(\beta,\alpha)}(\mu; \gamma). \text{ This is a contradiction, and so } \mu_{(\beta,\alpha)}^{C}(x \ast y) \geq \min\{ \mu_{(\beta,\alpha)}^{C}(x), \ \mu_{(\beta,\alpha)}^{C}(y) \}, \text{ for all } x, y \in X.$

Hence $\mu_{(\beta,\alpha)}^{C}$ is the (β,α) -magnified translation fuzzy QS-subalgebra of X. \triangle

Theorem 3.8. Let $f: (X; *, 0) \rightarrow (Y; *', 0')$ be a onto homomorphism between QS-algebras X and Y respectively. For every (β, α) magnified translation fuzzy QS-subalgebra μ of X with sup property, $f(\mu)$ is a (β,α)-magnified translation fuzzy QS-subalgebra **Proof:** By definition $\lambda_{(\beta,\alpha)}^{c}(y') = f(\mu_{(\beta,\alpha)}^{c})(y') = \sup_{x \in f^{-1}(y')} \beta \cdot \mu(t) + \alpha$, for all $y' \in Y$ of Y.

 $(\sup \emptyset = 0). We have to prove that \lambda_{(\beta,\alpha)}^{c} (x' * y') = f (\mu_{(\beta,\alpha)}^{c})(x' * y') \ge \min \{\lambda_{(\beta,\alpha)}^{c} (x'), \lambda_{(\beta,\alpha)}^{c} (y')\}, \text{ for all } x', y', z' \in Y.$

Let $f: (X; *, 0) \rightarrow (Y; *', 0')$ be a onto homomorphism of QS-algebras, μ is a (β, α) -magnified translation fuzzy QS-subalgebra of X with sup property and $\lambda_{(\beta,\alpha)}^{C}$ the image of $\mu_{(\beta,\alpha)}^{C}$ under f. For any x', y' \in Y, let $x_0 \in f^{-1}$ (x'), $y_0 \in f^{-1}$ (y') be such that: $f(\mu_{(\beta,\alpha)}^{c}(x_{0}*y_{0}) = \lambda_{(\beta,\alpha)}^{c}(x_{0}*y_{0}) = \sup_{(x_{0}*y_{0})\in f^{-1}(x^{*}y)}\beta \cdot \mu(x_{0}*y_{0}) + \alpha = \sup_{t\in f^{-1}(x^{*}y')}\beta \cdot \mu(t) + \alpha. \text{ Then } \lambda_{(\beta,\alpha)}^{c}(x'*y') = 0$ $sup_{(x_{0}*y_{0})\in f^{-1}(x*y_{0})}\beta\cdot\mu(x_{0}*y_{0})+\alpha \ = \mu_{(\beta,\alpha)}^{C} \ (x_{0}*y_{0})\geq min \ \{ \ \mu_{(\beta,\alpha)}^{C} \ (x_{0}), \ \mu_{(\beta,\alpha)}^{C} \ (y_{0}) \}$ $= \min\{ \sup_{t \in f^{-1}(x')} \beta \cdot \mu(t) + \alpha, \sup_{t \in f^{-1}(y')} \beta \cdot \mu(t) + \alpha \} = \min\{ \lambda^{C}_{(\beta,\alpha)}(x'), \lambda^{C}_{(\beta,\alpha)}(y') \}.$

Hence $\lambda_{(\beta,\alpha)}^{C} = f(\mu_{(\beta,\alpha)}^{C})$ is a (β,α) -magnified translation fuzzy QS-subalgebra of Y. \triangle

Theorem 3.9. An onto homomorphic pre-image of a (β, α) -magnified translation fuzzy QS-subalgebra of QS-algebra is also a (β,α) -magnified translation fuzzy OS-subalgebra of OS-algebra.

