The Rational valued characters table of the group $\left(\mathrm{Q}_{2 \mathrm{n}} \times \mathrm{D}_{4}\right)$ when n is an odd number

Nabaa Hasoon Jabir

Department of Mathematics,Faculty of eduction for Girl,University of Kufa,Najaf,Iraq

Abstract

The goal of this paper is to find the rational valued characters table of the group $\left(Q_{2 n} \times D_{4}\right)$ when n is an odd number, which is denoted by $\equiv^{*}\left(Q_{2 n} \times D_{4}\right)$, where $Q_{2 n}$ is denoted to Quaternion group of order 4n, such that for each positive integer n, there are two generators a and b for $Q_{2 n}$ satisfies $Q_{2 n}=\left\{a^{h} b^{k}, 0 \leq \square \leq 2 n-1, k=0,1\right\}$ which has the following pronerties $\left\{a^{2 n}=y^{4}=I\right.$, $\left.b a^{n} b^{-1}=a^{-n}\right\}$ and D_{4} is the Dihedral group of order 8 is generate by a rotation t of order 4 and reflection f of order 2 then 8 elements of D_{4} can be written as: $\left\{I^{*}, t, t^{2}, t^{3}, f, f t, f t^{2}, f t^{3}\right\}$.

Keywords: Rational, characters ,Group, $\mathrm{Q}_{2 \mathrm{n}}, \mathrm{D}_{4}$, odd number.

1. Introduction

Let F be a field and G be a group .A matrix representation of G is a homomorphism $T: G \rightarrow G L(n, F), n$ is called the degree of representation T. T is called a unit representation (principal) $T(g)=1$ for all $g \in G$.[3]
Let T be a matrix representation of G over the field F .The character χ of a matrix representation T is the mapping χ : $\mathrm{G} \rightarrow \mathrm{F}$ defined by $\chi(\mathrm{g})=\operatorname{tr}(\mathrm{T}(\mathrm{g}))$, for all $\mathrm{g} \in \mathrm{G}$.The degree of T is called th degree of χ.Recall that the trace of an nxn matrix A is the sum of main diagonal elements.tr(A$)=\sum_{i=1}^{n} a_{i i}$. [6]

Let G be a finite group ,two elements of G are said to be Γ-conjugate if the cyclic subgroups they generate are conjugate in G and this defines an equivalence relation on G and its classes are called Γ-classes . [2]
In 1980, M.S. Kirdar [8] studied "The factor Group of the Z-valued class function Modulo the group of the Generalized characters", University of Birmingham.
In 1994, H.H. Abass [5] studied "On The Factor Group Of Class Function Over The Group Of Generalized Characters Of $\mathrm{D}_{\mathrm{n}}{ }^{\prime \prime}$, M. Sc.
In 1995, N.R. Mahamood [9] studied"The cyclic Decomposition of the factor group of $\operatorname{cf}\left(Q_{2 m}, z\right) / \bar{R}\left(Q_{2 m}\right)$ ",M.SC. thesis University of Technology.In 1994, Abass.H. H [4] studied "On The Factor Group Of Class Function Over The Group Of Generalized Characters Of D_{n} ", M. Sc. thesis, Technology University.
In this work we find the valued characters table of the $\operatorname{group}\left(\mathrm{Q}_{2 \mathrm{n}} \times \mathrm{D}_{4}\right)$ when n is an odd number .

2.Preliminaries:

2.1 The general form of the characters table of $\mathrm{Q}_{\underline{2} \underline{n}}$ when n is an odd number is given in the following table:[1] $\equiv\left(\mathrm{Q}_{2 \mathrm{n}}\right)=$

CL_{α}	$[\mathrm{I}]$	$\left[\mathrm{a}^{2}\right]$	$\left[\mathrm{a}^{4}\right]$	\cdots	$\left[\mathrm{a}^{\mathrm{n}-1}\right]$	$\left[\mathrm{a}^{\mathrm{n}}\right]$	$[\mathrm{a}]$	$\left[\mathrm{a}^{3}\right]$	\cdots	$\left[\mathrm{a}^{\mathrm{n}-2}\right]$	$[\mathrm{b}]$	$[\mathrm{ab}]$
$\left\|\mathrm{CL}_{\alpha}\right\|$	1	2	2	\cdots	2	1	2	2	\cdots	2	n	n
$\left\|\mathrm{C}_{Q_{2 n}}(\mathrm{CL} \alpha)\right\|$	4 n	2 n	2 n	\cdots	2 n	4 n	2 n	2 n	\cdots	2 n	4	4
λ_{1}	1	1	1	\cdots	1	1	1	1	\cdots	1	1	1
μ_{2}	2	$v^{4}+v^{2 \mathrm{n}-4}$	$v^{8}+v^{2 \mathrm{n}-8}$	\cdots	$v^{2(\mathrm{n}-1)}+v^{2}$	2	$v^{2}+v^{2(\mathrm{n}-1)}$	$v^{6}+v^{2 \mathrm{n}-6}$	\cdots	$v^{2(\mathrm{n}-2)}+v^{4}$	0	0
\vdots	\vdots	\vdots	\vdots	\ddots	\vdots	\vdots	\vdots	\vdots	\ddots	\vdots	\vdots	\vdots
$\mu_{\mathrm{n}-1}$	2	$v^{2(\mathrm{n}-1)}+v^{2}$	$v^{4(\mathrm{n}-1)}+v^{4}$	\cdots	$v^{\mathrm{n}+1}+v^{\mathrm{n}-1}$	2	$v^{\mathrm{n}-1}+v^{\mathrm{n}+1}$	$v^{\mathrm{n}-3}+v^{\mathrm{n}+3}$	\cdots	$v^{2}+v^{2(\mathrm{n}-1)}$	0	0
λ_{2}	1	1	1	\cdots	1	1	1	1	\cdots	1	-1	-1
μ_{1}	2	$v^{2}+v^{2(\mathrm{n}-1)}$	$v^{4}+v^{4(\mathrm{n}-1)}$	\cdots	$v^{\mathrm{n}-1}+v^{\mathrm{n}+1}$	-2	$v+v^{2 \mathrm{n}-1}$	$v^{3}+v^{2 \mathrm{n}-3}$	\cdots	$v^{\mathrm{n}-2}+v^{\mathrm{n}+2}$	0	0
\vdots	\vdots	\vdots	\vdots	\ddots	\vdots	\vdots	\vdots	\vdots	\ddots	\vdots	\vdots	\vdots
$\mu_{\mathrm{n}-2}$	2	$v^{2 \mathrm{n}-4}+v^{4}$	$v^{2 \mathrm{n}-8}+v^{8}$	\cdots	$v^{2}+v^{2(\mathrm{n}-1)}$	-2	$v^{\mathrm{n}-2}+v^{\mathrm{n}+2}$	$v^{\mathrm{n}-6}+v^{\mathrm{n}+6}$	\cdots	$v^{(n-2)^{2}+v^{n^{2}-4}}$	0	0
λ_{3}	1	1	1	\cdots	1	-1	-1	-1	\cdots	-1	i	-i
λ_{4}	1	1	1	\cdots	1	-1	-1	-1	\cdots	-1	-i	i

Table(1)
The characters table of matrix from degree $(\mathrm{n}+3) \times(\mathrm{n}+3)$ where $v=e^{2 \pi i / 2 n}, v^{\mathrm{n}}=-1$

2.2 The Characters Table Of The Dihedral Group D_{4} :[5]

There are $\frac{n-2}{2}+4$ conjugate classes of D_{4}
$\equiv\left(\mathrm{D}_{4}\right)=$

CL_{α}	$\left[{ }^{*}\right]$	$\left[t^{2}\right]$	$[\mathrm{t}]$	$[\mathrm{f}]$	$[\mathrm{ft}]$
$\left\|\mathrm{CL}_{\alpha}\right\|$	1	1	2	2	2
$\left\|\mathrm{CD}_{4}\left(\mathrm{CL}_{\alpha}\right)\right\|$	8	8	4	4	4
λ_{1}^{\prime}	1	1	1	1	1
λ_{2}^{\prime}	1	1	-1	1	-1
λ_{3}^{\prime}	1	1	1	-1	-1
λ_{4}^{\prime}	1	1	-1	-1	1
λ_{5}^{\prime}	2	-2	0	0	0

Table(2)

Theorem 2.2.1:[2]

1 -Sum of characters is a character.
2-Product of characters is a character.
2.3The Rational valued characters table:

Definition(2.3.1):[4]
The group generated by all characters on C is called the group of the generalized characters of G, and it is denoted by $R(G)$.
Definition(2.3.2):[4]
The intersection of $\operatorname{cf}(\mathrm{G}, \mathrm{Z})$ with $\mathrm{R}(\mathrm{G})$ forms an abelian group is called the group of Z -valued generalized characters of G, denoted by $\bar{R}(\mathrm{G})$.
Definition(2.3.3) [1]
A rational valued character θ of G is a character whose values are in Z, which is $\theta(\mathrm{g}) \in \mathrm{Z}$ for all $\mathrm{g} \in \mathrm{G}$.
Corollary (2.3.4) [1]
The rational valued characters $\rho_{i}=\sum_{\sigma \epsilon G a l\left(Q\left(\lambda_{i}\right) / Q\right)} \sigma\left(\lambda_{i}\right)$ Form a basis for $\bar{R}(G)$, where λ_{i} are the irreducible characters of G and their numbers are equal to the number of conjugacy classes of a cyclic subgroup of G.
Proposition(2.3.5) [2]
The number of all rational valued characters of finite G is equal to the number of all distinct Γ-classis.
Proposition(2.3.6):[8]
The rational valued characters table of the cyclic group $\boldsymbol{C}_{\boldsymbol{p}^{s}}$ of the rank s+1 where p is a prime number, which is denoted by $\left(\equiv^{*}\left(\boldsymbol{C}_{\boldsymbol{p}} \boldsymbol{s}\right)\right.$), and given as follows:
$\equiv{ }^{*}\left(\boldsymbol{C}_{\boldsymbol{p}^{s}}\right)=$

Γ-classes	$[1]$	$\left[x^{p^{s-1}}\right]$	$\left[x^{p^{s-2}}\right]$	$\left[x^{p^{s-3}}\right]$	\cdots	$\left[x^{p^{2}}\right]$	$\left[x^{p}\right]$	$[x]$
θ_{1}	$\mathrm{P}^{s-1}(\mathrm{p}-1)$	$-\mathrm{p}^{\mathrm{s}-1}$	0	0	\cdots	0	0	0
θ_{2}	$\mathrm{P}^{s-2}(\mathrm{p}-1)$	$\mathrm{P}^{s-2}(\mathrm{p}-1)$	$-\mathrm{p}^{s-2}$	0	\cdots	0	0	0
θ_{3}	$\mathrm{P}^{\mathrm{s}-3}(\mathrm{p}-1)$	$\mathrm{P}^{s-3}(\mathrm{p}-1)$	$\mathrm{P}^{s-3}(\mathrm{p}-1)$	$-\mathrm{p}^{s-3}$	\cdots	0	0	0
\vdots	\vdots	\vdots	\vdots	\vdots	\ddots	\vdots	\vdots	\vdots
$\theta_{\mathrm{s}-1}$	$\mathrm{P}(\mathrm{p}-1)$	$\mathrm{P}(\mathrm{p}-1)$	$\mathrm{P}(\mathrm{p}-1)$	$\mathrm{P}(\mathrm{p}-1)$	\cdots	$\mathrm{P}(\mathrm{p}-1)$	-p	0
θ_{s}	$\mathrm{p}-1$	$\mathrm{p}-1$	$\mathrm{p}-1$	$\mathrm{p}-1$	\cdots	$\mathrm{p}-1$	$\mathrm{p}-1$	-1
$\theta_{\mathrm{s}+1}$	1	1	1	1	\cdots	1	1	1

Table(3)
Where its rank $\mathrm{s}+1$ which represents the number of all distinct Γ-classes.

