Double Sequence Space of Fuzzy Real Numbers of Paranormed Type Defined By Double Orlicz Functions

Alaa Fawzi Dabbas* and Ali Hussein Battor
Department of Mathematics, Faculty of Education for Girls University of Kufa, Najaf - Iraq
E-mail: lionwhite812@gmail.com*

Abstract

Through this paper, we are using dissimilar features of convergent, null and bounded double sequence space of fuzzy real numbers defined by a double Orlicz function, we search some of their features such as completeness, solidness, symmetricity, etc.

Keywords: Solid space, symmetric space, fuzzy real numbers, completeness.

1. INTRODUCTION

The concept of fuzzyness is widely implementation in many branches of Engineering and Technology. In our study, a double sequence is denoted by $\left(\mathfrak{X}_{s, r}, \mathfrak{M}_{5, r}\right)$,(a double infinite array of elements $\left(\mathfrak{X}_{5, r}\right),\left(\mathfrak{M}_{\mathfrak{s}, \mathfrak{r}}\right)$, where each $\left(\mathfrak{X}_{5, r}\right),\left(\mathfrak{M}_{5, r}\right)$ is a fuzzy real numbers).

The primary studies on double sequences may be found in Bromwich [Bro 3]. Thereafter, it was searched by Hardy [Har 4], Moricz [Mor 5], Basarir and Sonalcan [Bas 6], Sarma [Sar 7], Tripathy and Sarma [Tri,Sar 8] and other scholars. In [Har 4], Hardy studied the opinion of regular convergence for double sequence.

The sense of paranormed double sequences was presented by Nakano [Nak 9], Simmons [Sim 10] at the first stage, after than, many other writers introduced this topic.

Neamah and Hasan [Nea1,Has2] there refers to a double Orlicz function is a function $\Upsilon:[0, \infty) \times[0, \infty) \rightarrow$ $[0, \infty) \times[0, \infty)$ such that $\Upsilon(\mathfrak{X}, \mathfrak{M})=\left(\Upsilon_{1}(\mathfrak{X}), \Upsilon_{2}(\mathfrak{M})\right)$, where $\Upsilon, \Upsilon_{1}, \Upsilon_{2}$ are Orlicz functions and $\Upsilon_{1}:[0, \infty) \rightarrow[0, \infty)$ and $\Upsilon_{2}:[0, \infty) \rightarrow[0, \infty)$,
this functions are continuous, non- decreasing ,even, convex and satisfy the following conditions
i) $\Upsilon_{1}(0)=0, \quad \Upsilon_{2}(0)=0 \Rightarrow \Upsilon(\mathfrak{X}, \mathfrak{M})=\left(\Upsilon_{1}(0), \Upsilon_{2}(0)\right)=(0,0)$,
ii) $\Upsilon_{1}(\mathfrak{X})>0, \Upsilon_{2}(\mathfrak{M})>0 \Rightarrow \Upsilon(\mathfrak{X}, \mathfrak{M})=\left(\Upsilon_{1}(\mathfrak{X}), \Upsilon_{2}(\mathfrak{M})\right)>(0,0)$,
for $\mathfrak{X}>0, \mathfrak{M}>0$, we mean by $(\mathfrak{X}, \mathfrak{M})=\left(\mathfrak{X}_{\mathfrak{s}, \mathfrak{r}}, \mathfrak{M}_{\mathfrak{5}, \mathfrak{r}}\right)>(0,0)$, that $\Upsilon_{1}(\mathfrak{X})>0, \Upsilon_{2}(\mathfrak{M})>0$,
iii) $\Upsilon_{1}(\mathfrak{X}) \rightarrow \infty, \Upsilon_{2}(\mathfrak{M}) \rightarrow \infty$ as $\mathfrak{X}, \mathfrak{M} \rightarrow \infty$, then
$\Upsilon(\mathfrak{X}, \mathfrak{M})=\left(\Upsilon_{1}(\mathfrak{X}), \Upsilon_{2}(\mathfrak{M})\right) \Longrightarrow(\infty, \infty)$ as $(\mathfrak{X}, \mathfrak{M}) \rightarrow(\infty, \infty)$, we mean by
$\Upsilon(\mathfrak{X}, \mathfrak{M}) \rightarrow(\infty, \infty)$, that $\quad \Upsilon_{1}(\mathfrak{X}) \rightarrow \infty, \quad \Upsilon_{2}(\mathfrak{M}) \rightarrow \infty$.
We refer to the set of all closed and bounded intervals $X=\left[x_{1}, x_{2}\right]$ on the real line \mathbb{R} by symbol \mathcal{D}.

$$
\begin{gathered}
\text { For } X=\left[x_{1}, x_{2}\right] \in \mathcal{D} \text { and } Y=\left[y_{1}, y_{2}\right] \in \mathcal{D} \text { and } Z=\left[z_{1}, z_{2}\right] \in \mathcal{D} \text { and } \quad W=\left[w_{1}, w_{2}\right] \in \mathcal{D} \text {, defined } \\
\qquad d((X, Y),(Z, W))=\max \left[\left(\left|x_{1}-y_{1}\right|,\left|x_{2}-y_{2}\right|\right),\left(\left|z_{1}-w_{2}\right|,\left|z_{1}-w_{2}\right|\right)\right] .
\end{gathered}
$$

It is recognized that (\mathcal{D}, d) is a complete metric space .
The following information is taken from [Sar11]
A fuzzy number \mathcal{H} is a fuzzy set on the real axis, i.e., a mapping $\mathcal{H}: \mathbb{R} \rightarrow \mathcal{f}(=[0,1])$ associating each real number v with its membership rank $\mathcal{H}(v)$, satisfies the following conditions :

1) The mapping \mathcal{H} is convex if $\mathcal{H}(v) \geq \mathcal{H}(s) \wedge \mathcal{H}(a)=\min \{\mathcal{H}(s), \mathcal{H}(a)\}$, where $\mathrm{s}<v<a$.
2) The mapping \mathcal{H} is normal if there exists $v_{0} \in \mathbb{R}$ such that $\mathcal{H}\left(v_{0}\right)=1$,
3) The mapping \mathcal{H} is upper-semi continuous if, in the regular topology of $\mathbb{R}, \mathcal{H}^{-1}([0, c+\epsilon))$ is open, for all $\in \mathfrak{f}, \epsilon>0$.
4) The closure of $\{v \in \mathbb{R}: \mathcal{H}(v)>0\}$, denoted by $[\mathcal{H}]^{0}$, is compact .
5) The mapping \mathcal{H} is called non-negative if $\mathcal{H}(v)=0$, for all $v<0$. The set of all non-negative fuzzy real numbers is denoted by $\mathbb{R}^{*}(f)$.

For $0<\alpha \leq 1$, The α-level set $[\mathcal{H}]^{\alpha}$, of the fuzzy real number \mathcal{H}, defined by

$$
[\mathcal{H}]^{\alpha}=\{v \in \mathbb{R}: \mathcal{H}(v) \geq \alpha\} .
$$

The set of all upper-semi-continuous, natural, convex fuzzy real numbers is denoted by $\mathbb{R}(f)$ and we say the number belongs to $\mathbb{R}(f)$ throughout the paper, by a fuzzy real number .