Proof: Let $f:(X; *, 0) \rightarrow (Y; *', 0')$ be an onto homomorphism of QS- algebras, λ the (β, α) -magnified translation fuzzy QSsubalgebra of Y and μ the pre-image of λ under f, then $\mu_{(\beta,\alpha)}^{C}(x) = \lambda_{(\beta,\alpha)}^{C}(f(x))$, for all $x \in X$. Since $f(x) \in Y$ and λ is a (β,α) magnified translation fuzzy QS-subalgebra of Y, let x, $y \in X$ such that for any x', y' $\in Y$, since f is onto, then f(x) = x', f(y) = y'. Then $\mu_{(\beta,\alpha)}^{C}(x * y) = \lambda_{(\beta,\alpha)}^{C}(f(x * y)) = \lambda_{(\beta,\alpha)}^{C}(f(x) * f(y)) \ge \min \{\lambda_{(\beta,\alpha)}^{C}(f(x)), \lambda_{(\beta,\alpha)}^{C}(f(y))\} = \min \{\beta, \lambda(x') + \alpha, \beta, \lambda(y') + \alpha\}$ $= \min\{ \mu_{(\beta,\alpha)}^{C}(x), \ \mu_{(\beta,\alpha)}^{C}(y) \}. \text{ Hence } \mu_{(\beta,\alpha)}^{C} \text{ is a } (\beta,\alpha) \text{-magnified translation fuzzy QS-subalgebra of } X. \ \triangle$

4. (β,α) -magnified Translation fuzzy QS-ideals of QS-algebra

We shall define the notion of (β, α) -magnified translation fuzzy QS-ideals, of QS-algebra X and then studied its properties. **Definition 4.1.** Let X be a QS-algebra, a (β,α)-magnified translation fuzzy subset μ of X is called a (β,α)-magnified translation fuzzy QS-ideal of X if it satisfies the following conditions: for all x, y, $z \in X$,

 $(FQS_1) \quad {}_{\mu^{C}_{(\beta,\alpha)}}\left(0\right) \geq {}_{\mu^{C}_{(\beta,\alpha)}}\left(x\right),$ $(FQS_2) \quad {}_{\mu^C_{(\beta,\alpha)}}(z\ast x) \geq min \ \{ {}_{\mu^C_{(\beta,\alpha)}}(z\ast y), \ {}_{\mu^C_{(\beta,\alpha)}}(x\ast y) \} \ .$

Theorem 4.2. Let μ is a fuzzy QS-ideal of a QS-algebra X, then the (β, α) -magnified translation fuzzy QS-ideal $\mu_{(\beta, \alpha)}^{C}$ of μ is a fuzzy QS-ideal of X for all $\alpha \in [0,T]$, $\beta \in (0,1]$.

Proof. Assume μ be a fuzzy QS-ideal of X and let $\alpha \in [0,T], \beta \in [0,1]$. Then for all x, y, $z \in X$. Then

- 1- $\mu_{(\beta,\alpha)}^{C}(0) = \beta.\mu(0) + \alpha \ge \beta.\mu(x) + \alpha = \mu_{(\beta,\alpha)}^{C}(x)$.
- 2- $\mu_{(\beta,\alpha)}^{C}(z * x) = \beta.\mu(z * x) + \alpha \ge \beta.\min\{\mu(z * y), \mu(x * y)\} + \alpha$ $= \min\{\beta,\mu(z*y),\beta,\mu(x*y)\} + \alpha = \min\{\beta,\mu(z*y) + \alpha,\beta,\mu(x*y) + \alpha\}$

 $= \min\{ \mu^{C}_{(\beta,\alpha)}(z \ast y), \ \mu^{C}_{(\beta,\alpha)}(x \ast y) \}.$

Hence $\mu_{(\beta,\alpha)}^{C}$ is a (β,α) -magnified translation fuzzy QS-ideal of X.

Theorem 4.3. Let μ be a fuzzy subset of QS-algebra X such that the (β, α) -magnified translation fuzzy $\mu_{(\beta,\alpha)}^{C}$ subset of μ is a fuzzy QS-ideal of X for some $\alpha \in [0,T]$, $\beta \in (0,1]$. Then μ is a fuzzy QS-ideal of X.