Proposition(2.3.7):[8]

For $\mathrm{n}=p_{1}^{\alpha_{1}} \cdot p_{2}^{\alpha_{2}} \ldots . p_{n}^{\alpha_{n}}$ where g.c. $\mathrm{d}\left(\mathrm{p}_{\mathrm{i}}, \mathrm{p}_{\mathrm{j}}\right)=1$, if $\mathrm{i} \neq \mathrm{j}$ and p_{i} 's are prime numbers, and α_{i} any positive integers for all $1 \leq i \leq n$, then the rational valued characters table of the cyclic group C_{n} can be given by:

$$
\equiv{ }^{*}\left(C_{n}\right)=\equiv^{*}\left(C_{p_{1}} \alpha_{1}\right) \otimes \equiv^{*}\left(C_{p_{2}} \alpha_{2}\right) \otimes \ldots . \otimes \equiv^{*}\left(C_{p_{n}} \alpha_{n}\right)
$$

Proposition(2.3.9):[9]

The rational valued characters table of Quaternion group $\mathrm{Q}_{2 \mathrm{n}}$ when m is an odd number is given by:

International Journal of Engineering and Information Systems (IJEAIS)
ISSN: 2643-640X
Vol. 4, Issue 6, June - 2020, Pages: 68-79

${ }^{*}\left(\mathbf{Q}_{2 n}\right)$														
	Γ-classes of $C_{2 n}$									[y]				
	$X^{2 r}$					$X^{2 r+1}$								
θ_{1}	$\equiv{ }^{*}(\boldsymbol{n})$					$\equiv{ }^{*}\left(\boldsymbol{C}_{\boldsymbol{n}}\right)$				0				
!						:								
$\theta_{(/ 12)-1}$						0								
$\theta_{(1 / 2)}$		1		...							1	...		1
$\theta_{(l / 2)+1}$	$\equiv{ }^{*}\left(\boldsymbol{C}_{\boldsymbol{n}}\right)$									H				0
!						:								
θ_{l-1}						0								
θ_{l}	1	1		1				...		-1				
θ_{l+1}	2		2	...	2	-2	-2	...	-2	0				

Table(4)
Where $0 \leq \mathrm{r} \leq \mathrm{m}-1, l$ is the number of Γ-classes of $\mathrm{C}_{2 \mathrm{n}}, \theta_{\mathrm{j}}$ such that $1 \leq \mathrm{j} \leq l+1$ are the rational valued characters table of Quaternion group $\mathrm{Q}_{2 \mathrm{~m}}$ if we denote C_{ij} the elements of $\equiv{ }^{*}\left(C_{n}\right)$ and h_{ij} the elements of H it as defined by:

$$
\mathrm{h}_{\mathrm{ij}}=\left\{\begin{array}{lll}
C_{i j} & \text { if } i=1 \\
-C_{i j} & \text { if } & i \neq 1
\end{array}\right.
$$

Lemma(2.3.10):[1]
The rational valued characters table of $\mathbf{D}_{\mathbf{n}}$ when n is an odd number is given by:

Table(5)
Where l is the number of Γ-classes.

$$
\equiv^{*}\left(\mathrm{D}_{4}\right)=
$$

CL_{α}	$\left[\mathrm{I}^{*}\right]$	$\left[t^{2}\right]$	$[\mathrm{t}]$	$[\mathrm{f}]$	$[\mathrm{ft}]$
$\left\|\mathrm{CL}_{\alpha}\right\|$	1	1	2	2	2
$\left\|\mathrm{CD}_{4}\left(\mathrm{CL}_{\alpha}\right)\right\|$	8	8	4	4	4
ρ_{1}^{\prime}	1	1	1	1	1
ρ_{2}^{\prime}	1	1	-1	1	-1
ρ_{3}^{\prime}	1	1	1	-1	-1
ρ_{4}^{\prime}	1	1	-1	-1	1
ρ_{5}^{\prime}	2	-2	0	0	0

Table(6)

3. The Main Results

3.1 Characters Table of the $\operatorname{Group}\left(\mathrm{Q}_{2 n} \times \mathrm{D}_{4}\right)$ when n is an odd number:

The group $\left(\mathrm{Q}_{2 \mathrm{n}} \times \mathrm{D}_{4}\right)$ is the direct product of the Quaternion group $\mathrm{Q}_{2 \mathrm{n}}$ of order 4 n and the dihedral group D_{4} of order 8 then the order of the group $\left(\mathrm{Q}_{2 \mathrm{n}} \times \mathrm{D}_{4}\right)$ is 32 , the irreducible representations of the group $\left(\mathrm{Q}_{2 \mathrm{n}} \times \mathrm{D}_{4}\right)$ are the tensor product $\mathrm{Q}_{2 \mathrm{n}}$ and D_{4} and the irreducible characters of the group $\left(\mathrm{Q}_{2 \mathrm{n}} \times \mathrm{D}_{4}\right)$ are the tensor product $\mathrm{Q}_{2 \mathrm{n}}$ and D_{4}. According to proposition(2.3.7), each irreducible character λ_{i} of $\mathrm{Q}_{2 \mathrm{n}}$, defines four characters $\lambda_{(\mathrm{i}, 1)}, \lambda_{(\mathrm{i}, 2)}, \lambda_{(\mathrm{i}, 3)}, \lambda_{(\mathrm{i}, 4)}$ and $\lambda_{(\mathrm{i}, 5)}$. such that $\lambda_{(\mathrm{i}, 1)}=\lambda_{\mathrm{i}} \lambda_{1}^{\prime}, \lambda_{(\mathrm{i}, 2)}=\lambda_{\mathrm{i}} \lambda_{2}^{\prime}, \lambda_{(\mathrm{i}, 3)}=\lambda_{\mathrm{i}} \lambda_{3}^{\prime}, \lambda_{(\mathrm{i}, 4)}=\lambda_{\mathrm{i}} \lambda_{4}^{\prime} \quad \lambda_{(\mathrm{i}, 5)}=\lambda_{\mathrm{i}} \lambda_{5}^{\prime} \quad$ of $\left(\mathrm{Q}_{2 \mathrm{~m}} \times \mathrm{D}_{4}\right)$.
Then $\equiv\left(\mathrm{Q}_{2 \mathrm{n}} \times \mathrm{D}_{4}\right)=\equiv \mathrm{Q}_{2 \mathrm{n}} \otimes \equiv \mathrm{D}_{4}$.

Then, the general form of the characters table of $\left(\mathrm{Q}_{2 \mathrm{n}} \times \mathrm{D}_{4}\right)$ when n is an odd number is given in the following table:

International Journal of Engineering and Information Systems (IJEAIS)

