Fuzzy β -magnified AB-ideals of AB-algebras

Dr. Areej Tawfeeq Hameed¹, Dr. Ahmed Hamzah Abed², Israa Hameed Ghazi³

¹Department of Mathematics, Faculty of Education for Girls, University of Kufa, Iraq. <u>areej.tawfeeq@uokufa.edu.iq, areej238@gmail.com</u> ²Department of Mathematics, Faculty of Basic Education, University of Kufa, Iraq. ahmedh.abed@uokufa.edu.iq

³Department of Mathematics, Faculty of Education for Girls, University of Kufa, Iraq.

Abstract— In this paper, we introduce the notion of fuzzy magnified, fuzzy extensions magnified of fuzzy AB-subalgebra and fuzzy AB-ideal on AB-algebras and investigate some of their properties.

Keywords— AB-algebra, fuzzy AB-subalgebra, fuzzy AB-ideal, fuzzy magnified, fuzzy extension.

1. INTRODUCTION

Several authors ([8,10]) have introduced of BCK-algebras as a generalization of the concept of set-theoretic difference and propositional calculus and studied some important properties. The concept of a fuzzy set, was introduced by L.A. Zadeh [12]. A.T. Hameed and others, ([5,13,15]) introduced KUS-ideals in KUS-algebras and introduced the notions fuzzy KUS-subalgebras, fuzzy KUS-ideals of KUS-algebras and investigated relations among them. In ([11]), they applied the concept of fuzzy set to BCK/BCI-algebras and gave some of its properties. A.T. Hameed and others, ([1,2,7,9,14]) discussed fuzzy α -translation, (normalized, maximal) fuzzy S-extension of fuzzy (KUS/CI/QS)-subalgebras on (KUS/CI/QS)-algebra. They discussed fuzzy α -translation and fuzzy extension of fuzzy (KUS/CI/QS)-ideals in (KUS/CI/QS)-algebra. Dr. Areej Tawfeeq Hameed and others, ([3,4,6]) introduced AB-ideals on AB-algebras and introduced the notions fuzzy AB-subalgebras, fuzzy AB-ideals of AB-algebras and investigated relations among them.

In this paper, we define fuzzy multiplication AB-ideal of AB-algebras and look for some of their properties accurately by using the concepts of fuzzy AB-subalgebra and fuzzy AB-ideal.

2. PRELIMINARIES:

We review some definitions and properties that will be useful in our results.

Definition 2.1.([3,4]) Let X be a set with a binary operation "*" and a constant 0. Then (X, *, 0) is called **an AB-algebra** if the following axioms satisfied: for all x, y, z \in X:

(i) ((x * y) * (z * y)) * (x * z) = 0,

(ii) 0 * x = 0,

(iii) x * 0 = x,

Note that: Define a binary relation (\leq) on X by x * y = 0 if and only if, x \leq y.

Proposition 2.2.([3,4]) In any AB-algebra X, for all x, y, $z \in X$, the following properties hold:

(1) (x * y) * x = 0.

(2) $x \le y$ implies $x * z \le y * z$.

(3) $x \le y$ implies $z*y \le z*x$.

Remark 2.3.([3,5]) An AB-algebra is satisfies for all x, y, $z \in X$

```
(1) (x * y) * z = (x * z) * y,
```

(2) (x * (x * y)) * y = 0.

Definition 2.4. ([3,5]) Let X be an AB-algebra and I \subseteq X. I is called **an AB-ideal of X** if it satisfies the following conditions:

(i) $0 \in I$,

(ii) $(x * y) * z \in I \text{ and } y \in I \text{ imply } x^* z \in I.$

Definition 2.5 [6]. A fuzzy μ is called a fuzzy relation on any set S, if μ is a fuzzy subset μ : X× X→ [0,1].

Definition 2.6.([3,6]) A fuzzy subset μ of AB-algebra X is called a fuzzy AB-subalgebra of X if $\mu(x * y) \ge \min\{\mu(x), \mu(y)\}$, for all $x, y \in X$.

Definition 2.7.([3,6]) A fuzzy subset μ of AB-algebra X is called **a fuzzy AB-ideal of X** if it satisfies : FAB₁) $\mu(0) \ge \mu(x)$;

FAB₂) $\mu(x * z) \ge \min\{\mu(x * (y * z)), \mu(y)\}, \text{ for all } x, y, z \in X.$

Proposition 2.8 ([3,6]):

1- Every AB-ideal of AB-algebra X is an AB-subalgebra of X.