Let $\bar{d}: \mathbb{R}^{2}(f) \times \mathbb{R}^{2}(f) \rightarrow \mathbb{R}$ be defined by

$$
\bar{d}((X, Y),(Z, W))=\sup _{0 \leq \alpha \leq 1} d\left(\left([X]^{\alpha},[Y]^{\alpha}\right),\left([Z]^{\alpha},[W]^{\alpha}\right)\right)
$$

Then, \bar{d} defines a metric on $\mathbb{R}^{2}(f)$.

2. DEFINITION AND PRELIMINARES

Let $\mathfrak{X}=\left(\mathfrak{X}_{5, r}\right), \mathfrak{B}=\left(\mathfrak{M}_{5, r}\right)$ be double sequence. A double sequences $(\mathfrak{X}, \mathfrak{M})=\left(\mathfrak{X}_{5, r}, \mathfrak{M}_{5, r}\right)$ of fuzzy real numbers is said be a convergent in prin- gsheim's sense to a fuzzy real numbers (ℓ_{1}, ℓ_{2}), if for every $\epsilon>0$, there exists $\mathfrak{s}_{0}=\mathfrak{s}_{0}(\epsilon), \mathfrak{r}_{0}=$ $\mathfrak{r}_{0}(\epsilon) \in \mathbb{N}$ such that $\bar{d}\left(\left(\mathfrak{X}_{\mathfrak{s}, \mathfrak{r}}, \ell_{1}\right),\left(\mathfrak{M}_{\mathfrak{s}, \mathfrak{r}}, \ell_{2}\right)\right)<\epsilon$ for all $\mathfrak{s} \geq \mathfrak{s}_{0}, \mathfrak{r} \geq \mathfrak{r}_{0}$, where $\bar{d}\left(\mathfrak{X}_{\mathfrak{s}, \mathfrak{r}}, \ell_{1}\right)<\epsilon$ and $\bar{d}\left(\mathfrak{M}_{\mathfrak{s}, \mathfrak{r}}, \ell_{2}\right)<\epsilon$. A double sequence $(\mathfrak{X}, \mathfrak{M})=\left(\mathfrak{X}_{5, \mathfrak{r}}, \mathfrak{M}_{\mathfrak{s}, \mathfrak{r}}\right)$ is said to be regularly converge if it converges in the pringsheim's sense and the below limits will be occur :

$$
\begin{array}{ll}
\lim _{\mathfrak{s} \rightarrow \infty} \bar{d}\left(\mathfrak{X}_{5, r}, \ell_{\mathrm{r}}\right)=0, & (\mathfrak{r}=1,2,3, \ldots), \\
\lim _{\mathfrak{s} \rightarrow \infty} \bar{d}\left(\mathfrak{M}_{5, r}, s_{\mathfrak{r}}\right)=0, & (\mathfrak{r}=1,2,3, \ldots),
\end{array}
$$

and

$$
\begin{array}{ll}
\lim _{\mathfrak{r} \rightarrow \infty} \bar{d}\left(\mathfrak{X}_{\mathfrak{s}, \mathfrak{r}}, \mathfrak{b}_{\mathfrak{s}}\right)=0, & (\mathfrak{s}=1,2,3, \ldots), \\
\lim _{\mathfrak{r} \rightarrow \infty} \bar{d}\left(\mathfrak{M}_{\mathfrak{s}, \mathfrak{r}}, i_{\mathfrak{s}}\right)=0, & (\mathfrak{s}=1,2,3, \ldots)
\end{array}
$$

therefore

$$
\begin{aligned}
& \lim _{\mathfrak{s} \rightarrow \infty} \bar{d}\left(\mathfrak{X}_{\mathfrak{s}, \mathfrak{r}}, \mathfrak{M}_{\mathfrak{s}, \mathfrak{r}}\right)=\left(\ell_{\mathfrak{r}}, s_{\mathfrak{r}}\right), \\
& \lim _{\mathfrak{r} \rightarrow \infty} \bar{d}\left(\mathfrak{X}_{\mathfrak{s}, \mathfrak{r}}, \mathfrak{M}_{\mathfrak{s}, \mathfrak{r}}\right)=\left(b_{\mathfrak{s}}, i_{\mathfrak{s}}\right) .
\end{aligned}
$$

A double sequence $(\mathfrak{X}, \mathfrak{M})=\left(\mathfrak{X}_{s, r}, \mathfrak{M}_{\mathfrak{s}, \mathfrak{r}}\right)$ of fuzzy real numbers is said to be bounded, if $\sup _{\mathfrak{s}, \mathfrak{r}} \bar{d}\left(\left(\mathfrak{X}_{5, r}, \ell_{1}\right),\left(\mathfrak{M}_{\mathfrak{s}, \mathfrak{r}}, \ell_{2}\right)\right)<\infty$ for $\mathfrak{s , r} \in \mathbb{N}$ where $\sup _{\mathfrak{s}, \mathfrak{r}} \bar{d}\left(\left(\mathfrak{X}_{\mathfrak{s}, \mathfrak{r}}, \ell_{1}\right)\right)<\infty$ and $\sup _{5, r} \bar{d}\left(\left(\mathfrak{M}_{5, r}, \ell_{2}\right)\right)<\infty$.

Throughout the paper $\left(l_{\infty}\right)_{F}^{\|},(c)_{F}^{\|},\left(c_{0}\right)_{F}^{\|},\left(c^{R}\right)_{F}^{\|},\left(c_{0}^{R}\right)_{F}^{\|}$signify the of all bounded, convergent in pringsheim's sense, null in pringsheim's sense, regularly convergent, regularly null convergent in pringsheim's sense of fuzzy real numbers respectively.

If $\left(\mathfrak{X}_{5, r}, \mathfrak{M}_{5, r}\right) \in E_{F}^{\|}$where $\left(\mathfrak{B}_{5, r}, \mathfrak{Q}_{5, r}\right) \in E_{F}^{\|}$and $\left|\mathfrak{X}_{5, r}, \mathfrak{M}_{5, r}\right| \leq\left|\mathfrak{B}_{5, r}, \mathfrak{Q}_{5, r}\right|$ where $\left|\mathfrak{X}_{5, r}\right| \leq\left|\mathfrak{B}_{5, r}\right|$ and $\quad\left|\mathfrak{M}_{5, r}\right| \leq\left|\mathfrak{Q}_{5, r}\right|$, for all $\mathfrak{s}, \mathfrak{r} \in \mathbb{N}$, a double sequence space $E_{F}^{\|}$is said to be solid.
$\operatorname{If}\left(\mathfrak{X}_{\mathfrak{s}, \mathfrak{r}}, \mathfrak{M}_{\mathfrak{s}, \mathfrak{r}}\right) \in E_{F}^{\|}$, implies $\left(\mathfrak{X}_{\pi(\mathfrak{s}) \pi(\mathfrak{r})}, \mathfrak{M}_{\pi(\mathfrak{s}) \pi(\mathfrak{r})}\right) \in E_{F}^{\|}$, where π is a permutation of \mathbb{N}, a double sequence space $E_{F}^{\|}$is said to be symmetrical.