ISSN: 2643-640X

Vol. 4, Issue 6, June - 2020, Pages: 68-79

CL_{α}	$\begin{aligned} & {[\mathrm{I}, \mathrm{I}} \\ & \hline \end{aligned}$	${ }_{\text {[I, } \mathrm{t}^{2}}$	$[\mathrm{I}, \mathrm{t}$ $]$	[I,f	$\begin{aligned} & {[\mathrm{I}, \mathrm{ft}} \\ &] \\ & \hline \end{aligned}$	[$\left.\mathrm{a}^{2}, \mathrm{I}\right]$	$\left[\mathrm{a}^{2}, \mathrm{t}^{2}\right]$	[a^{2}, t]	[a^{2}, f$]$	[$\left.\mathrm{a}^{2}, \mathrm{ft}\right]$	\cdots	$\left[\mathrm{a}^{\mathrm{p}-1}, \mathrm{I}\right]$	$\left[\mathrm{a}^{\mathrm{p}-1}, \mathrm{t}^{2}\right]$	$\left[\mathrm{a}^{\mathrm{p}-1}, \mathrm{t}\right]$	[$\left.\mathrm{a}^{\mathrm{p}-1}, \mathrm{f}\right]$	
$\left\|\mathrm{CL}_{\alpha}\right\|$	1	1	2	2	2	2	2	4	4	4	...	2	2	4	4	
$\mathrm{C}_{\mathrm{Q}_{2 \mathrm{n}} \times \mathrm{D}_{4}}(\mathrm{CL} \alpha) \mid$	32 n	32n	$\begin{gathered} 16 \\ \mathrm{n} \end{gathered}$	16n	16 n	16 n	16 n	8 n	8 n	8 n	\cdots	$16 n$	16 n	8 n	8 n	
$\lambda_{(1,1)}$	1	1	1	1	1	1	1	1	1	1	\cdots	1	1	1	1	
$\lambda_{(1,2)}$	1	1	-1	1	-1	1	1	-1	1	-1	...	1	1	-1	1	
$\lambda_{(1,3)}$	1	1	1	-1	-1	1	1	1	-1	-1	\ldots	1	1	1	-1	
$\lambda_{(1,4)}$	1	1	-1	-1	1	1	1	-1	-1	1	\cdots	1	1	-1	-1	
$\lambda_{(1,5)}$	2	-2	0	0	0	2	-2	0	0	0	...	2	-2	0	0	
$\mu_{(2,1)}$	2	2	2	2	2	$\mathrm{v}^{4}+\mathrm{v}^{2 \mathrm{n}-4}$	$v^{4}+v^{2 n-4}$	$v^{4}+v^{2 n-4}$	$\mathrm{v}^{4}+\mathrm{v}^{2 \mathrm{n}-4}$	$v^{4}+v^{2 n-4}$	\cdots	$v^{2 n-2}+v^{2}$	$v^{2 n-2}+v^{2}$	$v^{2 n-2}+v^{2}$	$v^{2 n-2}+v^{2}$	
$\mu_{(2,2)}$	2	2	-2	2	-2	$\mathrm{v}^{4}+\mathrm{v}^{2 \mathrm{n}-4}$	$v^{4}+v^{2 n-4}$	$\begin{aligned} & \left(v^{4}+\right. \\ & \left.v^{2 n-4}\right) \end{aligned}$	$\mathrm{v}^{4}+\mathrm{v}^{2 \mathrm{n}-4}$	$\begin{aligned} & \left(v^{4}+v^{2 n-4}\right. \\ &)^{2 n} \end{aligned}$	\cdots	$v^{2 n-2}+v^{2}$	$v^{2 n-2}+v^{2}$	$-\left(v^{2 n-2}+v^{2}\right)$	$v^{2 n-2}+v^{2}$	
$\mu_{(2,3)}$	2	2	2	-2	-2	$v^{4}+v^{2 n-4}$	$v^{4}+v^{2 n-4}$	$v^{4}+v^{2 n-4}$	$\left(v^{4}+v^{2 n-4}\right)$	$\begin{aligned} & \left(v^{4}+v^{2 n-4}\right. \\ &) \end{aligned}$	\cdots	$v^{2 n-2}+v^{2}$	$v^{2 n-2}+v^{2}$	$v^{2 n-2}+v^{2}$	$-\left(v^{2 n-2}+v^{2}\right)$	
$\mu_{(2,4)}$	2	2	-2	-2	2	$v^{4}+v^{2 n-4}$	$v^{4}+v^{2 n-4}$	$\left(v^{4}+v^{2 n-4}\right)$	$\left(v^{4}+v^{2 n-4}\right)$	$v^{4}+v^{2 n-4}$	\cdots	$v^{2 n-2}+v^{2}$	$v^{2 n-2}+v^{2}$	$-\left(v^{2 n-2}+v^{2}\right)$	$\left(v^{2 n-1)}+v^{2}\right)$	
$\mu_{(2,5)}$	4	-4	0	0	0	$\begin{aligned} & 2\left(v^{4}+\right. \\ & \left.v^{2 n-4}\right) \end{aligned}$	$\begin{aligned} & 2\left(v^{4}+\right. \\ & \left.v^{2 n-4}\right) \\ & \hline \end{aligned}$	0	0	0	\cdots	$2\left(v^{2 n-2}+v^{2}\right)$	$-2\left(v^{2 n-2}+v^{2}\right)$	0	0	
\vdots	:	!	\vdots	!	!	!	!	\vdots	\vdots	!	\because	!	!	!	\vdots	
$\mu_{((n-1), 1)}$	2	2	2	2	2	$v^{2 n-2}+v^{2}$	$\mathrm{v}^{2 \mathrm{n}-2}+\mathrm{v}^{2}$	$v^{2 n-2}+v^{2}$	$v^{2 n-2}+v^{2}$	$v^{2 n-2}+v^{2}$	\cdots	$\mathrm{v}^{\mathrm{n}+1}+\mathrm{v}^{\mathrm{n}-1}$	$v^{n+1}+v^{n-1}$	$v^{n+1}+v^{n-1}$	$v^{n+1}+v^{n-1}$	
$\mu_{((n-1), 2)}$	2	2	-2	2	-2	$v^{2 n-2}+v^{2}$	$v^{2 n-2}+v^{2}$	$\left(v^{2 n-2}+v^{2}\right)$	$v^{2 n-2}+v^{2}$	$\begin{gathered} \left(v^{2 n-2}+\right. \\ \left.v^{2}\right) \\ \hline \end{gathered}$	\cdots	$v^{n+1}+v^{n-1}$	$v^{n+1}+v^{n-1}$	$\begin{gathered} \left(v^{n+1}+\right. \\ \left.v^{n-1}\right) \end{gathered}$	$v^{n+1}+v^{n-1}$	
$\mu_{((n-1), 3)}$	2	2	2	-2	-2	$v^{2 n-2}+v^{2}$	$v^{2 n-2}+v^{2}$	$v^{2 n-2}+v^{2}$	$\left(v^{2 n-2}+v^{2}\right)$	$\begin{gathered} \left(v^{2 n-2}+\right. \\ \left.v^{2}\right) \end{gathered}$	\cdots	$v^{n+1}+v^{n-1}$	$v^{n+1}+v^{n-1}$	$v^{\mathrm{n}+1}+\mathrm{v}^{\mathrm{n}-1}$	$\begin{gathered} - \\ \left(v^{\mathrm{n}+1}+\right. \\ \left.\mathrm{v}^{\mathrm{n}-1}\right) \\ \hline \end{gathered}$	
$\mu_{((n-1), 4)}$	2	2	-2	-2	2	$v^{2 n-2}+v^{2}$	$v^{2 n-2}+v^{2}$	$\left(v^{2 n-2}+v^{2}\right)$	$\left(v^{2 n-1)}+v^{2}\right.$)	$v^{2 n-2}+v^{2}$	\cdots	$v^{n+1}+v^{n-1}$	$\mathrm{v}^{\mathrm{n}+1}+\mathrm{v}^{\mathrm{n}-1}$	$\begin{gathered} \left(v^{n+1}+\right. \\ \left.v^{n-1}\right) \end{gathered}$	$\left(v^{n+1}+v^{n-1}\right.$)	
$\mu_{((n-1), 5)}$	4	-4	0	0	0	$\begin{gathered} 2\left(v^{2 n-2}+\right. \\ \left.v^{2}\right) \end{gathered}$	$\begin{gathered} 2\left(v^{-\bar{n}-2}+\right. \\ \left.v^{2}\right) \\ \hline \end{gathered}$	0	0	0	\cdots	$2\left(v^{n+1}+v^{n-1}\right.$	$\begin{gathered} 2\left(v^{n+1}+v^{n-1}\right. \\) \end{gathered}$	0	0	
$\lambda_{(2,1)}$	1	1	1	1	1	1	1	1	1	1	\cdots	1	1	1	1	1
$\lambda_{(2,2)}$	1	1	-1	1	-1	1	1	-1	1	-1	\cdots	1	1	-1	1	-
$\lambda_{(2,3)}$	1	1	1	-1	-1	1	1	1	-1	-1	\cdots	1	1	1	-1	-

International Journal of Engineering and Information Systems (IJEAIS)

ISSN: 2643-640X

Vol. 4, Issue 6, June - 2020, Pages: 68-79

$\lambda_{(2,4)}$	1	1	-1	-1	1	1	1	-1	-1	1	\cdots	1	1	-1	-1	1
$\lambda_{(2,5)}$	2	-2	0	0	0	2	-2	0	0	0	\cdots	2	-2	0	0	0
$\mu_{(1,1)}$	2	2	2	2	2	$v^{2}+v^{2 n-4}$	\cdots	$v^{\mathrm{n}+1}+\mathrm{v}^{\mathrm{n}-1}$	$v^{\mathrm{n}+1}+\mathrm{v}^{\mathrm{n}-1}$	$\mathrm{v}^{\mathrm{n}+1}+\mathrm{v}^{\mathrm{n}-1}$	$v^{n+1}+v^{n-1}$					
$\mu_{(1,2)}$	2	2	-2	2	-2	$v^{2}+v^{2 n-4}$	$v^{2}+v^{2 n-4}$	$\begin{aligned} & \left(v^{2}+\right. \\ & \left.v^{2 n-4}\right) \end{aligned}$	$v^{2}+v^{2 n-4}$	$\left(v^{2}+v^{2 n-4}\right.$	\cdots	$v^{n+1}+v^{n-1}$	$v^{n+1}+v^{n-1}$	$\begin{gathered} \left(v^{\mathrm{n}+1}+\right. \\ \left.\mathrm{v}^{\mathrm{n}-1}\right) \end{gathered}$	$v^{n+1}+v^{n-1}$	
$\mu_{(1,3)}$	2	2	2	-2	-2	$v^{2}+v^{2 n-4}$	$v^{2}+v^{2 n-4}$	$v^{2}+v^{2 n-4}$	$\left(v^{2}+v^{2 n-4}\right)$	$\left(v^{2}+v^{2 n-4}\right.$		$v^{n+1}+v^{n-1}$	$v^{n+1}+v^{n-1}$	$v^{n+1}+v^{n-1}$	$\begin{gathered} - \\ \left(v^{\mathrm{n}+1}+\right. \\ \left.\mathrm{v}^{\mathrm{n}-1}\right) \end{gathered}$	
$\mu_{(1,4)}$	2	2	-2	-2	2	$v^{2}+v^{2 n-4}$	$v^{2}+v^{2 n-4}$	$\left(v^{2}+v^{2 n-4}\right)$	$\left(v^{2}+v^{2 n-4}\right)$	$v^{2}+v^{2 n-4}$		$v^{n+1}+v^{n-1}$	$v^{n+1}+v^{n-1}$	$\begin{gathered} - \\ \left(v^{\mathrm{n}+1}+\right. \\ \left.\mathrm{v}^{\mathrm{n}-1}\right) \end{gathered}$	$\left(v^{n+1}+v^{n-1}\right.$)	
$\mu_{(1,5)}$	4	-4	0	0	0	$\begin{aligned} & 2\left(v^{2}+\right. \\ & \left.v^{2 n-4}\right) \end{aligned}$	$\begin{aligned} & 2\left(v^{2}+\right. \\ & \left.v^{2 n-4}\right) \\ & \hline \end{aligned}$	0	0	0		$\begin{gathered} 2\left(v^{n+1}+v^{n-1}\right. \\) \end{gathered}$	$2\left(v^{n+1}+v^{n-1}\right.$)	0	0	
!	\vdots	\vdots	:	!	\vdots	;	!	:	!	;		:	:	!	:	

The characters table of matrix fron degree $4(\mathrm{n}+3) \times 4(\mathrm{n}+3)$ where $v=e^{2 \pi i / 2 n}, v^{n}=-1$
$\equiv\left(\mathrm{Q}_{2 \mathrm{n}} \times \mathrm{D}_{4}\right)=$