2- Every fuzzy AB-ideal of AB-algebra X is a fuzzy AB-subalgebra of X.

Definition 2.9 [3]: Let $f : (X;*,0) \rightarrow (Y;*,0)$ be a mapping from an AB-algebra X into an AB-algebra Y. If μ is a fuzzy subset of X, then $f(\mu)(y) = \begin{cases} \sup_{x \in f^{-1}(y)} \mu(x), f^{-1}(y) = \{x \in X | f(x) = y\} \neq \emptyset \\ 0 & \text{otherwise} \end{cases}$, is said to be **the image of \mu under f** and is denoted by

$f(\mu)$.

Definition 2.10 [3]: Let $f:(X;*,0) \rightarrow (Y;*,0)$ be a mapping from an AB-algebra X into an AB-algebra Y. If β is a fuzzy subset of AB-algebra Y, then the fuzzy subset $\mu = \beta$ of f of X (i. e, the fuzzy subset defined by $\mu(x) = \beta(f(x))$, for all $x \in X$) is called the pre-image of β under f.

Proposition 2.11 [3]: Let $f:(X;*,0) \rightarrow (Y;*,0)$ be a homomorphism from X into Y and A be a fuzzy AB-subalgebra of X. Then the image f(A) is a fuzzy AB-subalgebra of Y.

Proposition 2.12 [3]: Let $f:(X;*,0) \rightarrow (Y;*,0)$ be a homomorphism from X into Y and B be a fuzzy AB-subalgebra of Y. Then the inverse image $f^{-1}(B)$ is a fuzzy AB-subalgebra of X.

Definition 2.13 [1,7,11]: Let μ be a fuzzy subset of X and $\beta \in [0, 1]$. A multiplication fuzzy subset of μ , denoted by μ_{β}^{M} is defined to be a $\label{eq:mapping mapping } \mu^M_\beta\colon X{\rightarrow}[0,1] \text{ such that } : \quad \mu^M_\beta(x) = \ \beta\,.\,\mu(x), \text{ for all } x\in X.$

3. Fuzzy β-magnified AB-subalgebra of AB-algebras:

In this section, we discuss β -magnified on AB-algebras and we get some of relations, theorems, propositions and give examples of β -magnified of fuzzy AB-subalgebra. We show the notion of β -magnified fuzzy AB-subalgebras of AB-algebra and investigate some of their properties.

In what follows, let (X; *,0) denote an AB-algebra, and for any fuzzy subset μ of X, we denote $T = 1 - \sup\{\mu(x) \mid x \in X\}$. **Definition 3.1:**

Let μ be a fuzzy subset of an AB-algebra X and let $\beta \in (0,1]$ A mapping

 $\mu_{\beta}^{M}: X \rightarrow [0,1]$ is called a β -magnified of μ if it satisfies: $\mu_{\beta}^{M}(x) = \beta \cdot \mu(x)$, for all $x \in X$.

Definition 3.2: Let X be an AB-algebra, a fuzzy subset μ in X is called a β -magnified fuzzy AB-subalgebra of X, if for all x, $y \in X$, $\mu_{\beta}^{\mathsf{M}}(x * y) \geq \min\{\mu_{\beta}^{\mathsf{M}}(x), \mu_{\beta}^{\mathsf{M}}, (y)\}.$

Theorem 3.3: Let μ be a fuzzy AB-subalgebra of AB-algebra X and $\beta \in (0,1]$. Then μ_{β}^{M} is a fuzzy AB-subalgebra of X. **Proof:** Assume that μ is a fuzzy AB-subalgebra of X, and $\beta \in (0,1]$. Let $x, y \in X$, then $\mu(x * y) \ge \min{\{\mu(x), \mu(y)\}}$. Thus $\mu_{\beta}^{M}(x \ast y) = \beta \cdot \mu(x \ast y) \geq \beta \cdot \min\{\mu(x), \mu(y)\} = \min\{\beta \cdot \mu(x, \beta, \mu(y))\} = \min\{\mu_{\beta}^{M}(x), \mu_{\beta}^{M}(y)\} \text{ and so } \mu_{\beta}^{M}(x \ast y) \geq \beta \cdot \mu(x \ast y) = \beta \cdot \mu(x \ast y) \geq \beta \cdot \mu(x \ast y) = \beta \cdot \mu(x \ast y) \geq \beta \cdot \mu(x \ast y) = \beta \cdot \mu(x \ast y) \geq \beta \cdot \mu(x \ast y) = \beta \cdot \mu(x \ast y) \geq \beta \cdot \mu(x \ast y) = \beta \cdot \mu(x \ast y) \geq \beta \cdot \mu(x \ast y) = \beta \cdot \mu(x \ast y) \geq \beta \cdot \mu(x \ast y) = \beta$

