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Abstract : In this paper, the OXBASH computer software has been used for apply the nuclear shell model to the sulfur isotope 
35

S 

in order to calculate the excitation energies and the probability for electric quadrupole transition B (E2) and by depending each of 

effective interactions w and hbusd that describe the interaction between a nucleon-nucleon in an sd space for the nucleus under 

study, which contains 19 nucleons in the model space and by considering the isotope of oxygen 
16

O as the closed inert core for it 

because it is a double magic nucleus. Our theoretical calculations have been compared with the experimental data available for 

this isotope and we have noted a good match with it. 

Keywords: 
35

S sulfur isotope, Nuclear shell model, excitation energies, the probability for electric quadrupole transition B (E2), 

model sd space, effective interactions w and hbusd, OXBASH program. 

 

1. Introduction  

 The study of the structure of unstable and rich-neutrons nuclei is the most important aims of modern physics because of its 

importance in many applications in the field of astronomy in the study of the great explosions called (Supernova) and in other 

fields [1], and the information available on this region is very little due to the difficulty of generating these nuclei [2, 3]. There are 

several nuclear models to explain the nuclear structure, all of them had a major effect for determine the path that has been followed 

for explain the problem of nuclear structure [4]. And from the most important basic models proposed to describe the interaction 

between nucleons is the nuclear shell model, also called the independent particle model, and is based on several suppositions 

through which it succeeds in explaining some nuclear phenomena and fails in others when compared with experimental data [5]. 

The first to introduce the idea of closed nuclear shells is the scientist (W.  Elasser) in 1934, as some studies on the average of 

binding energy as well as the properties of the nuclei led to that the nucleons inside the nucleus move within orbits like those in 

which electrons move in the atom, it has been called shell structure or levels structure in which the nucleus is stable [6]. The 

importance of the shell model is mainly shape in its ability to give a correct approximation of the energies of the levels in which 

nucleons can be found with different values of orbital angular momentum. It has been observed that many nuclear properties 

showed discontinuities at certain even values of numbers of neutrons or protons. Experiments have shown that stable nuclei are 

characterized by the number of their protons Z or the number of their neutrons N equal to one of the following numbers 2, 8, 20 , 

28, 50, 82, 126 [5,4], which was called (Magic Numbers). Magic numbers have been explained as closed shells or covers of 

neutrons or protons, and that the covers of neutrons and protons appear to be independent of each other according to the nuclear 

shell model, and for this reason, this model is considered the cornerstone of many nuclear studies [7]. 

  

2. Theoretical part  

 The nuclear properties of different states can be calculated by the binding energies, the excitation energies of the nuclei 

[8]. The binding energy of the nuclei is defined as the negative value of the energy needed to divide the nucleus into its 

component’s neutrons and free protons [8, 9], and the indication that there is a direct relationship between the binding energy and 

the excitation energy with the of expectation value of Hamilton for nuclear system. The binding energy of the ground state is 

largest that possible while the excitation energy is defined as the difference between the binding energy of the state (n) and the 

binding energy of the ground state (0) according to the following relationship [8, 10]: 

 

  ( )   
 ( )    ( )                                                                                                  ( ) 

 

Where   ( ) the excitation energy of state,   ( ) the binding energy of state and   ( ) the binding energy of ground state. 

We assume that the nucleus has a closed core, and two additional particles, outside the closed core within the orbit   [8], if the two 

particles are located within the specified orbit  , it is called a pure configuration. But if the two particles fill more than one orbit, 

they share the values of the total momentum (J) and the isospin (T), however, it gets from connected them a state of a mixing and 

admixture for energy levels, this is called a mixed configuration [4, 5]. The distributions of the different limits of the total binding 

energy are given as [9, 10]:  

mailto:zaidalawadi87@gmail.com
https://context.reverso.net/%D8%A7%D9%84%D8%AA%D8%B1%D8%AC%D9%85%D8%A9/%D8%A7%D9%84%D8%A5%D9%86%D8%AC%D9%84%D9%8A%D8%B2%D9%8A%D8%A9-%D8%A7%D9%84%D8%B9%D8%B1%D8%A8%D9%8A%D8%A9/cornerstone


International Journal of Academic and Applied Research (IJAAR) 
ISSN: 2643-9603  

Vol. 4, Issue 7, July – 2020, Pages: 143-150 

 

 
http://www.ijeais.org/ijaar 

144 

 

  
 (       )    (    )        

( )(  )                                                        ( ) 

 

Each of the terms of the equation has a physical explanation, and it is: 

  
 (    ) It represents the binding energy of the particles in closed core and this term is a constant amount. 

  
( )( ) It represents the contribution to the binding energy from the actual nuclear interaction of the two particles outside the 

closed core; this term depends not only on the orbit but also on the total momentum (J) and the isospin (T) for two particles system. 

    It represents the negative value of the energy needed to remove two particles from the low voltage and make them move 

independently in orbit ( ) and assumes that the voltage does not depend on the number of particles outside the core. 