[$\left.\mathrm{a}^{\mathrm{n}-1}, \mathrm{ft}\right]$	$\begin{gathered} {\left[\mathrm{a}^{\mathrm{n}},\right.} \\ \left.\mathrm{I}^{\prime}\right] \\ \hline \end{gathered}$	$\begin{gathered} {\left[\mathrm{a}^{\mathrm{n}},\right.} \\ \left.\mathrm{t}^{2}\right] \end{gathered}$	$\begin{gathered} {\left[\mathrm{a}^{\mathrm{n}},\right.} \\ \mathrm{t}] \\ \hline \end{gathered}$	$\begin{gathered} {\left[\mathrm{a}^{\mathrm{p}},\right.} \\ \mathrm{f}] \\ \hline \end{gathered}$	$\begin{gathered} {\left[\mathrm{a}^{\mathrm{n}},\right.} \\ \mathrm{ft}] \end{gathered}$	[a, I]	[a, ${ }^{2}$]	[a,t]	[a, f]	[a, ft]	\cdots	[$\left.\mathrm{a}^{\mathrm{n}-2}, \mathrm{I}\right]$	$\left[\mathrm{a}^{\mathrm{n}-2}, \mathrm{t}^{2}\right]$	[$\mathrm{a}^{\mathrm{n}-2}, \mathrm{t}$]
4	1	1	2	2	2	2	2	4	4	4	\cdots	2	2	4
8 n	32n	32n	16n	16n	16n	16 n	16 n	8 n	8n	8n	\cdots	16n	16n	8n
1	1	1	1	1	1	1	1	1	1	1	\cdots	1	1	1
-1	1	1	-1	1	-1	1	1	-1	1	-1	\ldots	1	1	-1
-1	1	1	1	-1	-1	1	1	1	-1	-1	\cdot	1	1	1
1	1	1	-1	-1	1	1	1	-1	-1	1	\cdots	1	1	-1
0	2	-2	0	0	0	2	-2	0	0	0	..	2	-2	0
$v^{2 n-2}+v^{2}$	2	2	2	2	2	$\mathrm{v}^{2}+\mathrm{v}^{2(\mathrm{n}-1)}$	$\mathrm{v}^{2}+\mathrm{v}^{2(n-1)}$	$v^{2}+v^{2(n-1)}$	$\mathrm{v}^{2}+\mathrm{v}^{2(n-1)}$	$\mathrm{v}^{2}+\mathrm{v}^{2(\mathrm{n}-1)}$	\cdots	$v^{4}+v^{2 n-4}$	$v^{4}+v^{2 n-4}$	$v^{4}+v^{2 n-4}$
$v^{2 n-2}+v^{2}$	2	2	-2	2	-2	$\mathrm{v}^{2}+\mathrm{v}^{2(\mathrm{n}-1)}$	$\mathrm{v}^{2}+\mathrm{v}^{2(\mathrm{n}-1)}$	$\left(v^{2}+v^{-}(\mathrm{n}-1)\right)$	$\mathrm{v}^{2}+\mathrm{v}^{2(\mathrm{n}-1)}$	$-\left(v^{2}+v^{2(n-1)}\right)$	\cdots	$\mathrm{v}^{4}+\mathrm{v}^{2 \mathrm{n}-4}$	$\mathrm{v}^{4}+\mathrm{v}^{2 \mathrm{n}-4}$	$-\left(v^{4}+v^{2 n-4}\right)$
$-\left(v^{2 n-2}+v^{2}\right)$	2	2	2	-2	-2	$\mathrm{v}^{2}+\mathrm{v}^{2(\mathrm{n}-1)}$	$\mathrm{v}^{2}+\mathrm{v}^{2(\mathrm{n}-1)}$	$v^{2}+v^{2(n-1)}$	$-\left(v^{2}+v^{2(n-1)}\right)$	$-\left(v^{2}+v^{2(n-1)}\right)$	\cdots	$v^{4}+v^{2 n-4}$	$v^{4}+v^{2 n-4}$	$v^{4}+v^{2 n-4}$
$-\left(v^{2 n-1)}+v^{2}\right)$	2	2	-2	-2	2	$\mathrm{v}^{2}+\mathrm{v}^{2(\mathrm{n}-1)}$	$\mathrm{v}^{2}+\mathrm{v}^{2(n-1)}$	$\left(v^{2}+v^{2(n-1)}\right)$	$-\left(v^{2}+v^{2(n-1)}\right)$	$v^{2}+v^{2(n-1)}$	\cdots	$v^{4}+v^{2 n-4}$	$v^{4}+v^{2 n-4}$	$-\left(v^{4}+v^{2 n-4}\right)$
0	4	-4	0	0	0	$2\left(v^{2}+v^{2(n-1)}\right)$	$-2\left(v^{2}+v^{2(n-1)}\right)$	0	0	0	\cdots	$2\left(v^{4}+v^{2 n-4}\right)$	$-2\left(v^{4}+v^{2 n-4}\right)$	0
!	!	!	!	!	!	!	!	!	!	!	\vdots	!	!	!
$\mathrm{v}^{\mathrm{n}+1}+\mathrm{v}^{\mathrm{n}-1}$	2	2	2	2	2	$v^{\mathrm{n}+1}+\mathrm{v}^{\mathrm{n}-1}$	$v^{n+1}+v^{n-1}$	$v^{n+1}+v^{n-1}$	$v^{\mathrm{n}+1}+\mathrm{v}^{\mathrm{n}-1}$	$v^{\mathrm{n}+1}+\mathrm{v}^{\mathrm{n}-1}$	\ldots	$v^{2}+v^{2(n-1)}$	$v^{2}+v^{2(n-1)}$	$v^{2}+\mathrm{v}^{2(n-1)}$
$-\left(v^{n+1}+v^{n-1}\right)$	2	2	-2	2	-2	$v^{n+1}+v^{n-1}$	$v^{n+1}+v^{n-1}$	-	$v^{n+1}+v^{n-1}$	$-\left(v^{n+1}+v^{n-1}\right)$..	$v^{2}+v^{2(n-1)}$	$\mathrm{v}^{2}+\mathrm{v}^{2(n-1)}$	$-\left(v^{2}+v^{2(n-1)}\right)$

International Journal of Engineering and Information Systems (IJEAIS)

ISSN: 2643-640X

Vol. 4, Issue 6, June - 2020, Pages: 68-79

								$\left(v^{\mathrm{n}+1}+\mathrm{v}^{\mathrm{n}-1}\right)$						
$-\left(v^{n+1}+v^{n-1}\right)$	2	2	2	-2	-2	$v^{\mathrm{n}+1}+\mathrm{v}^{\mathrm{n}-1}$	$v^{n+1}+v^{n-1}$	$v^{\mathrm{n}+1}+\mathrm{v}^{\mathrm{n}-1}$	$-\left(v^{n+1}+v^{n-1}\right)$	$-\left(v^{n+1}+v^{n-1}\right)$	\cdots	$v^{2}+\mathrm{v}^{2(\mathrm{n}-1)}$	$v^{2}+\mathrm{v}^{2(\mathrm{n}-1)}$	$v^{2}+\mathrm{v}^{2(\mathrm{n}-1)}$
$\mathrm{v}^{\mathrm{n}+1}+\mathrm{v}^{\mathrm{n}-1}$	2	2	-2	-2	2	$v^{n+1}+v^{n-1}$	$v^{n+1}+v^{n-1}$	$\left(\mathrm{v}^{\mathrm{n}+1}+\mathrm{v}^{\mathrm{n}-1}\right)$	$-\left(v^{n+1}+v^{n-1}\right)$	$v^{n+1}+v^{n-1}$	\cdots	$\mathrm{v}^{2}+\mathrm{v}^{2(\mathrm{n}-1)}$	$v^{2}+v^{2(n-1)}$	$-\left(v^{2}+v^{2(n-1)}\right)$
0	4	-4	0	0	0	$2\left(v^{n+1}+v^{n-1}\right)$	$-2\left(v^{n+1}+v^{n-1}\right)$	0	0	0	\cdots	$2\left(v^{2}+v^{2(n-1)}\right)$	$-2\left(v^{2}+v^{2(n-1)}\right)$	0
1	1	1	1	1	1	1	1	1	1	1	\cdots	1	1	1
-1	1	1	-1	1	-1	1	1	-1	1	-1	\cdots	1	1	-1
-1	1	1	1	-1	-1	1	1	1	-1	-1	\cdots	1	1	1
1	1	1	-1	-1	1	1	1	-1	-1	1	\cdots	1	1	-1
0	2	-2	0	0	0	2	-2	0	0	0	\ldots	2	-2	0
$\mathrm{v}^{\mathrm{n}+1}+\mathrm{v}^{\mathrm{n}-1}$	$2 v^{\text {n }}$	$2 v^{\mathrm{n}}$	$2 v^{n}$	$2 v^{\mathrm{n}}$	$2 v^{\mathrm{n}}$	$v+v^{2(n-1)}$	$v+v^{2(n-1)}$	$v+v^{2(n-1)}$	$\mathrm{v}+\mathrm{v}^{2(\mathrm{n}-1)}$	$\mathrm{v}+\mathrm{v}^{2(\mathrm{n}-1)}$	\cdots	$\mathrm{v}^{\mathrm{n}+2}+\mathrm{v}^{\mathrm{n}-2}$	$\mathrm{v}^{\mathrm{n}+2}+\mathrm{v}^{\mathrm{n}-2}$	$v^{\mathrm{n}+2}+\mathrm{v}^{\mathrm{n}-2}$
$-\left(v^{n+1}+v^{n-1}\right.$	$2 v^{\text {n }}$	$2 v^{\text {n }}$	$-2 v^{n}$	$2 v^{\mathrm{n}}$	$-2 v^{n}$	$v+v^{2(n-1)}$	$v+v^{2(n-1)}$	$-\left(\mathrm{v}+\mathrm{v}^{2(\mathrm{n}-1)}\right)$	$v+v^{2(n-1)}$	$-\left(u+v^{2(n-1)}\right)$	\cdots	$v^{n+2}+v^{n-2}$	$v^{n+2}+v^{n-2}$	$-\left(v^{n+2}+v^{n-2}\right)$
$-\left(v^{n+1}+v^{n-1}\right)$	$2 v^{n}$	$2 v^{n}$	$2 v^{n}$	$-2 v^{n}$	$-2 v^{n}$	$v+v^{2(n-1)}$	$v+v^{2(n-1)}$	$\mathrm{v}+\mathrm{v}^{2(\mathrm{n}-1)}$	$-\left(\mathrm{u}+\mathrm{v}^{2(\mathrm{n}-1)}\right)$	$-\left(u+v^{2(n-1)}\right)$	\cdots	$v^{\mathrm{n}+2}+\mathrm{v}^{\mathrm{n}-2}$	$v^{\mathrm{n}+2}+\mathrm{v}^{\mathrm{n}-2}$	$v^{n+2}+v^{n-2}$
$\mathrm{v}^{\mathrm{n}+1}+\mathrm{v}^{\mathrm{n}-1}$	$2 v^{\text {n }}$	$2 v^{n}$	$-2 v^{\text {n }}$	$-2 v^{\mathrm{n}}$	$2 v^{\mathrm{n}}$	$v+v^{2(n-1)}$	$v+v^{2(n-1)}$	$-\left(\mathrm{v}+\mathrm{v}^{2(\mathrm{n}-1)}\right)$	$-\left(\mathrm{u}+\mathrm{v}^{2(\mathrm{n}-1)}\right)$	$\mathrm{v}+\mathrm{v}^{2(\mathrm{n}-1)}$	\cdots	$v^{n+2}+v^{n-2}$	$v^{n+2}+v^{n-2}$	$-\left(v^{n+2}+v^{n-2}\right)$
0	$4 v^{n}$	$4 v^{n}$	0	0	0	$2\left(v+v^{2(n-1)}\right)$	$-2\left(v+v^{2(n-1)}\right)$	0	0	0	\cdots	$2\left(v^{n+2}+v^{n-2}\right)$	$-2\left(v^{n+2}+v^{n-2}\right)$	0

The characters table of matrix from degree $4(\mathrm{n}+3) \times 4(\mathrm{n}+3)$ where $v=e^{2 \pi i / 2 n}, v^{n}=-1$
$\equiv\left(\mathrm{Q}_{2 \mathrm{n}} \times \mathrm{D}_{4}\right)=$