min{ $\mu_{\beta}^{M}(x), \mu_{\beta}^{M}(y)$ }. Hence μ_{β}^{M} , is a fuzzy AB-subalgebra of X.

Theorem 2.4: Let μ be a fuzzy subset of AB-algebra X such that μ_{β}^{M} of μ is a fuzzy AB-subalgebra of X, for some $\beta \in (0,1]$. Then μ is a fuzzy AB-subalgebra of X.

Proof. Assume that μ_{β}^{M} is a fuzzy AB-subalgebra of X for some $\beta \in (0,1]$. Let $x, y \in X$, then $\beta \cdot \mu(x * y) = \mu_{\beta}^{M}(x * y) \ge \min\{\mu_{\beta}^{M}(x), \mu_{\beta}^{M}(y)\} = \min\{\beta \cdot \mu(x), \beta \cdot \mu(y)\}$

 $=\beta \cdot \min\{\mu(x), \mu(y)\}$ and so $\mu(x * y) \ge \min\{\mu(x), \mu(y)\}$. Hence μ is a fuzzy AB-subalgebra of X. \Box

Definition 3.5 : For a fuzzy subset μ of an AB-algebra X, $\beta \in (0,1]$ and $t \in \text{Im}(\mu)$ with $t \leq \beta$, let $U_{\beta}(\mu; t) := \{x \in X \mid \mu(x) \geq t/\beta \}$. **Remark 3.6:** If μ is a fuzzy AB-subalgebra of X, then it is that $U_{\beta}(\mu; t)$ is an AB-subalgebra of X, for all $t \in \text{Im}(\mu)$ with $t \leq \beta$. Let x , $y \in U_{\beta}(\mu; t)$, then $\mu(x) \ge t/\beta$, and $\mu(y) \ge t/\beta$, then min $\{\mu(x), \mu(y)\} \ge t/\beta$, since μ is a fuzzy AB-subalgebra, then $\mu(x * y) \ge \min \{ \mu(x), \mu(y) \} \ge t/\beta$, therefor $x * y \in U_{\beta}(\mu; t) \}$.

But if we do not give a condition that μ is a fuzzy AB-subalgebra of X, then $U_{\beta}(\mu; t)$ is not an AB-subalgebra of X as seen in the following example.

Example 3.7: Let $X = \{0, 1, 2, 3\}$ in which (*) be a defined by the following table:

*	0	1	2	3
0	0	0	0	0
1	1	0	0	0
2	2	0	0	0
3	3	3	3	0

Then (X;*,0) is an AB-algebra. It is easy to show that $S_1 = \{0,1\}$, $S_2 = \{0,2\}$, $S_3 = \{0,3\}$ and $S_4 = \{0, 1, 2, 3\}$ are AB-subalgebras of Χ.

Define a fuzzy subset λ of X:

Х	0	1	2	3
λ	0.7	0.6	0.4	0.3

Then λ is not a fuzzy AB-subalgebra of X.

Since $\lambda (1*2) = 0.3 < 0.4 = \min\{\lambda (1), \lambda (2)\}$. For $\alpha = 0.1, \beta = 0.9$ and t = 0.5, we obtain $U_{\beta} (\lambda; t) = \{0, 1, 2\}$ which is not an ABsubalgebra of X since $1_*2 = 3 \notin U_\beta \lambda$; t).

Proposition 3.8: Let μ be a fuzzy subset of an AB-algebra X and $\beta \in (0,1]$. Then μ_{β}^{M} is a fuzzy AB-subalgebra of X if and only if, U_{β} $(\mu; t)$ is an AB-subalgebra of X, for all $t \in Im(\mu)$ with $t \leq \beta$.