Proof. Assume $\mu_{(\beta,\alpha)}^{C}$ is a (β,α) -magnified translation fuzzy QS-ideal of X for some $\alpha \in [0,T]$, $\beta \in (0,1]$. Let x, y, $z \in X$, we have

$$\begin{split} \beta.\mu(0) &+ \alpha = \mu^{C}_{(\beta,\alpha)}(0) \geq \ \mu^{C}_{(\beta,\alpha)}(x) = \beta.\mu(x) + \alpha \text{ and so} \\ \mu(0) \geq \mu(x) \ . \ \beta.\mu(z*x) + \alpha = \ \mu^{C}_{(\beta,\alpha)}(z*x) \geq \min\{ \ \mu^{C}_{(\beta,\alpha)}(z*y), \ \mu^{C}_{(\beta,\alpha)}(x*y) \} \\ &= \min\{\beta.\mu(z*y) + \alpha, \ \beta.\mu(x*y) + \alpha\} \\ &= \min\{\beta.\mu(z*y), \ \beta.\mu(x*y)\} + \alpha \\ &= \beta. \ \min\{\mu(z*y), \ \mu(x*y)\} + \alpha \\ \mu(z*x) \geq \min\{\mu(z*y), \ \mu(x*y)\}. \ \text{Hence } \mu \text{ is a fuzzy QS-ideal of } X \ . \Box \end{split}$$

Theorem 4.4. For $\alpha \in [0,T]$ and $\beta \in (0,1]$, let $\mu_{(\beta,\alpha)}^{C}$ be the (β,α) -magnified translation fuzzy subset μ of QS-algebra X. Then the following are equivalent:

(1) $\mu_{(\beta,\alpha)}^{C}$ is a (β , α)-magnified translation fuzzy QS-ideal of X.

 $(2) \ \forall t \in Im(\mu) \ , \ t > \alpha \Rightarrow \ U_{(\beta,\alpha)} \ (\mu; t) \ is \ QS-ideal \ of \ X \ .$

Proof. Assume that $\mu_{(\beta,\alpha)}^{C}$ is a (β,α) -magnified translation fuzzy QS-ideal of X and let $t \in Im(\mu)$ be such that $t > \alpha$. Since $\mu_{(\beta,\alpha)}^{C}(0) \ge \mu_{(\beta,\alpha)}^{C}(x)$ for all $x \in X$, we have $\beta.\mu(0) + \alpha = \mu_{(\beta,\alpha)}^{C}(0) \ge \mu_{(\beta,\alpha)}^{C}(x) = \beta.\mu(x) + \alpha \ge t$, for $x \in U_{(\beta,\alpha)}(\mu; t)$. Hence $0 \in U_{(\beta,\alpha)}(\mu; t)$.

Let x, y, $z \in X$, $\beta \neq 0$ such that $(z * y) \in U_{(\beta,\alpha)}(\mu; t)$ and $(x * y) \in U_{(\beta,\alpha)}(\mu; t)$. Then $\mu(z * y) \ge \frac{t - \alpha}{\beta}$ and $\mu(x * y) \ge \frac{t - \alpha}{\beta}$, i.e., $\mu_{(\beta,\alpha)}^{C}(z * y) = \beta \cdot \mu(z * y) + \alpha \ge t$ and $\mu_{(\beta,\alpha)}^{C}(x * y) = \beta \cdot \mu(y * x) + \alpha \ge t$. Since $\mu_{(\beta,\alpha)}^{C}$ is a (β,α) -magnified translation fuzzy QS-

ideal of X, it follows that $\beta.\mu(z*x) + \alpha = \mu_{(\beta,\alpha)}^C(z*x) \ge \min\{\mu_{(\beta,\alpha)}^C(z*y), \mu_{(\beta,\alpha)}^C(x*y)\} \ge t$, that is, $\mu(z*x) \ge \frac{t-\alpha}{\beta}$ so that

 $(z\ast x) \in \ U_{(\beta,\alpha)}(\mu;t) \text{ Therefore } \ U_{(\beta,\alpha)}(\mu;t) \text{ is QS-ideal of } X.$

Conversely, suppose that $U_{(\beta,\alpha)}(\mu; t)$ is QS-ideal of X for every $t \in Im(\mu)$ with $t > \alpha$. If there exists $x \in X$ such that $\mu_{(\beta,\alpha)}^{C}(0) < \lambda \le \mu_{(\beta,\alpha)}^{C}(x)$, then $\mu(x) \ge \frac{\lambda - \alpha}{\beta}$, but $\mu(0) < \frac{\lambda - \alpha}{\beta}$ This shows that $x \in U_{(\beta,\alpha)}(\mu; t)$ and $0 \notin U_{(\beta,\alpha)}(\mu; t)$. This is a contradiction, and so $\mu_{(\beta,\alpha)}^{C}(0) \ge \mu_{(\beta,\alpha)}^{C}(x)$ for all $x \in X$.