[$\left.\mathrm{a}^{\mathrm{n}-2}, \mathrm{f}\right]$	[$\mathrm{a}^{\mathrm{n}-2}, \mathrm{tf}$]	[b, I]	[b, ${ }^{2}$]	[b,t]	[b, f]	[b, ft]	[ab, , I]	[ab, ${ }^{2}$]	[ab,t]	[ab, f]	[ab, ft]
4	4	n	n	2n	2n	2n	n	n	2n	2n	2n
8 n	8 n	32	32	16	16	16	32	32	16	16	16
1	1	1	1	1	1	1	1	1	1	1	1
1	-1	1	1	-1	1	-1	1	1	-1	1	-1
-1	-1	1	1	1	-1	-1	1	1	1	-1	-1
-1	1	1	1	-1	-1	1	1	1	-1	-1	1
0	0	2	-2	0	0	0	2	-2	0	0	0
$v^{4}+v^{2 n-4}$	$v^{4}+v^{2 n-4}$	0	0	0	0	0	0	0	0	0	0
$v^{4}+v^{2 n-4}$	$-\left(v^{4}+v^{2 n-4}\right)$	0	0	0	0	0	0	0	0	0	0
$-\left(v^{4}+v^{2 n-4}\right)$	$-\left(v^{4}+v^{2 n-4}\right)$	0	0	0	0	0	0	0	0	0	0
$-\left(v^{4}+v^{2 n-4}\right)$	$v^{4}+v^{2 n-4}$	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
:	!	!	:	:	!	!	!	:	:	:	!
$v^{2}+\mathrm{v}^{2(\mathrm{n}-1)}$	$v^{2}+\mathrm{v}^{2(\mathrm{n}-1)}$	0	0	0	0	0	0	0	0	0	0
$v^{2}+v^{2(n-1)}$	$-\left(v^{2}+v^{2(n-1)}\right)$	0	0	0	0	0	0	0	0	0	0
$-\left(v^{2}+v^{2(n-1)}\right)$	$-\left(v^{2}+v^{2(n-1)}\right)$	0	0	0	0	0	0	0	0	0	0
$-\left(v^{2}+v^{2(n-1)}\right)$	$\mathrm{v}^{2}+\mathrm{v}^{2(\mathrm{n}-1)}$	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
1	1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1

International Journal of Engineering and Information Systems (IJEAIS)

ISSN: 2643-640X

Vol. 4, Issue 6, June - 2020, Pages: 68-79

1	-1	-1	-1	1	-1	1	-1	-1	1	-1	1
-1	-1	-1	-1	-1	1	1	-1	-1	-1	1	1
-1	1	-1	-1	1	1	-1	-1	-1	1	1	-1
0	0	-2	2	0	0	0	-2	2	0	0	0
$v^{n+2}+\mathrm{v}^{\mathrm{n}-2}$	$v^{n+2}+v^{n-2}$	0	0	0	0	0	0	0	0	0	0
$v^{\mathrm{n}+2}+\mathrm{v}^{\mathrm{n}-2}$	$-\left(v^{n+2}+v^{n-2}\right)$	0	0	0	0	0	0	0	0	0	0
$-\left(v^{n+2}+v^{n-2}\right)$	$-\left(v^{n+2}+v^{n-2}\right)$	0	0	0	0	0	0	0	0	0	0
$-\left(v^{n+2}+v^{n-2}\right)$	$v^{n+2}+v^{n-2}$	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0

Table(7)

The characters table of matrix from degree $4(\mathrm{n}+3) \times 4(\mathrm{n}+3)$ where $v=e^{2 \pi i / 2 n}, v^{n}=-1$

$\mu_{(\mathrm{n}-2), 1)}$	2	2	2	2	2	$\mathrm{v}^{4}+\mathrm{v}^{2 \mathrm{n}-4}$	$\mathrm{v}^{4}+\mathrm{v}^{2 \mathrm{n}-4}$	$v^{4}+v^{2 \mathrm{n}-4}$	$\mathrm{v}^{4}+\mathrm{v}^{2 \mathrm{n}-4}$	$\mathrm{v}^{4}+\mathrm{v}^{2 \mathrm{n}-4}$	$v^{\mathrm{n}+1}+\mathrm{v}^{\mathrm{n}-1}$	$v^{\mathrm{n}+1}+\mathrm{v}^{\mathrm{n}-1}$	$v^{\mathrm{n}+1}+\mathrm{v}^{\mathrm{n}-1}$	$v^{\mathrm{n}+1}+\mathrm{v}^{\mathrm{n}-1}$	$v^{\mathrm{n}+1}+\mathrm{v}^{\mathrm{n}-1}$
$\mu_{((n-2), 2)}$	2	2	-2	2	-2	$\mathrm{v}^{4}+\mathrm{v}^{2 \mathrm{n}-4}$	$v^{4}+v^{2 n-4}$	$-\left(v^{4}+v^{2 n-4}\right)$	$v^{4}+v^{2 n-4}$	$-\left(v^{4}+v^{2 n-4}\right)$	$v^{\mathrm{n}+1}+\mathrm{v}^{\mathrm{n}-1}$	$v^{\mathrm{n}+1}+\mathrm{v}^{\mathrm{n}-1}$	$-\left(\mathrm{u}^{\mathrm{n}+1}+\mathrm{v}^{\mathrm{n}-1}\right)$	$v^{\mathrm{n}+1}+\mathrm{v}^{\mathrm{n}-1}$	$-\left(u^{n+1}+u^{n-1}\right.$
$\mu_{(n-2), 3)}$	2	2	2	-2	-2	$\mathrm{v}^{4}+\mathrm{v}^{2 \mathrm{n}-4}$	$\mathrm{v}^{4}+\mathrm{v}^{2 \mathrm{n}-4}$	$\mathrm{v}^{4}+\mathrm{v}^{2 \mathrm{n}-4}$	$-\left(v^{4}+v^{2 n-4}\right)$	$-\left(v^{4}+v^{2 n-4}\right)$	$v^{n+1}+u^{n-1}$	$v^{n+1}+v^{n-1}$	$v^{n+1}+v^{n-1}$	$-\left(v^{n+1}+\mathrm{v}^{\mathrm{n}-1}\right)$	$-\left(u^{n+1}+v^{n-1}\right)$
$\mu_{((\mathrm{n}-2,4)}$	2	2	-2	-2	2	$\mathrm{v}^{4}+\mathrm{v}^{2 \mathrm{n}-4}$	$\mathrm{v}^{4}+\mathrm{v}^{2 \mathrm{n}-4}$	$-\left(v^{4}+v^{2 n-4}\right)$	$-\left(v^{4}+v^{2 n-4}\right)$	$\mathrm{v}^{4}+\mathrm{v}^{2 \mathrm{n}-4}$	$v^{n+1}+v^{n-1}$	$v^{n+1}+v^{n-1}$	$-\left(\mathrm{c}^{\mathrm{n}+1}+\mathrm{v}^{\mathrm{n}-1}\right)$	$-\left(\mathrm{v}^{\mathrm{n}+1}+\mathrm{v}^{\mathrm{n}-1}\right)$	$v^{n+1}+v^{n-1}$
$\mu_{(n-2), 5)}$	4	-4	0	0	0	$2\left(\mathrm{v}^{4}+\mathrm{v}^{2 \mathrm{n}-4}\right)$	$-2\left(v^{4}+v^{2 n-4}\right)$	0	0	0	$2\left(u^{n+1}+u^{n-1}\right)$	$-2\left(v^{n+1}+v^{n-1}\right)$	0	0	0
$\lambda_{(3,1)}$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
$\lambda_{(3,2)}$	1	1	-1	1	-1	1	1	-1	1	-1	1	1	-1	1	-1
$\lambda_{(3,3)}$	1	1	1	-1	-1	1	1	1	-1	-1	1	1	1	-1	-1
$\lambda_{(3,4)}$	1	1	-1	-1	1	1	1	-1	-1	1	1	1	-1	-1	1
$\lambda_{(3,5)}$	2	-2	0	0	0	2	-2	0	0	0	2	-2	0	0	0
$\lambda_{(4,1)}$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
$\lambda_{(4,2)}$	1	1	-1	1	-1	1	1	-1	1	-1	1	1	-1	1	-1
$\lambda_{(4,3)}$	1	1	1	-1	-1	1	1	1	-1	-1	1	1	1	-1	-1
$\lambda_{(4,4)}$	1	1	-1	-1	1	1	1	-1	-1	1	1	1	-1	-1	1
$\lambda_{(4,5)}$	2	-2	0	0	0	2	-2	0	0	0	2	-2	0	0	0

$2 v^{\text {n }}$	$2 v^{n}$	$2 v^{\text {n }}$	$2 v^{\text {n }}$	$2 v^{\text {n }}$	$v^{\mathrm{n}+2}+\mathrm{v}^{\mathrm{n}-2}$	$v^{\mathrm{n}+2}+\mathrm{v}^{\mathrm{n}-2}$	$v^{n+2}+u^{n-2}$	$v^{n+2}+v^{n-2}$	$v^{n+2}+v^{n-2}$	$\mathrm{v}^{(\mathrm{n}-2)^{2}+\mathrm{u}^{\text {n }} \text {-4 }}$	$\mathrm{v}^{(\mathrm{n}-2)^{2}+\mathrm{v}^{\mathrm{n}^{2}-4}}$	$\mathrm{v}^{(\mathrm{n}-2)^{2}+\mathrm{v}^{\mathrm{n}^{2}-4}}$	$\mathrm{v}^{(\mathrm{n}-2)^{2}+\mathrm{u}^{\text {n }} \text {-4 }}$
$2 v^{\mathrm{n}}$	$2 v^{n}$	$-2 v^{\mathrm{n}}$	$2 v^{n}$	$-2 v^{\mathrm{n}}$	$\mathrm{v}^{\mathrm{n}+2}+\mathrm{v}^{\mathrm{n}-2}$	$v^{\mathrm{n}+2}+\mathrm{v}^{\mathrm{n}-2}$	$-\left(\mathrm{u}^{\mathrm{n}+2}+\mathrm{v}^{\mathrm{n}-2}\right)$	$v^{\mathrm{n}+2}+\mathrm{v}^{\mathrm{n}-2}$	$-\left(\mathrm{u}^{\mathrm{n}+2}+\mathrm{v}^{\mathrm{n}-2}\right)$	$\mathrm{v}^{(\mathrm{n}-2)^{2}+\mathrm{u}^{\text {n }} \text {-4 }}$		$-\left(u^{(n-2)^{2}}+\mathrm{u}^{\mathrm{n}^{2}-4}\right)$	$\mathrm{v}^{(\mathrm{n}-2)^{2}+\mathrm{n}^{\text {n }} \text {-4 }}$
$2 v^{\text {n }}$	$2 v^{\text {n }}$	$2 v^{\text {n }}$	$-2 v^{\text {n }}$	$-2 v^{\text {n }}$	$\mathrm{v}^{\mathrm{n}+2}+\mathrm{u}^{\mathrm{n}-2}$	$v^{\mathrm{n}+2}+\mathrm{v}^{\mathrm{n}-2}$	$\mathrm{v}^{\mathrm{n}+2}+\mathrm{v}^{\mathrm{n}-2}$	$-\left(\mathrm{v}^{\mathrm{n}+2}+\mathrm{u}^{\mathrm{n}-2}\right)$	$-\left(\mathrm{u}^{\mathrm{n}+2}+\mathrm{v}^{\mathrm{n}-2}\right)$	$\mathrm{v}^{(\mathrm{n}-2)^{2}+\mathrm{u}^{\text {n }} \text {-4 }}$	$\mathrm{v}^{(\mathrm{n}-2)^{2}+\mathrm{u}^{\mathrm{n}^{2}-4}}$	$\mathrm{v}^{(\mathrm{n}-2)^{2}+\mathrm{v}^{\mathrm{n}^{2}-4}}$	$-\left(v^{(\mathrm{n}-2)^{2}}+\mathrm{v}^{\mathrm{n}^{2}-4}\right)$
$2 v^{n}$	$2 v^{n}$	$-2 v^{n}$	$-2 v^{n}$	$2 v^{n}$	$v^{n+2}+\mathrm{v}^{\mathrm{n}-2}$	$v^{n+2}+v^{n-2}$	$-\left(\mathrm{u}^{\mathrm{n}+2}+\mathrm{u}^{\mathrm{n}-2}\right)$	$-\left(v^{n+2}+\mathrm{v}^{\mathrm{n}-2}\right)$	$\mathrm{v}^{\mathrm{n}+2}+\mathrm{v}^{\mathrm{n}-2}$	$\mathrm{v}^{(\mathrm{n}-2)^{2}+\mathrm{c}^{\mathrm{n}^{2}-4}}$	$\mathrm{v}^{(\mathrm{n}-2)^{2}+\mathrm{v}^{\mathrm{n}^{2}-4}}$	$-\left(v^{(n-2)^{2}}+\mathrm{v}^{\mathrm{n}^{2}-4}\right)$	$-\left(\mathrm{v}^{(\mathrm{n}-2)^{2}}+\mathrm{v}^{\mathrm{n}^{2}-4}\right)$
$4 \mathrm{v}^{\mathrm{n}}$	$4 \mathrm{v}^{\mathrm{n}}$	0	0	0	$2\left(v^{n+2}+u^{n-2}\right)$	$-2\left(v^{n+2}+\mathrm{v}^{\mathrm{n}-2}\right)$	0	0	0	$2\left(\mathrm{v}^{\left.(\mathrm{n}-2)^{2}+\mathrm{v}^{\mathrm{n}^{2}-4}\right)}\right.$	$-2\left(v^{(n-2)^{2}}+\mathrm{v}^{\mathrm{n}^{2}-4}\right)$	0	0
-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	-1	1	-1	1	-1	-1	1	-1	1	-1	-1	1	-1
-1	-1	-1	1	1	-1	-1	-1	1	1	-1	-1	-1	1
-1	-1	1	1	-1	-1	-1	1	1	-1	-1	-1	1	1
-2	2	0	0	0	-2	2	0	0	0	-2	2	0	0
-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	-1	1	-1	1	-1	-1	1	-1	1	-1	-1	1	-1
-1	-1	-1	1	1	-1	-1	-1	1	1	-1	-1	-1	1
-1	-1	1	1	-1	-1	-1	1	1	-1	-1	-1	1	1
-2	2	0	0	0	-2	2	0	0	0	-2	2	0	0