Proof: Necessity is clear { assume that μ_{B}^{M} is a fuzzy AB-subalgebra by Theorem (3.4), then μ is a fuzzy AB-subalgebra, by Remark (3.6), then $U_{\beta}(\mu; t)$ is a fuzzy AB-subalgebra}.

To prove the conversely, assume that $x, y \in U_{\beta}(\mu; t)$ and μ_{β}^{M} of μ is not a fuzzy AB-subalgebra of X, therefore $\mu_{\beta}^{M}(x * y) < t \le min\{\mu_{\beta}^{M}(x), \mu_{\beta}^{M}(y)\}$. Then $\mu(x) \ge t/\beta$ and $\mu(y) \ge t/\beta$, but

 $\mu(x * y) < t/\beta$. This shows that $x * y \notin U_{\beta}(\mu; t)$. This is a contradiction, and so $\mu_{\beta}^{M}(x * y) \ge \min\{\mu_{\beta}^{M}(x), \mu_{\beta}^{M}(y)\}$, for all $x, y \in X$.

Hence μ_{β}^{M} is a fuzzy AB-subalgebra of X.

Theorem 2.9: Let $f: (X; *, 0) \rightarrow (Y; *, 0)$ be an onto homomorphism between AB-algebras X and Y. or every β -magnified fuzzy AB-subalgebra μ_{β}^{M} of X, $f(\mu_{\beta}^{M})$ is a β-magnified fuzzy AB-subalgebra of Y. **Proof:** By definition $\lambda_{\beta}^{M}(y') = f(\mu_{\beta}^{M})(y') = sup_{x \in f^{-1}(y')}\beta \cdot \mu(x)$, for all $y' \in Y$ (sup $\emptyset = 0$). By Proposition (2.10). Hence $f(\mu_{\beta}^{M})$ is a

fuzzy AB-subalgebra of Y.□

Theorem 3.10: An homomorphic pre-image of a β -magnified fuzzy AB-subalgebra of AB-algebra is also a β -magnified fuzzy AB-subalgebra of AB-algebra.

Proof: Let $f: (X; , 0) \rightarrow (Y; , 0)$ be a homomorphism of AB-algebras, λ the β -magnified fuzzy AB-subalgebra of Y and μ the pre-image of λ under f, then $\mu_{\beta}^{M}(x) = \lambda_{\beta}^{M}(f(x))$, for all $x \in X$. By Proposition (3.11). Hence μ_{β}^{M} is a fuzzy AB-subalgebra of X. \Box

Proposition 3.11: Let μ be a fuzzy subset of AB-algebra X, $\alpha \in [0,T]$ and $\beta \in (0, 1]$. Then every translation fuzzy ABsubalgebra μ_{α}^{T} of μ is a fuzzy S-extension of the multiplication fuzzy AB-subalgebra μ_{β}^{M} of μ .

Proof: For every
$$x \in X$$
, we have $\mu_{\alpha}^{T}(x) = \mu(x) + \alpha \ge \mu(x) \ge \beta$. $\mu(x) = \mu_{\beta}^{M}(x)$.

and so μ_{α}^{T} is a fuzzy extension of μ_{β}^{M} . Assume that μ_{β}^{M} is a multiplication fuzzy AB-subalgebra of X. Then μ is a fuzzy ABsubalgebra of X by Proposition (3.10).

It follows from Theorem (3.2) that μ_{α}^{T} is a fuzzy AB-subalgebra of X, for all $\alpha \in [0,T]$. Hence every translation fuzzy ABsubalgebra μ_{α}^{T} is a fuzzy S-extension of the multiplication fuzzy AB-subalgebra μ_{β}^{M} .

Proposition 3.12: For any fuzzy subset μ of AB-algebra X, the following are equivalent:

(A) μ is a fuzzy AB-subalgebra of X.

(B) For any $\beta \in (0, 1]$, μ_{β}^{M} is a fuzzy AB-subalgebra of X.