Now, assume that there exist x, y, $z \in X$ such that $\mu_{(\beta,\alpha)}^C(z * x) < \gamma \le \min\{\mu_{(\beta,\alpha)}^C(z * y), \mu_{(\beta,\alpha)}^C(x * y)\}$.

Then $\mu(z * y) \ge \frac{\gamma - \alpha}{\beta}$ and $\mu(x * y) \ge \frac{\gamma - \alpha}{\beta}$, but $\mu(z * x) < \frac{\gamma - \alpha}{\beta}$. Hence $(z * y) \in U_{(\beta,\alpha)}(\mu; \gamma)$ and $(x * y) \in U_{(\beta,\alpha)}(\mu; \gamma)$,

but $(z * x) \notin U_{(\beta,\alpha)}(\mu; \gamma)$. This is a contradiction, and therefore as

 $\mu^{C}_{(\beta,\alpha)}(z \ast x) \geq \min \{ \mu^{C}_{(\beta,\alpha)}(z \ast y), \ \mu^{C}_{(\beta,\alpha)}(x \ast y) \}, \text{ for all } x, y, z \in X. \text{ Hence } \mu^{C}_{(\beta,\alpha)} \text{ is a } (\beta,\alpha) \text{-magnified translation fuzzy QS-ideal of X. } \Delta$

In Theorem (5.4(2)), if $t \le \alpha$, then $U_{(\beta,\alpha)}(\mu; t) = X$.

Proposition 4.5. Let μ be a fuzzy QS-ideal of a QS-algebra X and let $\alpha \in [0,T]$, $\beta \in (0,1]$, then the (β,α) -magnified translation fuzzy QS-ideal $\mu_{(\beta,\alpha)}^C$ of μ is a (β,α) -magnified translation fuzzy QS-subalgebra of X.

Proof: Since μ be a fuzzy QS-ideal of a QS-algebra X and let $\alpha \in [0,T]$, $\beta \in (0,1]$, then by Theorem (5.4), the (β,α)-magnified

translation fuzzy QS-ideal $\mu_{(\beta,\alpha)}^{C}$ of X. By Proposition (2.8), for all $\alpha \in [0,T]$, $\beta \in (0,1]$, then the (β,α) -magnified translation fuzzy QS-subalgebra $\mu_{(\beta,\alpha)}^{C}$ of X. Hence by Proposition (4.7), $\mu_{(\beta,\alpha)}^{C}$ is a (β,α) -magnified translation fuzzy QS-subalgebra of QS-algebra X. Δ

