
International Journal of Academic Information Systems Research (IJAISR)
ISSN: 2643-9026

Vol. 4, Issue 5, May – 2020, Pages: 11-15

www.ijeais.org/ijaisr

11

Deadlock Avoidance Strategy in Concurrent Processing

Khin Po
1
, May Thu Naing

2

1
Faculty of Computer Science, University of Computer Studies, Mandalay, Myanmar

trkhinpo@cumandalay.edu.mm
2
Faulty of IT Support and Maintenance, University of Computer Studies, Mandalay, Myanmar

maythunaing@cumandalay.edu.mm

Abstract: Deadlock can be defined as the permanent blocking of a set of processes. This processes are either competes for the

system resources or communicate with each other. All deadlocks involve conflicting needs for resources by two or more processes.

The most common example of deadlock is the traffic deadlock. The blockage is permanent unless the OS takes some extraordinary

action, such as killing me or more processes or forcing one or more processes to backtrack. There are three general approaches to

dealing with the deadlock: prevention, detection and avoidance. This paper presents the banker’s algorithm that used in deadlock

avoidance strategy.

Keywords—Deadlock, Deadlock prevention, Deadlock detection, Deadlock avoidance, Banker’s algorithm

1. INTRODUCTION

Deadlock may involve reusable resources or consumable

resources. A reusable resource is not depleted or destroyed

by use, such as I/O channel or a region or memory. As an

example of deadlock involving reusable resources, consider

two processes that compete for exclusive access to a disk file

D and a tape drive T. Deadlock occurs if each process holds

one resource and requests the other. When a consumable

resource is acquired by a process, it is destroyed. The

examples include messages and information in IO buffers.

As an example of deadlock involving consumable resources,

they consider the pair of processes. Each process attempts to

receive a message from the other process. And then, it send a

message to the other process. Deadlock occurs if the

receiving process is blocked [8].

 There is no single effective strategy that can have

deal with all types of deadlock. Three most important

approaches that have been developed: prevention, avoidance

and detection. A useful tool in characterizing the allocation

of resources to processes is the resource allocation graph.

Three conditions of policy must be present for a deadlock to

be possible: Mutual exclusion, Hold and wait and No

preemption and for deadlock to actually take place, a fourth

condition is required, Circular wait.

 Deadlock prevention guarantees that deadlock will

not occur, by assuring that one of the necessary conditions

for deadlock is not met. Deadlock detection is needed if the

OS is always willing to grant resource requests; periodically,

the OS must cheek for deadlock and take action to break the

deadlock. Deadlock avoidance involves the analysis of each

new resource request to determine if it could lead to

deadlock and granting it only if deadlock is not possible.[7]

2. RELATED WORKS

This paper focus on the problem of deadlock avoidance.

There are quite a lot research papers devote to deadlock

avoidance. A deadlock avoidance algorithm is proposed for a

class of Petri net models formed for flow shop

manufacturing where a set of sequential processes are

executed without alternating the order of using resources in

each case [2]. The algorithm controls the input flowing of

new tokens in a local area, ensuring that token evolutions in

system are always possible. Abdallah in [4] use structure

theory of Petri nets to develop efficient deadlock prevention

and deadlock avoidance methods for FMS. Naiqi Wu et al

point out that, if an Automated Manufacturing System(AMS)

operates at the deadlock boundary, i.e., under the maximally

permissive control policy, it will not be deadlocked but a

blocking(the process is stopped temporarily, and will go on

after a period of time) may occur more likely. Wu presents

an AMS that works near but not at the deadlock boundary in

order to gain the highest productivity [5]. For the first time

Wu presents such a policy: Liveness-policy. Without being

too conservative, it can effectively reduce or even eliminate

the blocking possibility that exists under a maximally

permissive control policy.

Ajoy K.Datta Sukumar GhoshTair-Shian Chou [1]

present an algorithm for deadlock avoidance in a resource

sharing environment with multiple types of resources, where

the maximum claims of the individual processes are

unknown a priori. A new copy of process ordering is

introduced in place of resource ordering.

3. DEADLOCK

Four conditions of policy must be present for a deadlock:

1. Mutual exclusion: Only one process may use a resources

at a time. No process may access a resource unit that has

been allocated to another process.

2. Hold and wait: A process may hold allocated resources

while awaiting assignment of other resources.

3. No preemption : No resource can be forcibly removed

from a process holding it.

http://www.ijeais.org/ijaisr
https://www.sciencedirect.com/science/article/pii/0020025588900187?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/0020025588900187?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/0020025588900187?via%3Dihub#!

International Journal of Academic Information Systems Research (IJAISR)
ISSN: 2643-9026

Vol. 4, Issue 5, May – 2020, Pages: 11-15

www.ijeais.org/ijaisr

12

4. Circulate wait: A closed chain of processes exists, such

that each process holds at least one resource needed by the

next process in the chain.[7]

Three general approaches exist for dealing with

deadlock. First, the deadlock is made unreachable. It is done

by locking the resource. The allocated resource will be

blocked and none other can use that resource. The prevention

can be done if the resources availability prior is known.