Proof: let $\beta \in (0, 1]$ be such that μ_{β}^{M} is a fuzzy AB-subalgebra of X. For any x, $y \in X$, where $\beta=1$ μ (x*y) \geq min{ μ (x), μ (y)}. Hence μ is a fuzzy AB-subalgebra of X. \Box

4. β-magnified of Fuzzy AB-ideals

In this section, we shall define the notion of β -magnified of fuzzy AB-ideals, and we study some of the relations, theorems, propositions and examples of β -magnified of fuzzy AB-ideals of AB- algebra.

Definition 4.1.: Let X be an AB-algebra, a α-translation fuzzy subset μ of X is called a β-magnified fuzzy AB-ideal of X if it satisfies the following conditions: for all $x, y, z \in X$,

 $(FAB_1) \quad \mu_{\beta}^{M}(0) \geq \quad \mu_{\beta}^{M}(x) ,$

 $(FAB_2) \quad \mu_{\beta}^{M}(x * z) \geq \min \left\{ \mu_{\beta}^{M}(x * (y * z)), \ \mu_{\beta}^{M}(y) \right\}.$

Theorem 4.2.: Let μ is a fuzzy AB-ideal of an AB-algebra X, then μ_{β}^{M} is a fuzzy AB-ideal of X, for all $\beta \in (0,1]$.

Proof: Assume that μ is a fuzzy AB-ideal of X and let $\beta \in (0,1]$. Then, for all $x, y, z \in X$.

1- $\mu_{\beta}^{M}(0) = \beta . \mu(0) \ge \beta . \mu(x) = \mu_{\beta}^{M}(x) .$

2-
$$\mu_{\beta}^{M}(x * z) = \beta . \mu(x * z) \ge \beta . min\{\mu(x * (y * z)), \mu(y)\}$$

 $= min\{\beta . \mu(z * y), \beta . \mu(x * y)\} = min\{\mu_{\beta}^{M}(z * y), \mu_{\beta}^{M}(x * y)\}.$ Hence μ_{β}^{M} is a fuzzy AB-ideal of X. \Box

Theorem 4.3.: Let μ be a fuzzy subset of AB-algebra X such that μ_{β}^{M} is a fuzzy AB-ideal of X for some $\beta \in (0,1]$. Then μ is a fuzzy AB-ideal of X.

Proof: Assume that μ_{β}^{M} is a β -magnified fuzzy AB-ideal of X for some $\beta \in (0,1]$. Let $x, y, z \in X$, we have $\beta \cdot \mu(0) = \mu_{\beta}^{M}(0) \ge 1$ $\mu_{\beta}^{M}(x) = \beta \cdot \mu(x)$

and so $\mu(0) \ge \mu(x)$.

 $\beta . \mu(\mathbf{x} \ast \mathbf{z}) = \mu_{\beta}^{\mathsf{M}} (\mathbf{x} \ast \mathbf{z}) \geq \min\{\mu_{\beta}^{\mathsf{M}}(\mathbf{x} \ast (\mathbf{y} \ast \mathbf{z})), \mu_{\beta}^{\mathsf{M}}(\mathbf{y})\},$

 $= min\{\beta . \mu(x * (y * z)), \beta . \mu(y)\} = \beta . min\{\mu(x * (y * z)), \mu(y)\}, \text{ then}$

 $\mu(\mathbf{x} \ast \mathbf{z}) \geq \min\{\mu(\mathbf{x} \ast (\mathbf{y} \ast \mathbf{z})), \mu(\mathbf{y})\}.$

Hence μ is a fuzzy AB-ideal of X. \Box

Theorem 4.4. For $\beta \in (0,1]$, let μ_{β}^{M} be the β -magnified fuzzy subset μ of AB-algebra X. Then the following are equivalent: (1) μ_{β}^{M} is a fuzzy AB-ideal of X.

(2) $\forall t \in \text{Im}(\mu), t > \alpha \Rightarrow U_{\beta}(\mu; t)$ is an AB-ideal of X.

Proof: Assume that μ_{β}^{M} is a β -magnified fuzzy AB-ideal of X and let $t \in Im(\mu)$ be such that $t \leq \beta$. Since $\mu_{\beta}^{M}(0) \geq \mu_{\beta}^{M}(x)$, for all $x \in X$, we have $\beta \cdot \mu(0) = \mu_{\beta}^{M}(0) \ge \mu_{\beta}^{M}(x) = \beta \cdot \mu(x) \ge t$, for all $x \in U_{\beta}(\mu; t)$. Hence $0 \in U_{\beta}(\mu; t)$.