Theorem 4.5. Let $f: (X; *, 0) \to (Y; *', 0)$ be a onto homomorphism between QS-algebras X and Y respectively. For every μ (β, α)-magnified translation fuzzy QS-ideal of X with sup property, $f(\mu)$ is a (β, α)-magnified translation fuzzy QS-ideal of Y. Proof: Let $f: (X; *, 0) \to (Y; *', 0')$ be a onto homomorphism of QS-algebras, μ is a (β, α)-magnified translation fuzzy QS-ideal of Y. Proof: Let $f: (X; *, 0) \to (Y; *', 0')$ be a onto homomorphism of QS-algebras, μ is a (β, α)-magnified translation fuzzy QS-ideal of Y. Proof: Let $f: (X; *, 0) \to (Y; *', 0')$ be a onto homomorphism of QS-algebras, μ is a (β, α)-magnified translation fuzzy QS-ideal of X, we have $\mu^{C}_{(\beta,\alpha)}(0) \ge \mu^{C}_{(\beta,\alpha)}(x)$, for all $x \in X$. Note that $0 \in f(0)$, where 0 and 0' are the zero elements of X and Y respectively. Thus $\lambda^{C}_{(\beta,\alpha)}(0) = f(\mu^{C}_{(\beta,\alpha)})(0') = \sup_{ref^{-1}(0)} \beta \cdot \mu(t) + \alpha = \mu^{C}_{(\beta,\alpha)}(0) \ge \mu^{C}_{(\beta,\alpha)}(x)$, for all $x \in X$, which implies that $\lambda^{C}_{(\beta,\alpha)}(0') \ge \sup_{tef^{-1}(0)} \beta \cdot \mu(t) + \alpha = \lambda^{C}_{(\beta,\alpha)}(x')$. For any $x', y', z' \in Y$, let $x_0 \in f^{-1}(x'), y_0 \in f^{-1}(x')$ be such that: $f(\mu^{C}_{(\beta,\alpha)})(z_0 * x_0) = \sup_{tef^{-1}(x^*y_1)} \beta \cdot \mu(t_0 * x_0) + \alpha = \sup_{tef^{-1}(x^*y_1)} \beta \cdot \mu(t) + \alpha$. Then $f(\mu^{C}_{(\beta,\alpha)})(z_0 * x_0) = \lambda^{C}_{(\beta,\alpha)}(z_0 * x_0) = \sup_{tef^{-1}(x^*y_1)} \beta \cdot \mu(t_0 * x_0) + \alpha = \sup_{tef^{-1}(x^*y_1)} \beta \cdot \mu(t) + \alpha$. Then $\lambda^{C}_{(\beta,\alpha)}(z' * x') = \sup_{tef^{-1}(x^*y_1)} \beta \cdot \mu(t) + \alpha$, $\sup_{tef^{-1}(x^*y_1)} \beta \cdot \mu(t) + \alpha$, $u_{(\beta,\alpha)}(x_0 * y_0)$ $= \min\{\sup_{tef^{-1}(x^*y_1)} \beta \cdot \mu(t) + \alpha, \sup_{tef^{-1}(x^*y_1)} \beta \cdot \mu(t) + \alpha\}$ $= \min\{\sum_{tef^{-1}(x^*y_1)} \beta \cdot \mu(t) + \alpha, \sup_{tef^{-1}(x^*y_1)} \beta \cdot \mu(t) + \alpha\}$ $= \min\{\lambda^{C}_{(\beta,\alpha)}(z' * x'), \sum_{tef^{-1}(x^*y_1)} \beta \cdot \mu(t) + \alpha\}$ $= \min\{\lambda^{C}_{(\beta,\alpha)}(z' * x'), \sum_{tef^{-1}(x^*y_1)} \beta \cdot \mu(t) + \alpha\}$ $= \min\{\sum_{tef^{-1}(x^*y_1), \sum_{tef^{-1}(x^*y_1)} \beta \cdot \mu(t) + \alpha\}$ $= \min\{\sum_{tef^{-1}(x^*y_1), \sum_{tef^{-1}(x^*y_1)} \beta \cdot \mu(t) + \alpha\}$ $= \min\{\sum_{tef^{-1}(x^*y_1), \sum_{tef^{-1}(x^*y_1)} \beta \cdot \mu(t) + \alpha\}$ $= \min\{\sum_{tef^{-1}(x^*y_1), \sum_{tef^{-1}(x^*y_1)}$

Theorem 4.6. An onto homomorphic pre-image of a (β, α) -magnified translation fuzzy QS-ideal of QS-algebra X is also a (β, α) -magnified translation fuzzy QS-ideal.

Proof: Let $f: (X; *, 0) \rightarrow (Y; *', 0')$ be an onto homomorphism of QS- algebras, λ the (β, α) -magnified translation fuzzy QS-ideal of Y and μ the pre-image of λ under f, then $\mu_{(\beta,\alpha)}^{C}(x) = \lambda_{(\beta,\alpha)}^{C}(f(x))$, for all $x \in X$. Since $f(x) \in Y$ and λ is a (β, α) -magnified translation fuzzy QS-ideal of Y, it follows that $\beta.\lambda(0') + \alpha \ge \lambda_{(\beta,\alpha)}^{C}(f(x)) = \mu_{(\beta,\alpha)}^{C}(x)$, for every $x \in X$, where 0' is the zero element of Y. But $\beta.\lambda(0') + \alpha = \beta.\lambda(f(0)) + \alpha = \mu_{(\beta,\alpha)}^{C}(0)$ and so $\mu_{(\beta,\alpha)}^{C}(0) \ge \mu_{(\beta,\alpha)}^{C}(x)$, for $x \in X$. Since λ is a (β, α) -magnified translation fuzzy QS-ideal of Y, let $x, y, z \in X$ such that $\mu_{(\beta,\alpha)}^{C}(z * x) = \lambda_{(\beta,\alpha)}^{C}(f(z * x)) = \lambda_{(\beta,\alpha)}^{C}(f(z) *'f(x))$ $\ge \min \{\lambda_{(\beta,\alpha)}^{C}(f(z) *'f(y)), \lambda_{(\beta,\alpha)}^{C}(f(x) *'(f(y)))\} = \min \{\beta.\lambda(z' *'y') + \alpha, \beta.\lambda(x' *'y') + \alpha\}$, for any $x', y', z' \in Y$, since f is onto , then f(x) = x', f(y) = y', f(z) = z'. Then $\mu_{(\beta,\alpha)}^{C}(z * x) \ge \min \{\beta.\lambda(z' *'y') + \alpha, \beta.\lambda(x' *'y') + \alpha\}$