Let $K=\left\{\left(\mathfrak{s}_{i}, \mathfrak{r}_{i}\right): i \in \mathcal{N} ; \mathfrak{s}_{1}<\mathfrak{s}_{2}<\mathfrak{s}_{3}<\cdots\right.$ and $\left.\mathfrak{r}_{1}<\mathfrak{r}_{2}<\mathfrak{r}_{3}<\cdots\right\} \subseteq \mathbb{N} \times \mathbb{N}$ and $E_{F}^{\|}$be a fuzzy double sequence space. A K-step space of $E_{F}^{\|}$is a double sequence space $\gamma_{K}^{E}=\left\{\left(\mathfrak{X}_{\mathfrak{s}_{i}, \mathfrak{r}_{i}}\right) \in w_{F}^{\|}:\left(\mathfrak{X}_{5, \mathfrak{r}}\right) \in E_{F}^{\|}\right\}$.

A canonical pre-image of a double sequence $\left(\mathfrak{X}_{\mathfrak{s}, \mathfrak{r}}, \mathfrak{M}_{\mathfrak{s}, \mathfrak{r}}\right) \in E_{F}^{\|}$is a double sequence $\left(\mathfrak{B}_{\mathfrak{s}, \mathfrak{r}}, \mathfrak{Q}_{\mathfrak{s}, \mathfrak{r}}\right) \in E_{F}^{\|}$defined as follows:

$$
\left(\mathfrak{B}_{\mathfrak{s}, \mathfrak{r}}, \mathfrak{Q}_{\mathfrak{s}, \mathfrak{r}}\right)=\left\{\begin{array}{cc}
\left(\mathfrak{X}_{\mathfrak{s}, \mathfrak{r}}, \mathfrak{M}_{\mathfrak{s}, \mathfrak{r}}\right), & \text { If }(\mathfrak{s}, \mathfrak{r}) \in K \\
(\overline{0}, \overline{0}), & \text { otherwise } .
\end{array}\right.
$$

According to [Sar 11] we could say a , a canonical pre-image of a step space γ_{K}^{E} is a compilation of canonical pre-images of all elements in γ_{K}^{E}.

If it includes the canonical pre-images of all its step spaces, a double sequence space $E_{F}^{\|}$is said to be monotonous.
Remark: A double sequence space $E_{F}^{\|}$is solid $\Longrightarrow E_{F}^{\|}$is monotone [Mas 1].
In this paper we defined the following classes of double sequences of fuzzy real numbers:
Let $\mathcal{p}=\left(\mathcal{f}_{\mathfrak{s}, \mathfrak{r}}\right)$ be a sequence of strictly positive real numbers.
$\left(l_{\infty}\right)_{F}^{\|}(\Upsilon, p)=$

$$
\left\{\begin{array}{c}
\left(\mathfrak{X}_{\mathrm{s}, \mathrm{r}} \mathfrak{M}_{\mathrm{s}, \mathrm{r}}\right) \in \mathcal{W}_{F}^{\|}: \sup _{\mathrm{s}, \mathrm{r}}\left\{\left(r_{1}\left(\frac{\bar{d}\left(\mathfrak{X}_{5, r} \bar{r}\right)}{\rho}\right)\right)^{\mathcal{p}_{5, r}} \vee\left(r_{2}\left(\frac{\bar{d}\left(\mathfrak{M}_{5, r} \overline{0}\right)}{\rho}\right)\right)^{\mathfrak{p}_{\mathrm{s}, \mathrm{r}}}\right\}<\infty \\
\text { for some } \rho>0,
\end{array}\right\}
$$

where

$$
\left(l_{\infty}\right)_{F}^{\|}\left(\Upsilon_{1}, \mathcal{p}\right)=\left\{\begin{array}{c}
\left(\mathfrak{X}_{\mathfrak{s}, \mathfrak{r}}\right) \in \mathcal{W}_{F}^{\|}: \sup _{k, l}\left(\Upsilon_{1}\left(\frac{\bar{d}\left(\mathfrak{X}_{\mathfrak{s}, \mathfrak{r}} \overline{0}\right)}{\rho}\right)\right)^{\mathcal{p}_{\mathfrak{s}, \mathfrak{r}}}<\infty \\
\text { for some } \rho>0
\end{array}\right\}
$$

and

$$
\left(l_{\infty}\right)_{F}^{\|}\left(\Upsilon_{2}, p\right)=\left\{\begin{array}{c}
\left(\mathfrak{M}_{5, r}\right) \in \mathcal{W}_{F}^{\|}: \sup _{5, r}\left(\Upsilon_{2}\left(\frac{\bar{d}\left(\mathfrak{M}_{5, \mathfrak{r}} \overline{0}\right)}{\rho}\right)\right)^{\mathfrak{p}_{5, r}}<\infty \\
\text { for some } \rho>0
\end{array}\right\}
$$

$(c)_{F}^{\|}(\Upsilon, p)=$

$$
\left\{\left(\mathfrak{X}_{\mathfrak{s}, \mathfrak{r}}, \mathfrak{M}_{\mathfrak{s}, \mathfrak{r}}\right) \in \mathcal{W}_{F}^{\|}: \lim _{\mathfrak{s}, \mathfrak{r}}\left\{\left(\Upsilon_{1}\left(\frac{\bar{d}\left(\mathfrak{X}_{\mathfrak{s}, \mathfrak{r}}, \ell_{1}\right)}{\rho}\right)\right)^{\mathfrak{p}_{\mathfrak{s}, \mathfrak{r}}} \vee\left(\Upsilon_{2}\left(\frac{\bar{d}\left(\mathfrak{M}_{\mathfrak{s}, \mathfrak{r}}, \ell_{2}\right)}{\rho}\right)\right)^{\mathfrak{P}_{\mathfrak{s}, \mathfrak{r}}}\right\}=0\right\}
$$

where

$$
(c)_{F}^{\|}\left(\Upsilon_{1}, p\right)=\left\{\left(\mathfrak{X}_{\mathfrak{s}, \mathfrak{r}}\right) \in \mathcal{W}_{F}^{\|}: \lim _{\mathfrak{s}, \mathfrak{r}}\left(\Upsilon_{1}\left(\frac{\bar{d}\left(\mathfrak{X}_{\mathfrak{s}, \mathfrak{r}} \ell_{1}\right)}{\rho}\right)\right)^{p_{\mathfrak{s}, \mathfrak{r}}}=0\right\}
$$

and

$$
(c)_{F}^{\|}\left(\Upsilon_{2}, \mathfrak{p}\right)=\left\{\left(\mathfrak{M}_{\mathfrak{s}, \mathfrak{r}}\right) \in \mathcal{W}_{F}^{\|}: \lim _{\mathfrak{s}, \mathfrak{r}}\left(\Upsilon_{2}\left(\frac{\bar{d}\left(\mathfrak{M}_{\mathfrak{s}, \mathfrak{r}} \ell_{2}\right)}{\rho}\right)\right)^{\mathfrak{p}_{\mathfrak{s}, \mathfrak{r}}}=0\right\}
$$