Let $x, y, z \in X$, such that $(x * (y * z)) \in U_{\beta}(\mu; t)$ and $(y) \in U_{\beta}(\mu; t)$. Then $\mu(x * (y * z)) \ge t - \alpha$ and $\mu(y) \ge t - \alpha$,

i.e., $\mu_{\beta}^{M}(x * (y * z)) = \beta \cdot \mu(x * (y * z)) \ge t$ and $\mu_{\beta}^{M}(y) = \beta \cdot \mu(y) \ge t$.

Since μ_{β}^{M} is a β -magnified fuzzy AB-ideal of X, it follows that

 $\beta \,.\, \mu(x \ast z) = \mu_{\beta}^{M} \,\, (x \ast z) \geq min\{\mu_{\beta}^{M} \,\, (x \ast (y \ast z)), \ \mu_{\beta}^{M} \,\, (y)\} \geq t, \, \text{that is}$

 $\mu(\mathbf{x} * \mathbf{z}) \geq t/\beta$, so that $(\mathbf{x} * \mathbf{z}) \in U_{\beta}(\mu; t)$, therefore $U_{\beta}(\mu; t)$ is AB-ideal of X.

Conversely, suppose that $U_{\beta}(\mu; t)$ is an AB-ideal of X, for every $t \in Im(\mu)$ with $t \leq \beta$. If there exists $x \in X$ such that

 $\begin{array}{l} \mu^M_\beta\left(0\right) < t \leq \mu^M_\beta\left(x\right), \mbox{then } \mu(x) \geq t/\beta \ , \mbox{but } \mu(0) < t/\beta \ . \ This shows that \\ x \in U_\beta(\mu;t) \mbox{ and } 0 \notin U_\beta\left(\mu;t\right). \ This is a contradiction, \mbox{ and so } \mu^M_\beta\left(0\right) \geq \mu^M_\beta(x), \mbox{ for all } x \in X \ . \end{array}$

Now, assume that there exist x, y,
$$z \in X$$
 such that $\mu_{\beta}^{M}(x * z) < t \leq min\{\mu_{\beta}^{M}(x * (y * z)), \mu_{\beta}^{M}(y)\}$

Then $\mu(x * (y * z)) \ge t/\beta$ and $\mu(y) \ge t/\beta$, but $\mu(x * z) < t/\beta$.

Hence $(x * (y * z)) \in U_{\beta}(\mu; t)$ and $(y) \in U_{\beta}(\mu; t)$, but $(x * z) \notin U_{\beta}(\mu; t)$ and this is a contradiction.

Therefore as $\mu_{\beta}^{M}(x * z) \ge \min \{\mu_{\beta}^{M}(x * (y * z)), \mu_{\beta}^{M}(y)\}$, for all $x, y, z \in X$.

Hence μ_{β}^{M} is a fuzzy AB-ideal of X. \Box

In Theorem (4.4.(2)), if $t \leq \alpha$, then $U_{\beta}(\mu; t) = X$.

Theorem 4.5.: Let $f: (X; *, 0) \rightarrow (Y; *, 0)$ be an onto homomorphism between AB-algebras X and Y. For every β -magnified fuzzy AB-ideal μ of X, $f(\mu)$ is a β -magnified fuzzy AB-ideal of Y.

Proof: Let $f:(X;_{*},0) \to (Y;*,0)$ be an onto homomorphism of AB-algebras, μ is a β -magnified fuzzy AB-ideal of X and λ_{β}^{M} the image of μ_{β}^{M} under f. Since μ is a β -magnified fuzzy AB-ideal of X, we have $\mu_{\beta}^{M}(0) \ge \mu_{\beta}^{M}(x)$, for all $x \in X$.

Note that $0 \in f(0)$, where 0 and 0' are the zero elements of X and Y respectively.