International Journal of Engineering and Information Systems (IJEAIS)

$\mathrm{v}^{(\mathrm{n}-2)^{2}+\mathrm{u}^{\mathrm{n}^{2}-4}}$	0	0	0	0	0	0	0	0	0	0
$-\left(v^{(\mathrm{n}-2)^{2}}+\mathrm{v}^{\mathrm{n}^{2}-4}\right)$	0	0	0	0	0	0	0	0	0	0
$-\left(v^{(\mathrm{n}-2)^{2}}+\mathrm{u}^{\mathrm{n}^{2}-4}\right)$	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
-1	i	I	i	i	1	-i	-i	-i	-i	-i
1	i	i	-i	i	-i	-i	-i	i	-i	i
1	i	i	i	-i	-i	-i	-i	-i	i	i
-1	i	i	-i	-i	i	-i	-i	i	i	-i
0	2 i	-2i	0	0	0	-2i	2 i	0	0	0
-1	-i	-i	-i	-i	-i	i	i	i	i	i
1	-i	-i	i	-i	i	1	i	-i	i	-i
1	-i	-i	-i	i	i	i	i	i	-i	-i
-1	-i	-i	1	i	-i	i	1	-i	-i	i
0	-2i	2 i	0	0	0	2 i	-2i	0	0	0

3.2 Theorem:

The rational valuer characters table of the group $\mathrm{Q}_{2 \mathrm{n}} \times \mathrm{D}_{4}$ when n is an odd number is given as follows:

$$
\equiv{ }^{*}\left(\mathrm{Q}_{2 \mathrm{n}} \times \mathrm{D}_{4}\right)=\equiv^{*}\left(\mathrm{Q}_{2 \mathrm{n}}\right) \otimes \equiv^{*}\left(\mathrm{D}_{4}\right)
$$

Proof:-

Since $D_{4}=\left\{I^{*}, t, t^{2}, t^{3}, f, f t, f t^{2}, \mathrm{ft}^{3}\right\}$
Each element in $\mathrm{Q}_{2 \mathrm{n}} \times \mathrm{D}_{4}$ are $\mathrm{g}_{\mathrm{pr}}=\mathrm{g}_{\mathrm{p}} . \mathrm{g}_{\mathrm{r}} \forall \mathrm{g}_{\mathrm{r}} \in \mathrm{D}_{4}, \mathrm{r} \in\left\{\mathrm{I}^{*}, \mathrm{t}, \mathrm{t}^{2}, \mathrm{t}^{3}, \mathrm{f}, \mathrm{ft}^{2}, \mathrm{ft}^{2}, \mathrm{ft}^{3}\right\}$
And each irrerucible character $\lambda_{(i, j)}$ of $\mathrm{Q}_{2 \mathrm{n}} \times \mathrm{D}_{4}$ is can be written as follows

$$
\lambda_{(\mathrm{i}, \mathrm{j})}=\lambda_{\mathrm{i}} \cdot \lambda_{j}^{\prime}
$$

Where λ_{i} is an irrerucible character of $\mathrm{Q}_{2 \mathrm{n}}$ anr λ_{j}^{\prime} is the irrerucible character of D_{4}, then

$$
\lambda_{(\mathrm{i}, \mathrm{j})}(\mathrm{p}, \mathrm{r})=\left\{\begin{array}{c}
\lambda \mathrm{i}\left(\mathrm{~g}_{\mathrm{p}}\right) \text { if } \mathrm{j}=1 \text { and } \mathrm{r} \in \mathrm{D}_{4} \\
\lambda \mathrm{i}\left(\mathrm{~g}_{\mathrm{p}}\right) \text { if } \mathrm{j}=2 \text { and } \mathrm{r} \in\left\{\mathrm{I}^{*}, \mathrm{t}^{2}, \mathrm{f}, \mathrm{ft}^{2}\right\} \\
-\lambda \mathrm{i}\left(\mathrm{~g}_{\mathrm{p}}\right) \text { if } \mathrm{j}=2 \text { and } \mathrm{r} \in\left\{t, \mathrm{t}^{3}, \mathrm{ft}^{2}, \mathrm{ft}^{3}\right\} \\
\lambda \mathrm{i}\left(\mathrm{~g}_{\mathrm{p}}\right) \text { if } \mathrm{j}=3 \text { and } \mathrm{r} \in\left\{\mathrm{I}^{*}, t, \mathrm{t}^{2}, \mathrm{t}^{3}\right\} \\
-\lambda \mathrm{i}\left(\mathrm{~g}_{\mathrm{p}}\right) \text { if } \mathrm{j}=3 \text { and } \mathrm{r} \in\left\{f, \mathrm{ft}^{2} \mathrm{ft}^{2}, \mathrm{ft}^{3}\right\} \\
\lambda \mathrm{i}\left(\mathrm{~g}_{\mathrm{p}}\right) \text { if } \mathrm{j}=4 \text { and } \mathrm{r} \in\left\{\mathrm{I}^{*}, \mathrm{t}^{2}, \mathrm{ft}^{3}, \mathrm{ft}^{3}\right\} \\
-\lambda i\left(\mathrm{~g}_{\mathrm{p}}\right) \text { if } \mathrm{j}=4 \text { and } \mathrm{r} \in\left\{t, \mathrm{t}^{3}, \mathrm{f}, \mathrm{ft}^{2}\right\} \\
2 \lambda i\left(\mathrm{~g}_{\mathrm{p}}\right) \text { if } \mathrm{j}=5 \text { and } \mathrm{r} \in\left\{\mathrm{I}^{*}\right\} \\
-2 \lambda \mathrm{i}\left(\mathrm{~g}_{\mathrm{p}}\right) \text { if } \mathrm{j}=5 \text { and } \mathrm{r} \in\left\{\mathrm{t}^{2}\right\} \\
0 \text { if } \mathrm{j}=1 \text { and } \mathrm{r} \in\left\{t, \mathrm{t}^{3}, \mathrm{f}, \mathrm{ft}, \mathrm{ft}^{2}\right\}
\end{array}\right.
$$

From proposition (2.3.4)

$$
\rho_{(i, j)}=\sum_{\sigma \epsilon G a l\left(Q\left(\lambda_{(i, j)}\right) / Q\right)} \sigma\left(\lambda_{(i, j)}\right)
$$