For $\left(\ell_{1}, \ell_{2}\right)=(\overline{0}, \overline{0})$ we get the class $\left(c_{0}\right)_{F}^{\|}(\Upsilon, p)$.
i.e., $\left(c_{0}\right)_{F}^{\|}(\Upsilon, p)=$

$$
\left\{\left(\mathfrak{X}_{s, r}, \mathfrak{M}_{\mathfrak{s}, \mathfrak{r}}\right) \in \mathcal{W}_{F}^{\|}: \lim _{\mathfrak{s}, \mathrm{r}}\left\{\left(\begin{array}{c}
\left.\left.\left(\frac{\bar{d}\left(\mathfrak{X}_{\mathfrak{s}, \mathfrak{r}} \overline{0}\right)}{\rho}\right)\right)^{\mathfrak{p}_{\mathfrak{s}, \mathfrak{r}}} \vee\left(\Upsilon_{2}\left(\frac{\bar{d}\left(\mathfrak{M}_{s, r}, \overline{0}\right)}{\rho}\right)\right)^{\mathfrak{p}_{\mathfrak{s}, \mathfrak{r}}}\right\}=0 \\
\text { for some } \rho>0
\end{array}\right\}\right.\right.
$$

where

$$
\left(c_{0}\right)_{F}^{\|}\left(\Upsilon_{1}, \mathcal{p}\right)=\left\{\left(\mathfrak{X}_{\mathrm{s}, \mathfrak{r}}\right) \in \mathcal{W}_{F}^{\|}: \lim _{\mathfrak{s}, \mathfrak{r}}\left(\Upsilon_{1}\left(\frac{\bar{d}\left(\mathfrak{X}_{\mathfrak{s}, \mathfrak{r}} \overline{0}\right)}{\rho}\right)\right)^{\mathfrak{p}_{\mathrm{s}, \mathrm{r}}}=0\right\}
$$

and

$$
\left(c_{0}\right)_{F}^{\|}\left(\Upsilon_{2}, p\right)=\left\{\left(\mathfrak{M}_{\mathfrak{s}, \mathfrak{r}}\right) \in \mathcal{W}_{F}^{\|}: \lim _{\mathfrak{s}, \mathfrak{r}}\left(\Upsilon_{2}\left(\frac{\bar{d}\left(\mathfrak{M}_{\mathfrak{s}, \mathfrak{r}} \overline{0}\right)}{\rho}\right)\right)^{p_{\mathfrak{s}, \boldsymbol{r}}}=0\right\}
$$

Also, a fuzzy double sequences $\left(\mathfrak{X}_{\mathfrak{5}, r}, \mathfrak{M}_{\mathfrak{s}, \mathfrak{r}}\right) \in\left(c^{R}\right)_{F}^{\|}(\Upsilon, p)$. If $\left(\mathfrak{X}_{\mathfrak{s}, \mathfrak{r}}, \mathfrak{M}_{\mathfrak{s}, \mathfrak{r}}\right) \in(c)_{F}^{\|}(\Upsilon, p)$ and the next limits exist :

$$
\begin{aligned}
& \lim _{\mathfrak{s}}\left\{\Upsilon\left(\frac{\bar{d}\left(\mathfrak{X}_{\mathfrak{s}, \mathfrak{r}}, \mathfrak{X}_{\mathfrak{r}}\right)}{\rho}\right)\right\}^{\mathfrak{p}_{\mathfrak{s}, \mathfrak{r}}}=0, \text { as } \mathfrak{s} \rightarrow \infty, \forall \mathfrak{r} \in \mathbb{N}, \\
& \lim _{\mathfrak{r}}\left\{\Upsilon\left(\frac{\bar{d}\left(\mathfrak{X}_{\mathfrak{s}, \mathfrak{r}}, s_{\mathfrak{s}}\right)}{\rho}\right)\right\}^{\mathfrak{p}_{\mathfrak{s}, \mathfrak{r}}}=0, \text { as } \mathfrak{r} \rightarrow \infty, \forall \mathfrak{s} \in \mathbb{N}, \\
& \lim _{\mathfrak{s}}\left\{\Upsilon\left(\frac{\bar{d}\left(\mathfrak{B}_{\mathfrak{s}, \mathfrak{r}}, \mathfrak{P}_{\mathfrak{r}}\right)}{\rho}\right)\right\}^{\mathcal{p}_{\mathfrak{s}, \mathfrak{r}}}=0, \text { as } \mathfrak{s} \rightarrow \infty, \forall \mathfrak{r} \in \mathbb{N}, \\
& \lim _{\mathfrak{r}}\left\{\Upsilon\left(\frac{\bar{d}\left(\mathfrak{M}_{\mathfrak{s}, \mathfrak{r}}, \mathfrak{r}_{\mathfrak{s}}\right)}{\rho}\right)\right\}^{\mathfrak{p}_{\mathfrak{s}, \mathfrak{r}}}=0, \text { as } \mathfrak{r} \rightarrow \infty \forall \mathfrak{s} \in \mathbb{N},
\end{aligned}
$$

therefore

$$
\begin{aligned}
& \lim _{\mathfrak{s}}\left\{\Upsilon\left(\bar{d}\left(\mathfrak{X}_{\mathfrak{s}, \mathfrak{r}}, \mathfrak{M}_{\mathfrak{s}, \mathfrak{r}}\right)\right)\right\}^{\mathfrak{p}_{\mathfrak{s}, \mathfrak{r}}}=(0,0), \text { as } \mathfrak{s} \rightarrow \infty, \text { for each } \mathfrak{r} \in \mathbb{N}, \\
& \lim _{\mathfrak{r}}\left\{\Upsilon\left(\bar{d}\left(\mathfrak{X}_{\mathfrak{s}, \mathfrak{r}}, \mathfrak{M}_{\mathfrak{s}, \mathfrak{r}}\right)\right)\right\}^{\mathcal{p}_{\mathfrak{s}, \mathfrak{r}}}=(0,0), \text { as } \mathfrak{r} \rightarrow \infty, \text { for each } \mathfrak{s} \in \mathbb{N} .
\end{aligned}
$$

A double sequence $\left(\mathfrak{X}_{\varsigma, r}, \mathfrak{M}_{\mathfrak{s}, \mathfrak{r}}\right) \in\left(c_{0}^{R}\right)_{F}^{\|}(\Upsilon)$, if

$$
\mathfrak{X}=\mathfrak{X}_{\mathfrak{r}}=s_{5}=\overline{0}, \quad \forall \mathfrak{s}, \mathfrak{r} \in \mathbb{N}
$$

and

$$
\mathfrak{B}=\mathfrak{B}_{\mathrm{r}}=r_{\mathfrak{s}}=\overline{0}, \quad \forall \mathfrak{s}, \mathfrak{r} \in \mathbb{N}
$$

We define

$$
\begin{aligned}
& (m)_{F}^{\|}(\Upsilon, p)=(c)_{F}^{\|}(\Upsilon, p) \cap\left(l_{\infty}\right)_{F}^{\|}(\Upsilon, p), \\
& \left(m_{0}\right)_{F}^{\|}(\Upsilon, p)=\left(c_{0}\right)_{F}^{\|}(\Upsilon, p) \cap\left(l_{\infty}\right)_{F}^{\|}(\Upsilon, p) .
\end{aligned}
$$