Thus $\lambda_{\beta}^{M}(0') = f(\mu_{\beta}^{M})(0') = \sup_{t \in f^{-1}(0')} \beta \cdot \mu(t) = \mu_{\beta}^{M}(0) \ge \mu_{\beta}^{M}(x)$, for all $x \in X$, which implies that $\lambda_{\beta}^{\mathsf{M}}(0') \geq sup_{t \in f^{-1}(x')}\beta \cdot \mu(t) = \lambda_{\beta}^{\mathsf{M}}(x').$

For any $x', y', z' \in Y$, let $x_0 \in f^{-1}(x')$, $y_0 \in f^{-1}(y')$, $z_0 \in f^{-1}(z')$ be such that: $f(\mu_{\beta}^{M}(x' * '(y' * 'z')) = sup_{t \in f^{-1}(x'*'(y'*'z'))}\beta . \mu(t), f(\mu_{\beta}^{M})(y') = sup_{t \in f^{-1}(y')}\beta . \mu(t).$ Then $f(\mu_{\beta}^{M})(x' * '(y' * 'z')) = \lambda_{\beta}^{M}(x' * '(y' * 'z')) = sup_{x0*(y0*z0)} \in f^{-1}$ $= sup_{x0*(v0*z0)} \in f^{-1}(x'*(v'*z'))\beta \cdot \mu (x_0 * (y_0 * z_0))$

 $= sup_{t \in f^{-1}(x' * '(y' * 'z'))} \beta \cdot \mu (t)$

Then $\lambda_{\beta}^{M}(x' * z') = sup_{t \in f^{-1}(x' * z')}\beta . \mu(t) = \mu_{\beta}^{M}(x_{0} * z_{0})$ $\geq min \{ \mu_{\beta}^{M}(x_{0} * (y_{0} * z_{0}), \mu_{\beta}^{M}(y_{0}) \}$ $= \min\{ \sup_{t \in f^{-1}(x' *'(y' *'z')} \beta \cdot \mu(t), \sup_{t \in f^{-1}(y')} \beta \cdot \mu(t) \} .$ = $\min\{\lambda_{\beta}^{M}(x' *'(y' *'z'), \lambda_{\beta}^{M}(y')\}.$

Hence $\lambda_{\beta}^{M} = f(\mu_{\beta}^{M})$ is a fuzzy AB-ideal of Y. \Box

Theorem 4.6.: An homomorphic pre-image of a β -magnified fuzzy AB-ideal of AB-algebra X is also a β -magnified fuzzy AB-ideal. **Proof:** Let $f: (X; , 0) \rightarrow (Y; , 0)$ be a homomorphism of AB-algebras, λ the β -magnified fuzzy AB-ideal of Y and μ the pre-image of λ under f, then $\mu_{\beta}^{M}(x) = \lambda_{\beta}^{M}(f(x))$, for all $x \in X$.

By Theorem (4.5), we have that μ_{β}^{M} is a fuzzy AB-ideal of X.

Definition 4.6:Let μ_1 and μ_2 be fuzzy subsets of an AB-algebra X. Then μ_2 is called a **fuzzy extension AB-ideal** of μ_1 if the following assertions are valid:

 $(I_i) \mu_2$ is a fuzzy extension of μ_1 .

 (I_{ii}) If μ_1 is a fuzzy AB-ideal of X, then μ_2 is a fuzzy AB-ideal of X.

Proposition 4.7: For any fuzzy subset μ of an AB-algebra X, the following are equivalent:

(i) μ is a fuzzy AB-ideal of X.

(ii) For all $\beta \in (0, 1]$, μ_{β}^{M} is a multiplication fuzzy AB-ideal of X.

Proposition 4.8:Let μ be a fuzzy subset of an AB-algebra X, $\alpha \in [0,T]$ and $\beta \in (0, 1]$. Then every translation fuzzy subset μ_{α}^{T} of μ is a fuzzy extension AB-ideal of the multiplication fuzzy AB-ideal μ_{β}^{M} of μ .

Proof:

For every $x \in X$, we have $\mu_{\alpha}^{T}(x) = \mu(x) + \alpha \ge \mu(x) \ge \beta \cdot \mu(x) = \mu_{\beta}^{M}(x)$, and so μ_{α}^{T} is a fuzzy extension AB-ideal of μ_{β}^{M} . Assume that μ_{β}^{M} is a fuzzy AB-ideal of X. Then μ is a fuzzy AB-ideal of X by Proposition (4.3).

It follows that μ_{α}^{T} is a fuzzy AB-ideal of X, for all $\alpha \in [0,T]$.