Where $\rho_{(i, j)}$ is the rational valuer character of $\mathrm{Q}_{2 \mathrm{n}} \times \mathrm{D}_{4}$
Then, $\rho_{(i, j)}\left(\mathrm{g}_{\mathrm{pr}}\right)=\sum_{\sigma \epsilon G a l\left(Q\left(\lambda_{(i, j)}\left(\mathrm{g}_{\mathrm{pr}}\right)\right) / Q\right)} \sigma\left(\lambda_{(i, j)}\left(\mathrm{g}_{\mathrm{pr}}\right)\right)$
(I) If $\mathrm{j}=1$ and $\mathrm{r} \in \mathrm{D}_{4}$
$\rho_{(i, j)}\left(\mathrm{g}_{\mathrm{pr}}\right)=\sum_{\sigma \epsilon G a l\left(Q\left(\lambda_{i}\left(\mathrm{gp}_{\mathrm{p}}\right)\right) / Q\right)} \sigma\left(\lambda_{i}\left(\mathrm{~g}_{\mathrm{p}}\right)\right)=\rho_{i}\left(\mathrm{~g}_{\mathrm{p}}\right) \cdot 1=\rho_{i}\left(\mathrm{~g}_{\mathrm{p}}\right) \cdot \rho^{\prime}{ }_{j}\left(\mathrm{~g}_{\mathrm{r}}^{\prime}\right)$
Where ρ_{i} is the rational valuer character of $\mathrm{Q}_{2 \mathrm{n}}$.
(II) (a) if $\mathrm{j}=2$ anr $r \in\left\{\mathrm{I}^{*}, \mathrm{t}^{2}, \mathrm{f}, \mathrm{ft}^{2}\right\}$
$\rho_{(i, j)}\left(\mathrm{g}_{\mathrm{pr}}\right)=\sum_{\sigma \epsilon G a l\left(Q\left(\lambda_{i}\left(\mathrm{~g}_{\mathrm{p}}\right)\right) / Q\right)} \sigma\left(\lambda_{i}\left(\mathrm{~g}_{\mathrm{p}}\right)\right)=\rho_{i}\left(\mathrm{~g}_{\mathrm{p}}\right) .1=\rho_{i}\left(\mathrm{~g}_{\mathrm{p}}\right) . \rho^{\prime}{ }_{j}\left(\mathrm{~g}_{\mathrm{r}}^{\prime}\right)$.
(b) if $\mathrm{j}=2$ anr $\mathrm{r} \in\left\{t, \mathrm{t}^{3}, \mathrm{ft}^{\mathrm{ft}}{ }^{3}\right\}$
$\rho_{(i, j)}\left(\mathrm{g}_{\mathrm{pr}}\right)=\sum_{\sigma \epsilon G a l\left(Q\left(\lambda_{i}\left(\mathrm{gp}_{\mathrm{p}}\right)\right) / Q\right)} \sigma\left(-\lambda_{i}\left(\mathrm{~g}_{\mathrm{p}}\right)\right)=-\sum_{\sigma \epsilon G a l\left(Q\left(\lambda_{i}\left(\mathrm{gp}_{\mathrm{p}}\right)\right) / Q\right)} \sigma\left(\lambda_{i}\left(\mathrm{~g}_{\mathrm{p}}\right)\right)$
$=\sum_{\sigma \in G a l\left(Q\left(\lambda_{i}\left(\mathrm{~g}_{\mathrm{p}}\right)\right) / Q\right)} \sigma\left(\lambda_{i}\left(\mathrm{~g}_{\mathrm{p}}\right)\right) \cdot-1=\rho_{i}\left(\mathrm{~g}_{\mathrm{p}}\right) \cdot-1=\rho_{i}\left(\mathrm{~g}_{\mathrm{p}}\right) \cdot \rho^{\prime}{ }_{j}\left(\mathrm{~g}_{\mathrm{r}}^{\prime}\right)$.
(III) (a) if $\mathrm{j}=3$ anr $\mathrm{r} \in\left\{\mathrm{I}^{*}, t, \mathrm{t}^{2}, \mathrm{t}^{3}\right\}$
$\rho_{(i, j)}\left(\mathrm{g}_{\mathrm{pr}}\right)=\sum_{\sigma \epsilon G a l\left(Q\left(\lambda_{i}\left(\mathrm{~g}_{\mathrm{p}}\right)\right) / Q\right)} \sigma\left(\lambda_{i}\left(\mathrm{~g}_{\mathrm{p}}\right)\right)=\rho_{i}\left(\mathrm{~g}_{\mathrm{p}}\right) \cdot 1=\rho_{i}\left(\mathrm{~g}_{\mathrm{p}}\right) \cdot \rho^{\prime}{ }_{j}\left(\mathrm{~g}_{\mathrm{r}}^{\prime}\right)$.
(b) if $\mathrm{j}=3$ anr $\mathrm{r} \in\left\{f, \mathrm{ft}^{\mathrm{ft}}{ }^{2}, \mathrm{ft}^{3}\right\}$
$\rho_{(i, j)}\left(\mathrm{g}_{\mathrm{pr}}\right)=\sum_{\sigma \epsilon \operatorname{Gal}\left(Q\left(\lambda_{i}\left(\mathrm{~g}_{\mathrm{p}}\right)\right) / Q\right)} \sigma\left(-\lambda_{i}\left(\mathrm{~g}_{\mathrm{p}}\right)\right)=-\sum_{\sigma \in \operatorname{Gal}\left(Q\left(\lambda_{i}\left(\mathrm{~g}_{\mathrm{p}}\right)\right) / Q\right)} \sigma\left(\lambda_{i}\left(\mathrm{~g}_{\mathrm{p}}\right)\right)$
$=\sum_{\sigma \epsilon G a l\left(Q\left(\lambda_{i}\left(\mathrm{gp}_{\mathrm{p}}\right)\right) / Q\right)} \sigma\left(\lambda_{i}\left(\mathrm{~g}_{\mathrm{p}}\right)\right) \cdot-1=\rho_{i}\left(\mathrm{~g}_{\mathrm{p}}\right) \cdot-1=\rho_{i}\left(\mathrm{~g}_{\mathrm{p}}\right) . \rho_{j}^{\prime}\left(\mathrm{g}_{\mathrm{r}}^{\prime}\right)$.
(IV) (a) if $\mathrm{j}=4$ anr $\mathrm{r} \in\left\{\mathrm{I}^{*}, \mathrm{t}^{2}, \mathrm{ft}^{2} \mathrm{ft}^{3}\right\}$
$\rho_{(i, j)}\left(\mathrm{g}_{\mathrm{pr}}\right)=\sum_{\sigma \in G a l\left(Q\left(\lambda_{i}\left(\mathrm{~g}_{\mathrm{p}}\right)\right) / Q\right)} \sigma\left(\lambda_{i}\left(\mathrm{~g}_{\mathrm{p}}\right)\right)=\rho_{i}\left(\mathrm{~g}_{\mathrm{p}}\right) \cdot 1=\rho_{i}\left(\mathrm{~g}_{\mathrm{p}}\right) \cdot \rho^{\prime}{ }_{j}\left(\mathrm{~g}_{\mathrm{r}}^{\prime}\right)$.
(b) if $\mathrm{j}=4 \mathrm{anr} \mathrm{r} \in\left\{t, \mathrm{t}^{3}, \mathrm{f}, \mathrm{ft}^{2}\right\}$
$\rho_{(i, j)}\left(\mathrm{g}_{\mathrm{pr}}\right)=\sum_{\sigma \epsilon G a l\left(Q\left(\lambda_{i}\left(\mathrm{~g}_{\mathrm{p}}\right)\right) / Q\right)} \sigma\left(-\lambda_{i}\left(\mathrm{~g}_{\mathrm{p}}\right)\right)=-\sum_{\sigma \epsilon G a l\left(Q\left(\lambda_{i}\left(\mathrm{~g}_{\mathrm{p}}\right)\right) / Q\right)} \sigma\left(\lambda_{i}\left(\mathrm{~g}_{\mathrm{p}}\right)\right)$
$=\sum_{\sigma \epsilon G a l\left(Q\left(\lambda_{i}\left(\mathrm{~g}_{\mathrm{p}}\right)\right) / Q\right)} \sigma\left(\lambda_{i}\left(\mathrm{~g}_{\mathrm{p}}\right)\right) .-1=\rho_{i}\left(\mathrm{~g}_{\mathrm{p}}\right) .-1=\rho_{i}\left(\mathrm{~g}_{\mathrm{p}}\right) . \rho^{\prime}{ }_{j}\left(\mathrm{~g}_{\mathrm{r}}^{\prime}\right)$.
(V) (a) if $\mathrm{j}=5 \mathrm{anr} r \in\left\{\mathrm{I}^{*}\right\}$
$\rho_{(i, j)}\left(\mathrm{g}_{\mathrm{pr}}\right)=\sum_{\sigma \epsilon G \operatorname{Gal}\left(Q\left(\lambda_{i}\left(\mathrm{~g}_{\mathrm{p}}\right)\right) / Q\right)} \sigma\left(2 \lambda_{i}\left(\mathrm{~g}_{\mathrm{p}}\right)\right)=2 \sum_{\sigma \epsilon \operatorname{Gal}\left(Q\left(\lambda_{i}\left(\mathrm{gp}_{\mathrm{p}}\right)\right) / Q\right)} \sigma\left(\lambda_{i}\left(\mathrm{~g}_{\mathrm{p}}\right)\right)$
$=\sum_{\sigma \epsilon G a l\left(Q\left(\lambda_{i}\left(\mathrm{~g}_{\mathrm{p}}\right)\right) / Q\right)} \sigma\left(\lambda_{i}\left(\mathrm{~g}_{\mathrm{p}}\right)\right) \cdot 2=\rho_{i}\left(\mathrm{~g}_{\mathrm{p}}\right) \cdot 2=\rho_{i}\left(\mathrm{~g}_{\mathrm{p}}\right) \cdot \rho^{\prime}{ }_{j}\left(\mathrm{~g}_{\mathrm{r}}^{\prime}\right)$.
(b) if $\mathrm{j}=5$ anr $\mathrm{r} \in\left\{\mathrm{f}^{2}\right\}$
$\rho_{(i, j)}\left(\mathrm{g}_{\mathrm{pr}}\right)=\sum_{\sigma \epsilon \operatorname{Gal}\left(Q\left(\lambda_{i}\left(\mathrm{~g}_{\mathrm{p}}\right)\right) / Q\right)} \sigma\left(-2 \lambda_{i}\left(\mathrm{~g}_{\mathrm{p}}\right)\right)=-2 \sum_{\sigma \epsilon G a l\left(Q\left(\lambda_{i}\left(\mathrm{~g}_{\mathrm{p}}\right)\right) / Q\right)} \sigma\left(\lambda_{i}\left(\mathrm{~g}_{\mathrm{p}}\right)\right)$
$=\sum_{\sigma \in G a l\left(Q\left(\lambda_{i}\left(\mathrm{~g}_{\mathrm{p}}\right)\right) / Q\right)} \sigma\left(\lambda_{i}\left(\mathrm{~g}_{\mathrm{p}}\right)\right) \cdot-2=\rho_{i}\left(\mathrm{~g}_{\mathrm{p}}\right) \cdot-2=\rho_{i}\left(\mathrm{~g}_{\mathrm{p}}\right) \cdot \rho_{j}^{\prime}\left(\mathrm{g}_{\mathrm{r}}^{\prime}\right)$.
(c) $\mathrm{j}=1$ anr $\mathrm{r} \in\left\{t, \mathrm{t}^{3}, \mathrm{f}, \mathrm{ft}, \mathrm{ft}^{2}\right\}$
$\rho_{(i, j)}\left(\mathrm{g}_{\mathrm{pr}}\right)=\sum_{\sigma \epsilon G a l\left(Q\left(\lambda_{i}\left(\mathrm{~g}_{\mathrm{p}}\right)\right) / Q\right)} \sigma\left(0 \cdot \lambda_{i}\left(\mathrm{~g}_{\mathrm{p}}\right)\right)=0 \cdot \sum_{\sigma \epsilon G a l\left(Q\left(\lambda_{i}\left(\mathrm{~g}_{\mathrm{p}}\right)\right) / Q\right)} \sigma\left(\lambda_{i}\left(\mathrm{~g}_{\mathrm{p}}\right)\right)$
$=\sum_{\sigma \epsilon G a l\left(Q\left(\lambda_{i}\left(\mathrm{gpp}_{\mathrm{p}}\right)\right) / Q\right)} \sigma\left(\lambda_{i}\left(\mathrm{~g}_{\mathrm{p}}\right)\right) \cdot 0=0=\rho_{i}\left(\mathrm{~g}_{\mathrm{p}}\right) \cdot \rho^{\prime}{ }_{j}\left(\mathrm{~g}_{\mathrm{r}}^{\prime}\right)$.
From [I],[II],[III],[IV] anr [V] we have

$$
\rho_{(\mathrm{i}, \mathrm{j})}=\rho_{\mathrm{i}} \cdot \rho_{j}^{\prime}
$$

International Journal of Engineering and Information Systems (IJEAIS)
ISSN: 2643-640X
Vol. 4, Issue 6, June - 2020, Pages: 68-79

$$
\text { Then } \equiv \equiv^{*}\left(\mathrm{Q}_{2 \mathrm{n}} \times \mathrm{D}_{4}\right)=\equiv^{*}\left(\mathrm{Q}_{2 \mathrm{n}}\right) \otimes \equiv^{*}\left(\mathrm{D}_{4}\right) .
$$

Example(3.3):-
To find the rational valued characters table of $\mathrm{Q}_{26} \times \mathrm{D}_{4}$, we can use theorem (3.2) .