3. MAIN RESULTS

Theorem 3.1: Let $\left(\mathcal{p}_{5, r}\right)$ be bounded. Then the classes of double sequences $\left(l_{\infty}\right)_{F}^{\|}(\Upsilon, \mathfrak{p}),\left(c^{R}\right)_{F}^{\|}(\Upsilon, \mathfrak{p}),\left(c_{0}^{R}\right)_{F}^{\|}(\Upsilon, \mathfrak{p})$ are complete metric spaces with respect to the distance defined by
$G((\mathfrak{X}, \mathfrak{M}),(\mathfrak{B}, \mathfrak{Q}))=$

$$
\begin{gathered}
\inf \left\{\rho^{\frac{p_{\mathfrak{s}, r}}{J}}>0: \sup _{5, r}\left\{\left(\Upsilon_{1}\left(\frac{\bar{d}\left(\mathfrak{X}_{5, r}, \mathfrak{M}_{5, r}\right)}{\rho}\right)\right) \vee\left(\Upsilon_{2}\left(\frac{\bar{d}\left(\mathfrak{B}_{\mathfrak{s}, \mathfrak{r}}, \mathfrak{Q}_{\mathfrak{s}, r}\right)}{\rho}\right)\right)\right\} \leq 1\right\} \\
\mathcal{J}=\max \left(1,2^{T-1}\right)
\end{gathered}
$$

where

$$
\begin{aligned}
& G(\mathfrak{X}, \mathfrak{M})=\inf \left\{\rho^{\frac{p_{\mathfrak{s}, \mathfrak{r}}}{\mathcal{J}}}>0: \sup _{5, \mathfrak{r}}\left(\Upsilon_{1}\left(\frac{\bar{d}\left(\mathfrak{X}_{5, \mathfrak{r}}, \mathfrak{M}_{5, \mathfrak{r}}\right)}{\rho}\right)\right) \leq 1\right\} \\
& G(\mathfrak{B}, \mathfrak{Q})=\inf \left\{\rho^{\left.\frac{p_{5, \mathfrak{r}}}{\mathcal{J}}>0: \sup _{5, \mathfrak{r}}\left(\Upsilon_{2}\left(\frac{\bar{d}\left(\mathfrak{B}_{\mathfrak{s}, \mathfrak{r}}, \mathfrak{Q}_{5, \mathfrak{r}}\right)}{\rho}\right)\right) \leq 1\right\}}\right.
\end{aligned}
$$

Proof: Let us consider the case $\left(l_{\infty}\right)_{F}^{\|}(\Upsilon, p)$ and the other cases can be established next similar techniques..
Let $\left(\mathfrak{X}^{i}\right),\left(\mathfrak{M}^{i}\right)$ be any Cauchy sequences in $\left(l_{\infty}\right)_{F}^{\|}\left(\Upsilon_{1}, \mathfrak{p}\right),\left(l_{\infty}\right)_{F}^{\|}\left(\Upsilon_{2}, \mathfrak{p}\right)$ respectively, hence $\left(\mathfrak{X}^{i}, \mathfrak{M}^{i}\right)=\left(\mathfrak{X}_{\mathfrak{5}, \mathfrak{r}}^{i}, \mathfrak{M}_{\mathfrak{5}, \mathfrak{r}}^{i}\right)$ be a double Cauchy sequence

Let $\epsilon>0, \mathfrak{X}_{0}, r>0$ be fixed. Then for each $\frac{\epsilon}{r \mathfrak{X}_{0}}>0$, there exists a positive integer N such that $G_{\Upsilon_{1}}\left(\mathfrak{X}^{i}, \mathfrak{X}^{j}\right)<\frac{\epsilon}{r \mathfrak{x}_{0}}$ and $G_{\Upsilon_{2}}\left(\mathfrak{M}^{i}, \mathfrak{M}^{j}\right)<\frac{\epsilon}{r \mathfrak{x}_{0}}$, for $i, j \geq N$, and consequently,
$G_{\Upsilon}\left(\left(\mathfrak{X}^{i}, \mathfrak{X}^{j}\right),\left(\mathfrak{M}^{i}, \mathfrak{M}^{j}\right)\right)=\left(G_{\Upsilon_{1}}\left(\mathfrak{X}^{i}, \mathfrak{X}^{j}\right), G_{\Upsilon_{2}}\left(\mathfrak{M}^{i}, \mathfrak{M}^{j}\right)\right)<\frac{\epsilon}{r \mathfrak{X}_{0}}$,
for all $i, j \geq N$.
By definition of G, we obtain

$$
\inf \left\{\rho>0: \sup _{\mathfrak{s}, \mathfrak{r}}\left\{\Upsilon_{1}\left(\frac{\bar{d}\left(\mathfrak{X}_{\mathfrak{s}, r}^{i}, \mathfrak{X}_{\mathrm{s}, \mathfrak{r}}^{j}\right)}{\rho}\right) \vee \Upsilon_{2}\left(\frac{\bar{d}\left(\mathfrak{M}_{\mathfrak{s}, \mathrm{r}}^{i}, \mathfrak{M}_{\mathfrak{s}, \mathfrak{r}}^{j}\right)}{\rho}\right)\right\} \leq 1\right\}
$$

Thus,

$$
\sup _{s, r}\left\{r_{1}\left(\frac{\bar{d}\left(\mathfrak{x}_{5, r}^{i}, \mathfrak{x}_{s, r}^{j}\right)}{\rho}\right) \vee r_{2}\left(\frac{\bar{d}\left(\mathfrak{M}_{s, r}^{i}, \mathfrak{M}_{s, r}^{j}\right)}{\rho}\right)\right\} \leq 1
$$

for all $i, j \geq N$.
for each $i, j \geq N$,
Since $\boldsymbol{p}_{5, r}$ bounded it follows that
for each $\mathfrak{s}, \mathfrak{r} \geq 1$ and for all $i, j \geq N$.
Hence one can find $r>0$ with $\Upsilon_{1}\left(\frac{r X_{0}}{2}\right) \geq 1$ and $\Upsilon_{2}\left(\frac{r X_{0}}{2}\right) \geq 1$, such that

$$
\Upsilon_{1}\left(\frac{\bar{d}\left(\mathfrak{X}_{s, r}^{i} \mathfrak{X}_{s, r}^{j}\right)}{G_{Y_{1}}\left(\mathfrak{X}_{s, r}^{i}, \mathfrak{X}_{5, r}^{j}\right)}\right) \leq \Upsilon_{1}\left(\frac{r \mathfrak{X}_{0}}{2}\right) \text { and } \Upsilon_{2}\left(\frac{\bar{d}\left(\mathfrak{M}_{s, r}^{i}, \mathfrak{M}_{s, r}^{j}\right)}{G_{\Upsilon_{2}}\left(\mathfrak{M}_{s, r}^{i}, \mathfrak{M}_{s, r}^{j}\right)}\right) \leq \Upsilon_{2}\left(\frac{r \mathfrak{X}_{0}}{2}\right)
$$

Hence, $\Upsilon\left(\frac{r x_{0}}{2}, \frac{r x_{0}}{2}\right)=\left(\Upsilon_{1}\left(\frac{r x_{0}}{2}\right), \Upsilon_{2}\left(\frac{r x_{0}}{2}\right)\right) \geq(1,1)$, therefore,

$$
\left\{r_{1}\left(\frac{\bar{d}\left(\mathfrak{X}_{s, r}^{i} \mathfrak{x}_{5, r}^{j}\right)}{G_{Y_{1}}\left(\mathfrak{X}_{5, r}^{i}, \mathfrak{X}_{5, r}^{j}\right)}\right), r_{2}\left(\frac{\bar{d}\left(\mathfrak{M}_{5, r}^{i} \mathfrak{M}_{s, r}^{j}\right)}{G_{Y_{2}}\left(\mathfrak{M}_{5, r}^{i}, \mathfrak{M}_{s, r}^{j}\right)}\right)\right\} \leq\left(r_{1}\left(\frac{r \mathfrak{X}_{0}}{2}\right), r_{2}\left(\frac{r \mathfrak{X}_{0}}{2}\right)\right) .
$$