Second, different protocols or algorithms are used to avoid

deadlock. All protocols are on assumption that circular

dependency is absent. And also, one can avoid deadlock by

making the appropriate dynamic choices based on the current

state of resource allocation. [6] Third, one can attempt to

detect the presence of deadlock (conditions, through 4 hold)

and take action to recover.

For example in gaming system if deadlock may come

once in year it may hang it will not be a serious problem by

rebooting system it can be overcome.

Different approaches to avoid deadlock:

1. Statically break circular wait.

This will reduce the resource use and concurrency will be

reduced. The programmer has to check all the situation of

circular wait and he has to eliminate it.

2. Release some resources and go back to previous state.

This can be done in databases. It is not applicable to real

time embedded systems. If done then timely response can’t

be provided.

3. Dynamically allocating the resources which are free will

not give efficient resource allocation [3].

Different deadlock avoidance models are:

1. Dijkstra’s Banker’s algorithm

2. Adequate Protocol

3. Basic Protocol

4. Efficient Protocol

5. K-Efficient Protocol

6. Live Protocol

 In deadlock avoidance, employs to access the

possibility Banker’s algorithm that deadlock could occur

and acting accordingly. Thus this approach differs from

deadlock prevention. With deadlock detection, requested

resources are granted to processes whenever possible.

Periodically, the OS performs an algorithm that allows it to

detect the circular wait condition described earlier in

condition (4).

1. Banker’s algorithm

The strategy of resource allocation denial, referred to the

banker’s algorithm. The name was chosen because the

algorithm would be used in a banking system to ensure that

the bank never allocates its available case such that it can no

longer satisfy the needs. A deadlock avoidance policy

refuse to start a new process if its resource requirements

might lead to deadlock. A process is only started if the

maximum claims of all current processes plus those of a new

process can be met.

 Thus, after processing, one can define the system

whether the system is safe or safe state. If the state of the

system avoids the deadlock, this state is called a safe state

and deadlock state is an unsafe state. The state consists of the

two vectors, Resource and Available, and the two matrices,

claim and Allocation. A safe state is one in which there is at

least one sequence of resource allocations to processes that

does not result in a deadlock (i.e all of the process can be run

to completion). An unsafe state is, of course a state that is

not safe [7].

 The following example illustrates these concepts.

(a) Determination of a safe state.

 R1 R2 R3

P1 3 2 2

P2 6 1 3

P3 3 1 4

P4 4 2 2

 Claim Matrix C

 R1 R2 R3

P1 1 0 0

P2 6 1 2

P3 2 1 1

P4 0 0 2

 Allocation Matrix A

 R1 R2 R3

P1 2 2 2

P2 0 0 0

P3 1 0 3

P4 4 2 0

 C-A=Needs

R1 R2 R3

9 3 6

Resources vector R

R1 R2 R3

0 1 1

http://www.ijeais.org/ijaisr

International Journal of Academic Information Systems Research (IJAISR)
ISSN: 2643-9026

Vol. 4, Issue 5, May – 2020, Pages: 11-15

www.ijeais.org/ijaisr

13

 Available vector V

Figure 1. (a) Initial State

 R1 R2 R3

P1 3 2 2

P2 0 0 0

P3 3 1 4

P4 4 2 2

 Claim Matrix C

 R1 R2 R3

P1 1 0 0

P2 6 1 2

P3 2 1 1

P4 0 0 2

 Allocation Matrix A

 R1 R2 R3

P1 2 2 2

P2 0 0 0

P3 1 0 3

P4 4 2 0

 C-A=Needs

R1 R2 R3

9 3 6

Resources vector R

R1 R2 R3

6 2 3

 Available vector V

Figure 1. (b) P2 runs to completion

 R1 R2 R3

P1 0 0 0

P2 0 0 0

P3 3 1 4

P4 4 2 2

 Claim Matrix C

 R1 R2 R3

P1 1 0 0

P2 6 1 2

P3 2 1 1

P4 0 0 2

 Allocation Matrix A

 R1 R2 R3

P1 2 2 2

P2 0 0 0

P3 1 0 3

P4 4 2 0

 C-A=Needs

R1 R2 R3

9 3 6

Resources vector R

R1 R2 R3

7 2 3

 Available vector V

Figure 1. (c) P1 runs to completion

 R1 R2 R3

P1 0 0 0

P2 0 0 0

P3 0 0 0

P4 4 2 2

 Claim Matrix C

http://www.ijeais.org/ijaisr

International Journal of Academic Information Systems Research (IJAISR)
ISSN: 2643-9026

Vol. 4, Issue 5, May – 2020, Pages: 11-15

www.ijeais.org/ijaisr

14

 R1 R2 R3

P1 0 0 0

P2 0 0 0

P3 0 0 0

P4 0 0 2

 Allocation Matrix A

 R1 R2 R3

P1 0 0 0

P2 0 0 0

P3 0 0 0

P4 4 2 0

 C-A=Needs

R1 R2 R3

9 3 6

Resources vector R

R1 R2 R3

9 3 4

 Available vector V

Figure 1. (d) P3 runs to completion

Is this a safe state? To answer this question, we ask an

intermediate question: Can any of the four processes be run

to completion with the resource available? Clearly, this is not

possible for P1, which has only 1 unit of R1 and requires

more units of R1, 2 units of R2 and 2 units of R3. However,

by assigning one unit of R3 to process P2, P2 has its

maximum required resources allocated and can run to

completion. Let us assume that this is accomplished. Thus

P2 runs to completion and its resources can be returned to

the available vector V. This state is shown in Figure 1(b).