By proposition(2.3.9) and proposition (2.3.10), we have
$\equiv{ }^{*}\left(\mathrm{Q}_{26}\right)=$

$\Gamma-$ classes	$[1]$	$\left[\mathrm{x}^{2}\right]$	$\left[\mathrm{x}^{7}\right]$	$[\mathrm{x}]$	$[\mathrm{y}]$
ρ_{1}	1	1	1	1	1
ρ_{2}	12	-1	12	-1	0
ρ_{3}	1	1	1	1	-1
ρ_{4}	12	-1	-12	1	0
ρ_{5}	2	2	-2	-2	0

Table(8)
and

$\equiv^{*} \mathrm{D}_{4}=$| CL_{α} | $\left[\mathrm{I}^{*}\right]$ | $\left[r^{2}\right]$ | $[\mathrm{r}]$ | $[\mathrm{s}]$ | $[\mathrm{sr}]$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\left\|\mathrm{CL}_{\alpha}\right\|$ | 1 | 1 | 2 | 2 | 2 |
| $\left\|\mathrm{CD}_{4}\left(\mathrm{CL}_{\alpha}\right)\right\|$ | 8 | 8 | 4 | 4 | 4 |
| ρ_{1}^{\prime} | 1 | 1 | 1 | 1 | 1 |
| ρ_{2}^{\prime} | 1 | 1 | -1 | 1 | -1 |
| ρ_{3}^{\prime} | 1 | 1 | 1 | -1 | -1 |
| ρ_{4}^{\prime} | 1 | 1 | -1 | -1 | 1 |
| ρ_{5}^{\prime} | 2 | -2 | 0 | 0 | 0 |

Then, by theorem (3.2)

$$
\equiv^{*}\left(\mathrm{Q}_{26} \times \mathrm{D}_{4}\right)=\equiv^{*}\left(\mathrm{Q}_{26}\right) \otimes \equiv^{*}\left(\mathrm{D}_{4}\right) .
$$

International Journal of Engineering and Information Systems (IJEAIS)

ISSN: 2643-640X
Vol. 4, Issue 6, June - 2020, Pages: 68-79

Γ-classes	[I, I* ${ }^{*}$	$\left[a^{2}, I^{*}\right]$	$\left.\mathrm{a}^{7}, \mathrm{I}^{*}\right]$	$\left[\mathrm{a}, \mathrm{I}^{*}\right]$	[b, I']	$[\mathrm{I}$, $\left.\mathrm{t}^{2}\right]$	$\begin{gathered} {\left[\mathrm{a}^{2},\right.} \\ \left.\mathrm{t}^{2}\right] \\ \hline \end{gathered}$	$\begin{gathered} {\left[\begin{array}{c} \mathrm{a}^{7} \\ \left.\mathrm{t}^{2}\right] \\ \hline \end{array}, ~\right.} \\ \hline \end{gathered}$	[a, $\left.\mathrm{t}^{2}\right]$	[b, $\left.\mathrm{t}^{2}\right]$	t]	[$\left.\mathrm{a}^{2}, \mathrm{t}\right]$	[$\left.\mathrm{a}^{7}, \mathrm{t}\right]$	$\begin{array}{\|c\|} \hline[\mathrm{a}, \\ \mathrm{t}] \\ \hline \end{array}$	$\begin{array}{\|c} \hline[\mathrm{b}, \\ \mathrm{t}] \\ \hline \end{array}$	[I, f]	$\begin{gathered} {\left[\mathrm{a}^{2},\right.} \\ \mathrm{f}] \\ \hline \end{gathered}$	$\begin{gathered} {\left[\mathrm{a}^{7}\right.} \\ \mathrm{f}] \\ \hline \end{gathered}$	$[\mathrm{a},$ $\mathrm{f}]$	$\begin{array}{\|c} \hline[\mathrm{b}, \\ \mathrm{f}] \\ \hline \end{array}$	$\begin{array}{r} \hline[\mathrm{I}, \\ \mathrm{ft}] \\ \hline \end{array}$	$\left[\mathrm{a}^{2},\right.$ $\mathrm{ft}]$	$\begin{aligned} & {\left[\mathrm{a}^{7}\right.} \\ & , \mathrm{ft}] \end{aligned}$	[a, ft]	b, ft]
$\left\|C L_{\alpha}\right\|$	1	2	1	2	2 n	1	2	1	2	2p	2	4	2	4	4 n	2	4	2	4	4 n	2	4	2	4	4 n
$C_{\mathrm{Q}_{26} \times \mathrm{D} 4}\left(C L_{\alpha}\right)$	224	112	224	112	16	224	112	224	112	16	112	56	112	56	8	112	56	112	56	8	112	56	112	56	8
$\rho_{(1,1)}$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
$\rho_{(2,1)}$	1	1	-1	1	-1	1	1	-1	1	-1	1	1	-1	1	-1	1	1	-1	1	-1	1	1	-1	1	-1
$\rho_{(3,1)}$	1	1	1	-1	-1	1	1	1	-1	-1	1	1	1	-1	-1	1	1	1	-1	-1	1	1	1	-1	-1
$\rho_{(4,1)}$	1	1	-1	-1	1	1	1	-1	-1	1	1	1	-1	-1	1	1	1	-1	-1	1	1	1	-1	-1	1
$\rho_{(5,1)}$	2	-2	0	0	0	2	-2	0	0	0	2	-2	0	0	0	2	-2	0	0	0	2	-2	0	0	0
$\rho_{(1,2)}$	12	12	12	12	12	-1	-1	-1	-1	-1	12	12	12	12	12	-1	-1	-1	-1	-1	0	0	0	0	0
$\rho_{(2,2)}$	12	12	-12	12	-12	-1	-1	1	-1	1	12	12	-12	12	12	-1	-1	1	-1	1	0	0	0	0	0
$\rho_{(3,2)}$	12	12	12	-12	-12	-1	-1	-1	1	1	12	12	12	12	12	-1	-1	-1	1	1	0	0	0	0	0
$\rho_{(4,2)}$	12	12	-12	-12	12	-1	-1	1	1	-1	12	12	-12	12	12	-1	-1	1	1	-1	0	0	0	0	0
$\rho_{(5,2)}$	24	-24	0	0	0	-2	2	0	0	0	24	-24	0	0	0	-2	2	0	0	0	0	0	0	0	0
$\rho_{(1,3)}$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-1	-1	-1	-1	-1
$\rho_{(2,3)}$	1	1	-1	1	-1	1	1	-1	1	-1	1	1	-1	1	-1	1	1	-1	1	-1	-1	-1	1	-1	1
$\rho_{(3,3)}$	1	1	1	-1	-1	1	1	1	-1	-1	1	1	1	-1	-1	1	1	1	-1	-1	-1	-1	-1	1	1
$\rho_{(4,3)}$	1	1	-1	-1	1	1	1	-1	-1	1	1	1	-1	-1	1	1	1	-1	-1	1	-1	-1	1	1	-1
$\rho_{(5,3)}$	2	-2	0	0	0	2	-2	0	0	0	2	-2	0	0	0	2	-2	0	0	0	-2	2	0	0	0
$\rho_{(1,4)}$	12	12	12	12	12	-1	-1	-1	-1	-1	-12	-12	-12	12	12	1	1	1	1	1	0	0	0	0	0
$\rho_{(2,4)}$	12	12	-12	12	-12	-1	-1	1	-1	1	-12	-12	12	12	12	1	1	-1	1	-1	0	0	0	0	0
$\rho_{(3,4)}$	12	12	12	-12	-12	-1	-1	-1	1	1	-12	-12	-12	12	12	1	1	1	-1	-1	0	0	0	0	0
$\rho_{(4,4)}$	12	12	-12	-12	12	-1	-1	1	1	-1	-12	-12	12	12	12	1	1	-1	-1	1	0	0	0	0	0
$\rho_{(5,4)}$	24	-24	0	0	0	-2	2	0	0	0	-24	24	0	0	0	2	-2	0	0	0	0	0	0	0	0
$\rho_{(1,5)}$	2	2	2	2	2	2	2	2	2	2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	0	0	0	0	0
$\rho_{(2,5)}$	2	2	-2	2	-2	2	2	-2	2	-2	-2	-2	2	-2	2	-2	-2	2	-2	2	0	0	0	0	0
$\rho_{(3,5)}$	2	2	2	-2	-2	2	2	2	-2	-2	-2	-2	-2	2	2	-2	-2	-2	2	2	0	0	0	0	0
$\rho_{(4,5)}$	2	2	-2	-2	2	2	2	-2	-2	2	-2	-2	2	2	-2	-2	-2	2	2	-2	0	0	0	0	0
$\rho_{(5,5)}$	4	-4	0	0	0	4	-4	0	0	0	-4	4	0	0	0	-4	4	0	0	0	0	0	0	0	0
Table(9)																									10

References

[1] A. S. Abid, "Artin's Characters Table Of Dihedral Group for Odd Number", M.Sc. thesis, University of Kufa, 2006.
[2] C. Curits \& I. Reiner, "Methods Of Representation Theory with Application to Finite Groups And Order", John Wily \& Sons, Newyork,1981.
[3] C.W.Curits \& I.Reiner, " Representation Theory Of Finite Groups and Associative Algebra", John Wily \& Sons, Newyork,1962.
[4] David.G, "Artin Exponent of arbitrary characters of cyclic subgroup " , Journal of Algebra,61,p p.58-76,1976.
[5] H. H. Abass, "On The Factor Group Of Class Function Over The Group Of Generalized Characters Of D_{n} ", M. Sc. thesis, Technology University, 1994.
[6] j. P. Serre,"Linear Representation of Finite Groups ", springer-verlage,1977, volume42, p 47-53.
[7] M. J. Hall, "The Theory of Group", Macmillan, Newyork,1959.
[8] M. S. Kirdar, "The Factor Group of the Z-Valued Class Function Modulo the Group of The Generalized Characters", Ph. D.thesis,University of Birmingham,1980.
[9] N. R. Mahmood, "The Cyclic Decomposition of the factor Group $\operatorname{cf}\left(\mathrm{Q}_{2 \mathrm{~m}}, \mathrm{Z}\right) / \overline{\mathrm{R}}\left(\mathrm{Q}_{2 \mathrm{~m}}\right)$ ", M. Sc. thesis, University of Technology, 1995.