This implies that.
$\left.\bar{d}\left(\mathfrak{X}_{\xi, r}^{i}, \mathfrak{X}_{\xi, r}^{j}\right) \leq \frac{r x_{0}}{2} \cdot G_{\Upsilon_{1}}\left(\mathfrak{X}^{i}, \mathfrak{X}^{j}\right)\right)$, for all $i, j \geq n_{0}$.

$$
\begin{array}{ll}
\bar{d}\left(\mathfrak{X}_{\mathrm{s}, r}^{i}, x_{\mathrm{s}, \mathrm{r}}^{j}\right) \leq \frac{r x_{0}}{2} \cdot \frac{\epsilon}{r x_{0}}=\frac{\epsilon}{2} & \text { for all } i, j \geq n_{0} . \\
\Rightarrow \bar{d}\left(\mathfrak{x}_{5, r}^{i}, x_{s, r}^{j}\right) \leq \frac{\epsilon}{2} & \text { for all } i, j \geq n_{0} .
\end{array}
$$

and

$$
\begin{aligned}
& \left.\bar{d}\left(\mathfrak{M}_{\mathfrak{s}, r}^{i}, \mathfrak{M}_{\varsigma, r}^{j}\right) \leq \frac{r \mathfrak{x}_{0}}{2} \cdot G_{Y_{2}}\left(\mathfrak{M}^{i}, \mathfrak{M}^{j}\right)\right) \text {, for all } i, j \geq n_{0} . \\
& \bar{d}\left(\mathfrak{M}_{\mathfrak{s}, r}^{i}, \mathfrak{M}_{\mathfrak{s}, \tilde{r}}^{j}\right) \leq \frac{r \mathfrak{x}_{0}}{2} \cdot \frac{\epsilon}{r x_{0}}=\frac{\epsilon}{2} \quad \text { for all } i, j \geq n_{0} \\
& \Rightarrow \bar{d}\left(\mathfrak{M}_{5,5}^{i}, \mathfrak{M}_{\varsigma, r}^{j}\right) \leq \frac{\epsilon}{2} \quad \text { for all } i, j \geq n_{0} \text {. then } \\
& \bar{d}\left(\left(\mathfrak{X}_{s, r}^{i}, \mathfrak{X}_{s, r}^{j}\right),\left(\mathfrak{M}_{s, r}^{i}, \mathfrak{M}_{s, r}^{j}\right)\right) \leq \frac{r x_{0}}{2} \cdot \frac{\epsilon}{r x_{0}}=\frac{\epsilon}{2} \quad \text { for all } i, j \geq n_{0} .
\end{aligned}
$$

Hence ($\mathfrak{X}_{\varsigma, r}^{i} \mathfrak{M}_{\varsigma, r}^{i}$) is a double Cauchy sequence in $R^{2}(f)$.
Thus,
For each $(0<\epsilon<1)$, there exists a positive integer N such that $\bar{d}\left(\left(\mathfrak{X}_{s, r}^{i}, \mathfrak{X}\right),\left(\mathfrak{M}_{s, r}^{i}, \mathfrak{M}\right)\right)<\epsilon$ for all $i, j \geq N$, where $\bar{d}\left(\mathfrak{X}^{i}, \mathfrak{X}\right)<\epsilon$ and $\bar{d}\left(\mathfrak{M}^{i}, \mathfrak{M}\right)<\epsilon$ for all $i, j \geq N$.

Taking $j \rightarrow \infty$ and fixing i, so by using the continuity of $\Upsilon=\left(\Upsilon_{1}, \Upsilon_{2}\right)$, we get

$$
\sup _{\mathrm{s}, \mathrm{r}}\left\{\Upsilon_{1}\left(\frac{\bar{d}\left(\mathfrak{X}_{\mathrm{s}, \mathrm{r}}^{i}, \lim _{j \rightarrow \infty} \mathfrak{X}_{\mathrm{s}, \mathfrak{r}}^{j}\right)}{\rho}\right) \vee \Upsilon_{2}\left(\frac{\bar{d}\left(\mathfrak{M}_{\mathfrak{s , r}}^{i} \lim _{j \rightarrow \infty} \mathfrak{M}_{\mathfrak{s}, \mathfrak{r}}^{j}\right)}{\rho}\right)\right\} \leq 1
$$

Thus,

$$
\sup _{5, \mathfrak{r}}\left\{\Upsilon_{1}\left(\frac{\bar{d}\left(\mathfrak{X}_{\mathfrak{s}, \mathfrak{r}}^{i}, \mathfrak{X}\right)}{\rho}\right) \vee \Upsilon_{2}\left(\frac{\bar{d}\left(\mathfrak{M}_{\mathfrak{s}, \mathfrak{r}}^{i} \mathfrak{M}\right)}{\rho}\right)\right\} \leq 1
$$

On taking the infimum of such ρ^{\prime} s, we get,

$$
\inf \left\{\rho>0: \sup _{\mathfrak{s}, \mathfrak{r}}\left\{\Upsilon_{1}\left(\frac{\bar{d}\left(\mathfrak{X}_{\mathfrak{s}, \mathfrak{r}}^{i}, \mathfrak{X}\right)}{\rho}\right) \vee \Upsilon_{2}\left(\frac{\bar{d}\left(\mathfrak{M}_{\mathfrak{s}, \mathfrak{r}}^{i} \mathfrak{M}\right)}{\rho}\right)\right\} \leq 1\right\} \leq \epsilon
$$

for all $i \geq N$ and $j \rightarrow \infty$.
Since $\left(\mathfrak{X}^{i}, \mathfrak{M}^{i}\right) \in\left(l_{\infty}\right)_{F}^{\|}(\Upsilon, \mathfrak{p})$ and Υ is continuous, it follows that $(\mathfrak{X}, \mathfrak{P}) \in\left(l_{\infty}\right)_{F}^{\|}(\Upsilon, \mathfrak{p})$.
Theorem 3.2: The space of double sequences $\left(l_{\infty}\right)_{F}^{\|}(\Upsilon, p)$ is symmetric but the space of double sequences $(c)_{F}^{\|}(\Upsilon, p),\left(c_{0}\right)_{F}^{\|}(\Upsilon, p),\left(c_{0}^{R}\right)_{F}^{\|}(\Upsilon, p),\left(c^{R}\right)_{F}^{\|}(\Upsilon, p)$, are not symmetric.

Proof: Noticeably a space of double sequences $\left(l_{\infty}\right)_{F}^{\|}(\Upsilon, p)$ is symmetric. However, other spaces of double sequences, could be indicated by the following example .