According to this stage, each of the remaining processes

could be completed. For example, process P1 which needs 2

units of R1, 2 units of R2 and 2 units of R3. There are in

available vector 6 units of R1, 2 units of R2 and 3 units of

R3. Therefore, P1 can run be completion. This state is shown

in Figure 1 (c). Next we can complete P3 (Figure 1(d)).

Finally, we can complete all processes. The state is safe

state.

(b) Determination of an unsafe state.

Now consider the state defined in figure 1. Suppose P1

makes a request for one additional unit of R1 and one

additional unit of R3. If we assume that the request is

granted, we are left in the figure. Is this a safe state? The

answer is no, because each process unit need at least are

additional unit of R1, and there are none available. Thus, on

the basis of deadlock avoidance, the request by P1 should be

denied and P1 should be blocked.

 R1 R2 R3

P1 3 2 2

P2 6 1 3

P3 3 1 4

P4 4 2 2

 Claim Matrix C

 R1 R2 R3

P1 1 0 0

P2 5 1 1

P3 2 1 1

P4 0 0 2

 Allocation Matrix A

 R1 R2 R3

P1 2 2 2

P2 0 0 0

P3 1 0 3

P4 4 2 0

 C-A=Needs

R1 R2 R3

9 3 6

Resources vector R

R1 R2 R3

1 1 2

 Available vector V

Figure 2. (a) Initial State

http://www.ijeais.org/ijaisr

International Journal of Academic Information Systems Research (IJAISR)
ISSN: 2643-9026

Vol. 4, Issue 5, May – 2020, Pages: 11-15

www.ijeais.org/ijaisr

15

 R1 R2 R3

P1 3 2 2

P2 6 1 3

P3 3 1 4

P4 4 2 2

 Claim Matrix C

 R1 R2 R3

P1 2 0 1

P2 5 1 1

P3 2 1 1

P4 0 0 2

 Allocation Matrix A

 R1 R2 R3

P1 1 2 1

P2 1 0 2

P3 1 0 3

P4 4 2 0

 C-A=Needs

R1 R2 R3

9 3 6

Resources vector R

R1 R2 R3

0 1 1

 Available vector V

Figure 2. (b) P1 request one unit

4. CONCLUSION

Deadlock is permanent because none of the events is

ever triggered. Unlike other problems in concurrent process

management , there is no efficient solution in the general

case. There is no single effective strategy that can deal with

all types of deadlock. If the detection and prevention will

take more time then it will not be efficient. This paper

presented Banker’s algorithm that one of the solution for

deadlock avoidances with examples.

6. References

[1] Ajoy K.Datta Sukumar Ghosh Tair-Shian Chou, A New

algorithm for deadlock avoidance, Information Sciences,

volume 46, issues 1–2, October–November 1988, pages 47-

72

[2] Banaszak, Z.A.; Krogh, B.H. Deadlock avoidance in

flexible manufacturing systems with concurrently competing

process flows[J]. IEEE Transactions on Robotics and

Automation, 1990, 6(6), 724 –734.

[3] Cesar Sanchez, Henny B. Sipma, and Zohar Manna, “A

Family of Distributed Deadlock Avoidance Protocols and

their Reachable State Spaces”, Computer Science

Department.

[4] I.BenAbdallah ; H.ElMaraghy. Deadlock Prevention and

Avoidance in FMS:A Petri Net-Based Approach[J].

International Journal of Advanced Manufacturing

Technology, 1998, 16(1).

[5] Naiqi Wu, MengChu Zhou. Avoiding deadlock and

reducing starvation and blocking in automated

manufacturing systems[J]. IEEE Transactions on Robotics

and Automation, 2001, 17(5), 658 –669.

[6] Prashant.H, Raju.Hand Santosh.K, “A Study on Different

Deadlock Avoidance Strategies in Distributed Real Time

Embedded Systems”, International Journal on Emerging

Technologies , ICRIET-2016,pp. 244-247

 [7] William Stallings, Operating Systems internals and

design principles, seventh edition.

[8]https://en.m.wikipedia.org/wiki/Deadlock

http://www.ijeais.org/ijaisr
https://www.sciencedirect.com/science/article/pii/0020025588900187?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/0020025588900187?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/0020025588900187?via%3Dihub#!
https://www.sciencedirect.com/science/journal/00200255
https://www.sciencedirect.com/science/journal/00200255/46/1