Hence every fuzzy translation subset μ_{α}^{T} is a fuzzy extension AB-ideal of the fuzzy multiplication AB-ideal μ_{β}^{M} . \Box

The following example illustrates Proposition (4.8).

Example 4.9:

Let $X = \{0, 1, 2, 3\}$ be a AB-algebra which is given in Example (3.2). Define a fuzzy subset μ of X by:

Х	0	1	2	3
μ	0.8	0.5	0.3	0.3

Then μ is a fuzzy AB-ideal of X. If we take $\beta = 0.1$, then the multiplication fuzzy subset $\mu_{0.1}^{M}$ of μ is given by:

Х	0	1	2	3
$\mu_{0.1}^{M}$	0.08	0.05	0.03	0.03
$\mu_{0.3}^{M}$	0.24	0.15	0.09	0.09

Clearly $\mu_{0.1}^{M}$ and $\mu_{0.3}^{M}$ are multiplication fuzzy AB-ideals of X. Also, for any $\alpha \in [0,0.2]$, the translation fuzzy μ_{α}^{T} of μ is given by:

Х	0	1	2	3
μ_{α}^{T}	0.8+α	0.5+α	0.3+α	0.3+α

Then μ_{α}^{T} is a fuzzy extension AB-ideal of $\mu_{0.3}^{M}$ and $\mu_{0.1}^{M}$.

References

- [1] A.T. Hameed and A.K. Alkurdi, 2018, Fuzzy Magnified Translations of QS-algebras, LAMBERT Academic Publishing.
- [2] A.T. Hameed and A.K. Alkurdi, (2017), Fuzzy Translation and Fuzzy multiplication of QS-algebras, Journal University of Kerbala, vol.15, no. 4, pp:145-157.
- [3] A.T. Hameed and B.N. Abbas, 2018, Derivation of AB-ideals and fuzzy AB-ideals of ABalgebra, LAMBERT Academic Publishing.
- [4] A.T. Hameed and B.N. Abbas, (2017), AB-ideals of AB-algebras, Applied Mathematical Sciences, vol.11, no.35, pp:1715-1723.
- [5] A.T. Hameed and B.N. Abbas, (2017), On Some Properties of AB-algebras, Algebra Letters, vol.7, pp:1-12.
- [6] A.T. Hameed and B.N. Abbas, (2018), Some properties of fuzzy AB-ideal of AB-algebras, Journal of AL-Qadisiyah for computer science and mathematics , vol.10, no. 1, pp:1-7.
- [7] A.T. Hameed and N.Z. Mohammed, (2017), Fuzzy Translation and Fuzzy multiplication of CI-algebras, Journal of Karbala University, vol.15, no.1, pp:110-123.
- [8] A.T. Hameed, Fuzzy ideals of some algebras, 2015, PH. Sc. Thesis, Ain Shams University, Faculty of Sciences, Egypt.
- [9] A.T. Hameed, S.M. Mostafa and A.H. Abed, 2017, Big Generalized Fuzzy KUS-ideals of KUS-algebra, College of Education Journal in AL-Mustansiryah University 26-27 April 2017.

[10] J. Meng and Y. B. Jun, 1994, BCK-algebras, Kyung Moon Sa Co., Korea.

- [11] K. B. Lee, Y.B. Jun and M. I. Doh, (2009), Fuzzy Translations and Fuzzy Multiplications of BCK/BCI-algebras, Commun. Korean Math. Sco., vol.24, pp:353–360.
- [12] L.A. Zadeh, (1965), Fuzzy Sets, Inform. and Control, vol.8, pp:338-353.
- [13] S.M. Mostafa, A.T. Hameed and A.H. Abed, (2016), Fuzzy KUS-ideals of KUS-algebra, Basra Journal of Science (A), vol.34, no.2, pp:73-84.
- [14] S.M. Mostafa, A.T. Hameed and N.Z. Mohammed, (2016), Fuzzy α-Translation of KUS-algebras, Journal Al-Qadisyah for Computer Science and Mathematics, vol.8, no.2, pp:8-16.
- [15] S.M. Mostafa, M.A. Abdel Naby, F. Abdel-Halim and A.T. Hameed, (2013), On KUS-algebra, International Journal of Algebra, vol.7, no.3, pp:131-144.