Example 3.1: Let's say the double sequences $(c)_{F}^{\|}(\Upsilon, p)$.
if $\Upsilon(\mathfrak{X}, \mathfrak{M})=(\mathfrak{X}, \mathfrak{M})$, and $\mathfrak{p}_{1 \mathrm{r}}=2$ for all $\mathfrak{r} \in \mathbb{N}$ and $\mathfrak{p}_{\mathfrak{s}, \mathfrak{r}}=3$, otherwise.
Suppose the double sequence $\left(\mathfrak{X}_{5, r}, \mathfrak{M}_{5, r}\right)$ be defined by
$\left(\mathfrak{X}_{1 r}, \mathfrak{M}_{1 \mathfrak{r}}\right)=(\overline{2}, \overline{2}) \quad$ for all $\mathfrak{r} \in \mathbb{N}$
where

$$
\mathfrak{X}_{1 \mathrm{r}}=\overline{2} \quad \text { for all } \mathfrak{r} \in \mathbb{N},
$$

and

$$
\mathfrak{M}_{1 \mathfrak{r}}=\overline{2} \quad \text { for all } \mathfrak{r} \in \mathbb{N}
$$

For $\mathfrak{s}>1$,

$$
\left(\mathfrak{X}_{\mathrm{s}, \mathrm{r}}\right)(v)=\left\{\begin{array}{ll}
v+2, & \text { for }-2 \leq v \leq-1 \\
-v, & \text { for }-1 \leq v \leq 0 \\
0, & \text { otherwise }
\end{array}\right\}
$$

and

$$
\left(\mathfrak{M}_{5, r}\right)(v)=\left\{\begin{array}{ll}
v+2, & \text { for }-2 \leq v \leq-1 \\
-v, & \text { for }-1 \leq v \leq 0 \\
0, & \text { otherwise }
\end{array}\right\}
$$

consequently, $\left(\mathfrak{X}_{5, \mathfrak{r}}, \mathfrak{M}_{5, \mathfrak{r}}\right)$ can be defined as

$$
\left(\mathfrak{X}_{5, v} \mathfrak{M}_{5, r}\right)(v)=\left\{\begin{array}{ll}
(v+2, v+2), & \text { for }-2 \leq v \leq-1, \\
(-v,-v), & \text { for }-1 \leq v \leq 0, \\
(0,0), & \text { otherwise. }
\end{array}\right\}
$$

Let $\left(\mathfrak{B}_{5, r}\right)$ be a rearrangement of $\left(\mathfrak{X}_{5, r}\right),\left(\mathfrak{Q}_{5, r}\right)$ be a rearrangement of $\left(\mathfrak{M}_{5, r}\right)$
defined as

$$
\mathfrak{B}_{55}=\overline{2}
$$

and

$$
\mathfrak{Q}_{55}=\overline{2}
$$

Then $\left(\mathfrak{B}_{\varsigma, r}, \mathfrak{Q}_{s, r}\right)$ be a rearrangement of $\left(\mathfrak{X}_{s, r}, \mathfrak{M}_{\varsigma, r}\right)$ defined by

$$
\left(\mathfrak{B}_{5,5}, \mathfrak{Q}_{5,5}\right)=(\overline{2}, \overline{2}) .
$$

For $\mathfrak{s} \neq \mathrm{r}$,

$$
\left(\mathfrak{B}_{s, r}\right)(v)=\left\{\begin{array}{cl}
v+2, & \text { for }-2 \leq v \leq-1, \\
-v, & \text { for }-1 \leq v \leq 0, \\
0, & \text { otherwise. }
\end{array}\right\}
$$

and

$$
\left(\mathfrak{Q}_{5, r}\right)(t)=\left\{\begin{array}{cl}
v+2, & \text { for }-2 \leq v \leq-1, \\
-v, & \text { for }-1 \leq v \leq 0, \\
0, & \text { otherwise. }
\end{array}\right\}
$$

Therefore, $\left(\mathfrak{B}_{\mathfrak{s}, r}, \mathfrak{Q}_{5, r}\right)$ can be defined as

$$
\left(\mathfrak{B}_{s, v}, \mathfrak{Q}_{5, r}\right)(v)=\left\{\begin{array}{ll}
(v+2, v+2), & \text { for }-2 \leq v \leq-1, \\
(-v,-v), & \text { for }-1 \leq v \leq-1, \\
(0,0), & \text { otherwise. }
\end{array}\right\}
$$

Thus $\left(\mathfrak{X}_{\varsigma, r}, \mathfrak{M}_{\mathfrak{s}, r}\right) \in(c)_{F}^{\|}(\Upsilon, p)$ but $\left(\mathfrak{B}_{\varsigma, r} \mathfrak{Q}_{\mathfrak{s}, r}\right) \notin(c)_{F}^{\|}(\Upsilon, p)$.
Hence $(c)_{F}^{\|}(\Upsilon, p)$ is not symmetric. In same sense, it can be indicated that other spaces of double sequences are not symmetric too.

Theorem 3.3 : The spaces $\left(l_{\infty}\right)_{F}^{\|}(\Upsilon, p),\left(c_{0}\right)_{F}^{\|}(\Upsilon, \mathfrak{p}),\left(c_{0}^{R}\right)_{F}^{\|}(\Upsilon, \mathfrak{p})$ are solid.
Proof : Consider the space of double sequences $\left(l_{\infty}\right)_{F}^{\|}(\Upsilon, p)$. Let $\left(\mathfrak{X}_{5, r}, \mathfrak{M}_{\varsigma, r}\right)$
$\in\left(l_{\infty}\right)_{F}^{\|}(\Upsilon, \mathfrak{p})$ and $\left(\mathfrak{B}_{s, r}, \mathfrak{Q}_{\mathfrak{s}, r}\right)$ be such that.

$$
\bar{d}\left(\mathfrak{B}_{5, r}, \overline{0}\right) \leq \bar{d}\left(\mathfrak{x}_{\varsigma, r}, \overline{0}\right)
$$

and

$$
\bar{d}\left(\mathfrak{Q}_{5, v} \overline{0}\right) \leq \bar{d}\left(\mathfrak{M}_{5, r} \overline{0}\right)
$$

and consequently

$$
\bar{d}\left(\left(\mathfrak{B}_{s, r}, \mathfrak{Q}_{s, r}\right),(\overline{0}, \overline{0})\right) \leq \bar{d}\left(\left(\mathfrak{X}_{s, r} \mathfrak{M}_{s, r}\right),(\overline{0}, \overline{0})\right)
$$

The result follows from the inequality
So,

$$
\left(\bar{d}\left(\left(\mathfrak{B}_{5, r}, \mathfrak{Q}_{5, r}\right),(\overline{0}, \overline{0})\right)\right)^{\mathfrak{p}_{\mathfrak{s}, \mathfrak{r}}} \leq\left(\bar{d}\left(\left(\mathfrak{X}_{5, r}, \mathfrak{M}_{5, r}\right),(\overline{0}, \overline{0})\right)\right)^{p_{5, r}}
$$

as $\Upsilon=\left(\Upsilon_{1}, \Upsilon_{2}\right)$ is increasing, we have

$$
\sup _{\mathfrak{s}, \mathfrak{r}}\left\{\left(\Upsilon_{1}\left(\frac{\bar{d}\left(\left(\mathfrak{B}_{5, r} \mathfrak{Q}_{5, r}\right),(\overline{0}, \overline{0})\right)}{\rho}\right)\right)^{\mathcal{p}_{5, r}}\right\} \leq \sup _{5, r}\left\{\left(\Upsilon_{2}\left(\frac{\bar{d}\left(\left(\mathfrak{X}_{\mathfrak{s}, r}, \mathfrak{M}_{5, r}\right),(\overline{0}, \overline{0})\right.}{\rho}\right)\right)^{p_{5, r}}\right\} .
$$

Hence, the spaces of double sequences $\left(l_{\infty}\right)_{F}^{\|}(\Upsilon, p)$ is solid. In same way, we could recognize other spaces are solid too by following same sense .