$$= \min \{\beta.\lambda(f(z) * f(y)) + \alpha, \beta.\lambda(f(x) * f(y)) + \alpha \}$$

$$= \min \{\beta.\lambda(f(z*y)) + \alpha, \beta.\lambda(f(x*y)) + \alpha \}$$

$$= \min \{\lambda_{(\beta,\alpha)}^{C} (f(z*y)), \lambda_{(\beta,\alpha)}^{C} (f(x*y)) \}$$

$$= \min \{\mu_{(\beta,\alpha)}^{C} (z*y)), \mu_{(\beta,\alpha)}^{C} (x*y) \}.$$

Since x', y' and z' are arbitrary element of Y, the above result is true for all x, y, $z \in X$. i.e., $\mu^{C}_{(\beta,\alpha)}$ (z * x) $\geq \min\{\mu^{C}_{(\beta,\alpha)}$ (z * y)), $\mu^{C}_{(\beta,\alpha)}$ (x * y)}, for all x, y, $z \in X$. \triangle

Reference

[1] S.S. Ahn and H.S. Kim, (1999), On QS-algebras, Journal Chungcheong Math. Soc., vol.12, pp: 33-41.

- [2] A.T. Hameed, A.A. Alfatlawi and A.K. Alkurdi, (2017), Fuzzy ideals of QS-algebras, International Journal of Algebra, vol.11, no.1, pp:43-52.
- [3] A.T. Hameed and A.K. Alkurdi, (2017), Fuzzy translation and fuzzy multiplications of QS- algebras ,Journal of the University of Karbala, vol.15, no.1, pp:110-123.
- [4] A.T. Hameed and N.Z. Mohammed, (2017), Fuzzy Translation and Fuzzy multiplication of CI-algebras, Journal of the University of Karbala, vol.15, no.1, pp: 43-52.
- [5] A.T. Hameed and N.Z. Mohammed, (2016), Fuzzy Translation and Fuzzy multiplication of Q-algebras, European Academic Research, vol. IV, Issue.1, pp:829-854.
- [6] A.T. Hameed, 2015, Fuzzy ideal of some algebras, PH.D.SC. Thesis, Faculty of Science, Ain Shams University, Egypt.
- [7] K.B. Lee, Y.B. Jun and M.I. Doh, (2009), Translation fuzzy and fuzzy multiplications of BCK/BCI-algebras, Commum. Korean Math. Sco., vol.24, pp: 353–360.
- [8] J. Meng and Y.B. Jun, 1994, BCK-algebras, Kyungmoon Sa Co. Seoul.
- [9] S.M. Mostafa, M. A. Abdel Naby, F. Abdel-Halim and A.T. Hameed, (2013), On KUS-algebra, International Journal of Algebra, vol.7, no. 3, pp: 131 144.
- [10] S.M. Mostafa, A.T.Hameed and N.Z. Mohammed, (2016), Fuzzy α-Translation of KUS-algebras, Journal Al-Qadisiah for pure Science, vol.8, no. 2, pp: 8 – 16.
- [11] S.M. Mostafa, A.T., Hameed and A.H Abed, Magnified Translation fuzzy ideals of KUS –algebras, Journal of Advanced Research in Dynamical and Control Systems, Vol.11, Issue.2, pp:168-181, (2019).