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Abstract: In this work, is an introduction and survey of numerical solution methods for stochastic differential equations. we are 

interested with the solve stochastic differential equations (SDEs) by numerical methods. The solutions will be continuous 

stochastic processes that represent diffusive dynamics, a common modeling assumption for financial systems. These methods are 

based on the truncated Ito- Taylor expansion. In our study we deal with a nonlinear SDE. We include a review of fundamental con-

cepts, a description of elementary numerical methods and the concepts of convergence and order for stochastic differential 

equation solvers. Also we describe applications of SDE solvers to Monte-Carlo sampling for financial pricing of derivatives. 

By using Monte Carlo simulation and exact solution for each method we approximate to numerical solution and obtained from Itos 

formula. approximation solutions are compared with exact solution to show the effectiveness of the numerical methods. 
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1 Introduction 

We are present efficient numerical methods to compute certain quantities depending on the unknown process (δ(t)) with 

algoritms based on simulations on a computer of the other processes, and this is the main objective of this paper. The 

numerical analysis of stochastic differential equations is at its very beginning, so it already appears that this field is not at all 

direct continuation of what has been done for the numerical solving of ordinary differential equations (ODEs). When we 

wants to to compute a quantity which depends on law it is often unuseful to try to approximate the stochastic differential 

equation on  the space of trajectories , this has been confirmed in numerous research and books such as [1-4]. 

Consider the simple population growth model 

dδ 
=   x(t) δ(t), δ(0) = X, (1) 

dt 
 

Where, 

 

δ(t) is the size of the population at time t, and x(t) is the relative rate growth at time t. It might happen that x(t) is not 

completely known, but subject to some random environmental effects, so that we have 

x(t)   =   k(t) + λ, (2) 

where λ is noise and k(t) is non-random function. So the Eq (1) becomes 

dδ 
=    k(t) δ(t) + δ(t).”λ”, (3) 

dt 

Now the general equation can be written as 

   

  
(w)   =   x(t,    (w)) dt + y(t, δ (w))    (w), (4) 

 
   

where x and y are some given functions, and (  ) were standard Gaussian random variables for each t and y(t, x) a 

(generally) time-space dependent intensity factor. This symbolic differential was interpreted as an integral equation 

 

                            δt(w) =    (w) +∫   
 

  
 (s, δs(w))ds+∫   

 

  
 (s, δs(w))    (w)ds;                                      (5) 

for each sample path. For the special case of (5) with x 0, y 1 we see that ξt should be derivative of pure 
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Brownian motion, that is the derivative of a wiener process Wt, thus we suggest that we could write 

(5) alternatively as 

 

 

                     δt(w) =    (w) +∫   
 

  
 (s, δs(w))ds+∫   

 

  
 (s, δs(w))       (w)ds;                             (6) 

 

The problem with this is that a wiener process Wt is nowhere differentiable, so strictly speaking the white noise process t 

does not exist as a conventional function of t. 

 

2 Numerical methods. 

Definition 3.1 Stochastic differential equation has become standard models for financial quantities such as asset prices, 
interest rates, and their derivatives. Unlike deterministic models such as ordinary differ- ential equations, which have a 
unique solution for each appropriate initial condition, SDEs have solutions that are continuous time stochastic processes. 
Methods for the computational solution of stochastic dif- ferential equations are based on similar techniques for ordinary 
differential equations, but generalized to provide support for stochas-tic dynamics. [5] 

 
The simplest effective computational method for the approximation of ordinary differential equations is Euler’s method [6]. 

The Euler- Maruyama method [7] is the analogue of the Euler method for ordinary differential equations. To develop an 

approximate solution on the interval [c, d], assign a grid of points 

 

c =     t0 < t1 < t2 . . . < tn = d 

Approximate u values 

 

w0 < w1 < w2 . . . < wn 

 

will be determined at the respective t points. Given the SDE initial value problem Numerical Solution of Stochastic 

Differential Equations in Finance 

dδ(t)   =   x(t, δ) dt + y(t, δ) dWt (7) 

where, 

δ(c)   =   δc (8) 
 

3 Stochastic Taylor series expansion. 

The Taylor formula plays a very significant role in numerical analysis. We can obtain the approximation of a sufficiently 

smooth function in a neighborhood of a given point to any desired order of accuracy with the Taylor formula. 

Enlarging the increments of smooth functions of Ito processes, it is beneficial to have a stochastic expansion formula with 

correspondent specialities to the deterministic Taylor formula. Such a stochastic Taylor formula has some possibilities. One 

of these possibilities is an Ito-Taylor expansion obtained via Itos formula [1]. 

 

3.1 Ito-Taylor expansion. 

First we can obtain an Ito-Taylor expansion for the stochastic case. Consider 

dδ(t)   =   f (δ(t))d(t) + g(δ(t))dW (t) (9) 

where f and g satisfy a linear growth bound and are sufficiently smooth. 

Now, let  F  be a twice continuously differentiable function of δ(t), then from Itos lemma we have 
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4 MonteCarlo simulation 

In MonteCarlo simulation, we generate a set of suitable multidimensional sample paths say Wˆ(w) = Wˆ1(w), ..., Wˆd(w) on [0, 
T ]. We  generate a large finite set of paths, each labelled by w.  Here the number of paths, say P , must be large enough so 

that,  for example,  any statistical information for the solution  yt that we want  to extract is sufficiently robust.  For  each 
sample path Wˆ(w),  we  generate a sample  path solution yˆ(w) to the stochastic differential equation on [0, T ]. This can often 
only be achieved approximately, by using a truncation of the stochastic Taylor expansion for the solution yon successive 
small subintervals of [0, T ]. Having generated a set of approximate solutions yˆt(wi) at time t∈ [0, T ] for every i for i = 1, ..., 
P , we estimate the expectation Ef (yt) by computing 

 

 

 

 

 
∑ (    )

 

   

 

regarded as a suitable approximation for 

 
Ef (yt)  =

 

f (yt(w))d P (w) (11) 

Now we have to be sample Brownian paths to compute the mean above, or can we choose different paths that will still 

generate the expectation effectively. We discuss the latter case (weak simulation) briefly next.[7] 
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