Proposition 3.4: The spaces of double sequences $(c)_{F}^{\|}(\Upsilon, p),\left(c^{R}\right)_{F}^{\|}(\Upsilon, p)$ and $(m)_{F}^{\|}(\Upsilon, p)$ are not monotone and hence not solid.

Proof: The following following Example will lead to such result.
Example 3.2: \quad Suppose a double sequence space $(c)_{F}^{\|}(\Upsilon, \mathfrak{p})$ and Suppose $\Upsilon(\mathfrak{X}, \mathfrak{M})=(\mathfrak{X}, \mathfrak{M})$. Let $j=\{(\mathfrak{s}, \mathfrak{r}): \mathfrak{s}+$ \mathfrak{r} is even $\} \subseteq \mathbb{N} \times \mathbb{N}$ and let

$$
p_{\mathfrak{s}, \mathfrak{r}}= \begin{cases}3, & \text { for } \mathfrak{s}+\mathrm{r} \text { even } \\ 2, & \text { otherwise }\end{cases}
$$

and let $\left(\mathfrak{X}_{5, r}, \mathfrak{M}_{5, r}\right)$ be defined as :
For all $\mathfrak{s}, \mathfrak{r} \in \mathbb{N}$,
$\left(\mathfrak{X}_{\mathfrak{s}, \mathfrak{r}} \mathfrak{M}_{\mathfrak{s}, \mathfrak{r}}\right)(v)=$

$$
\left\{\begin{array}{ll}
(v+3, v+3), & \text { for }-3 \leq v \leq-2 \\
\left.\left(\mathfrak{s v}(3 \mathfrak{s}-1)^{-1}+3 \mathfrak{s}(3 \mathfrak{s}-1)^{-1}\right), \mathfrak{s v}(3 \mathfrak{s}-1)^{-1}+3 \mathfrak{s}(3 \mathfrak{s}-1)^{-1}\right), & \text { for }-2 \leq v \leq-1+\mathfrak{s}^{-1} \\
(0,0), & \text { otherwise }
\end{array}\right\}
$$

where

$$
\left(\mathfrak{X}_{\mathfrak{s}, \mathfrak{r}}\right)(v)=\left\{\begin{array}{ll}
(v+3), & \text { for }-3 \leq v \leq-2 \\
\mathfrak{s v}(3 \mathfrak{s}-1)^{-1}+3 \mathfrak{s}(3 \mathfrak{s}-1)^{-1}, & \text { for }-2 \leq v \leq-1+\mathfrak{s}^{-1} \\
0, & \text { otherwise }
\end{array}\right\}
$$

and

$$
\left(\mathfrak{M}_{\mathfrak{s}, \mathfrak{r}}\right)(v)=\left\{\begin{array}{ll}
(v+3), & \text { for }-3 \leq v \leq-2 \\
\mathfrak{s v}(3 \mathfrak{s}-1)^{-1}+3 \mathfrak{s}(3 \mathfrak{s}-1)^{-1}, & \text { for }-2 \leq v \leq-1+\mathfrak{s}^{-1}, \\
0, & \text { otherwise. }
\end{array}\right\} .
$$

Then $\left(\mathfrak{X}_{\varsigma, r}, \mathfrak{M}_{\mathfrak{s}, \mathfrak{r}}\right) \in(c)_{F}^{\|}(\Upsilon, p)$.
Let $\left(\mathfrak{B}_{5, \mathfrak{r}}, \mathfrak{Q}_{\mathfrak{s}, \mathfrak{r}}\right)$ be the canonical pre-image of $\left(\mathfrak{X}_{5, \mathfrak{r}}, \mathfrak{M}_{5, \mathfrak{r}}\right)_{J}$ of the sub sequence j of $\mathbb{N} \times \mathbb{N}$. Then

$$
\left(\mathfrak{B}_{\mathfrak{s}, \mathfrak{r}}\right)(v)=\left\{\begin{array}{cc}
\left(\mathfrak{X}_{\mathfrak{s}, \mathfrak{r}}\right) & \text { if }(\mathfrak{s}, \mathfrak{r}) \in j, \\
0, & \text { otherwise } .
\end{array}\right\}
$$

and

$$
\left(\mathfrak{Q}_{\mathfrak{s}, \mathfrak{r}}\right)(v)=\left\{\begin{array}{cl}
\left(\mathfrak{M}_{\mathfrak{s}, \mathfrak{r}}\right) & \text { if }(\mathfrak{s}, \mathfrak{r}) \in j, \\
0, & \text { otherwise. }
\end{array}\right\} .
$$

and consequently

$$
\left(\mathfrak{B}_{s, r}, \mathfrak{Q}_{s, r}\right)(v)=\left\{\begin{array}{ll}
\left(\mathfrak{x}_{\mathfrak{s}, r}, \mathfrak{M}_{5, r}\right) & \text { if }(\mathfrak{s}, \mathfrak{r}) \in j, \\
(\overline{0}, \overline{0}) & \text { otherwise. }
\end{array}\right\}
$$

Thus, $\left(\mathfrak{B}_{\mathfrak{s}, r}, \mathfrak{Q}_{\mathfrak{s}, \mathfrak{r}}\right) \notin(c)_{F}^{\|}(\Upsilon, p)$. Hence, $(c)_{F}^{\|}(\Upsilon, p)$ does not regard as a monotone. In the same way, It can be indicated that other spaces of double sequences are not monotone too.

Hence, the spaces $(c)_{F}^{\|}(\Upsilon, p),\left(c^{R}\right)_{F}^{\|}(\Upsilon, p)$ and $(m)_{F}^{\|}(\Upsilon, p)$ are not solid.

REFERENCES

[1] Azeez .M., (2017), 'On Statistically convergent double sequence spaces defined by Orlicz functions'", Master Thesis, University of Kofa.
[2] Hayder. Z. ,(2017), " On Statistical convergent of generalized difference double sequence spaces which defined by Orlicz functions'", Master Thesis, University of Kofa.
[3] Bromwich. T. J. Ia. "An Introduction to the Theory of Infinite Series', MacMillan and Co. Ltd. New York, (1965).
[4] Hardy, G. H. 'On the convergence of certain multiple series'", Proc. Camb. Phil. Soc, 19 (1917),
[5] Moricz, F ' Extension of the spaces \boldsymbol{c} and $\boldsymbol{c}_{\mathbf{0}}$ from single to double sequences', Acta. Math. Hungerica. 57(1-2), (1991), 129-136.
[6] Basarir, M. and Sonalcan, O. ''On some double sequence spaces'', J. Indian Acad . Math, (1999), 21(2) 193-200.
[7] Sarma B. " double sequences spaces defined over an n normed sequence space '", Afrika Matematika, 24(4),683-689.
[8] Tripathy B. C. Sarma B. "Statisitically convergent double sequences " Tamkang J. Math . 34(3) (2003), 231-237.
[9] Nakano, H. "Modular Sequence Spaces", proc. Japan Acad. 27 (1951), 508-512. Fuzzy Sets and Systems,99 (1998), 353-356.
[10] Simons, S. "The Sequence Spaces I $\left(\boldsymbol{p}_{\boldsymbol{v}}\right)$ and $\boldsymbol{m}\left(\boldsymbol{p}_{\boldsymbol{v}}\right)$ ",Proc. London Math. Soc .,(3) 15 (1965), 422-436 .
[11] Sarma. B. ,(2018), " double sequence spaces of fuzzy numbers of paranormed under an Orlicz function'", Science Direct.