However, if we have (n) particles in orbit ( ) and ( ) particles in orbit ( ) outside the closed core, then the total binding energy 

equation is given by the following relationship [8]: 

 

  
 (          )      

 (    )            
( )(    )              ( )        

 

The term    represents Coulomb's energy,    and    it represents the energy of a single particle in orbits ( ) and ( ), and the last 

term it represents the residual reaction energy (matrix of the interacting elements) and is given by the following relationship [8]: 

 

  
( )
(    )  ⟨    | (   )|    ⟩                                                                  (4) 

 

 

 

3. Calculations and discussion 

          Theoretical calculations in this study include the following: 

3.1 Energy levels: depending on the energy equations included in the shell model that were mentioned in the previous item and 

programmed using an OXBASH computer software. The excitation energies and the probability for electric quadrupole transition 

B (E2) for 
35

S nucleus containing 19 nucleons outside the closed core 
16

O and in the model space sd of orbits 

(    ⁄      ⁄      ⁄ ) and by depending all of the effective interactions w, hbusd, and the results were obtained listed in Tables (1) 

and (2): 

 

Table (1): A comparison of the theoretical values of the excitation energies in the 
35

S nucleus computed using the effective 

interaction W with available experiment results [12] 

Experimental values 
Theoretical values for E 

(MeV) J
+ 

J
π
 E (MeV) (w) results 

3/2+ 0 0 3/21 

1/2+ 1.572378 1.558 1/21 

5/2+ 2.717 2.68 5/21 

3/2+ 2.93864 2.8 3/22 

(1/2,7/2)+ 3.594 3.471 7/21 

(3/2-:11/2-) 4.022 4.054 3/23 

(1/2,3/2,5/2)+ 4.106 
4.159 3/24 

(1/2,3/2,5/2+) 4.18 

(1/2,3/2,5/2)+ 4.106 
4.585 1/22 

(1/2,3/2,5/2+) 4.18 

(1/2:5/2)+ 4.99 4.727 5/23 

(1/2:9/2)+ 4.839 
4.783 1/23 

(1/2:5/2)+ 4.99 

(1/2:7/2-) 5.841 5.879 7/22 

(1/2:9/2-) 6.018 
6.173 1/24 

(1/2,3/2,5/2)+ 6.129 

(1/2,3/2,5/2)+ 6.129 6.274 5/25 

1/2+ 7.44221 7.22 1/25 
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------- -------- 9.241 1/27 

------- -------- 9.331 9/23 

-------- -------- 9.437 11/22 

-------- -------- 9.615 1/28 

-------- -------- 9.71 7/28 

-------- -------- 9.853 7/29 

-------- -------- 9.898 9/24 

-------- -------- 10.156 7/210 

-------- -------- 10.188 9/25 

-------- -------- 10.312 9/26 

-------- -------- 10.539 13/21 

-------- -------- 10.685 1/29 

-------- -------- 10.827 11/23 

-------- -------- 10.915 9/27 

-------- -------- 11.402 1/210 

-------- -------- 11.667 9/28 

-------- -------- 11.851 11/24 

-------- -------- 11.866 9/29 

-------- -------- 12.102 11/25 

-------- -------- 12.683 11/26 

-------- -------- 12.717 9/210 

-------- -------- 13.529 13/22 

-------- -------- 14.017 11/27 

-------- -------- 14.092 15/21 

-------- -------- 14.137 11/28 

-------- -------- 14.782 11/29 

-------- -------- 15.022 13/23 

-------- -------- 15.093 11/210 

-------- -------- 15.612 13/24 

-------- -------- 16.37 13/25 

-------- -------- 17.059 13/26 

-------- -------- 17.184 15/22 

-------- -------- 17.702 13/27 
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-------- -------- 18.293 13/28 

-------- -------- 18.687 13/29 

-------- -------- 19.009 15/23 

-------- -------- 19.227 13/210 

-------- -------- 20.817 17/21 

-------- -------- 21.328 15/24 

-------- -------- 21.761 15/25 

-------- -------- 22.934 15/26 

-------- -------- 23.943 15/27 

-------- -------- 24.639 17/22 

-------- -------- 26.482 15/28 

-------- -------- 
28.315 17/23 

-------- -------- 28.709 15/29 

-------- -------- 29.087 15/210 

 

By comparing our theoretical results using the interaction w with the experiment results of this isotope in the above table, the 

following was found: 

1. The total angular momentum and the symmetry had been confirmed for ground state   ⁄  
 

 level when it compared with the 

available experiment values. 

2. A good agreement of experiment energy values was obtained, (1.572, 2.717, 2.938, 7.442) MeV Corresponding to the angular 

momentums and symmetry (    
 ,    

 ,  ⁄  
 
     

 ) when compared with the available experiment values. 

3. The total angular momentum has been confirmed only for experiment energies values (3.594, 4.106, 4.106, 4.99, 4.839, 4.99, 

6.129, 6.129) MeV, experimentally not confirmed that corresponds to the angular momentums (    
      

      
      

  
    

      
      

      
 ) when compared with the available experiment values.  

4. The total angular momentum has been confirmed for experiment energies values for which do not determined her symmetry 

(4.18, 4.18, 6.018) MeV, that corresponds to the angular momentums (    
       

      
 ) when compared with the available 

experiment values.  

5.  The total angular momentum has been confirmed for experiment energies values (4.022, 5.841) MeV, that corresponds to the 

angular momentums (    
       

 ), but with a different symmetry when compared with the available experiment values. 

6. We noticed that there are experiment energies values with angular momentum and symmetry that were not compared with our 

theoretical calculations because they do not converge with them. 

7. We noticed through our calculations that there are (forty seven) levels with total angular momentum and symmetry that were not 

matched by any available experiment value as well. We also noted that the highest value of the calculated energy theoretically is 

(29.087) MeV, while the highest experiment value of energy is (9.155) MeV, meaning that we have obtained (forty seven) new 

energy levels above the experiment value. 

 

Table (2): A comparison of the theoretical values of the excitation energies in the 
35

S nucleus computed using the hbusd 

effective interaction with available experiment results [12] 

Experimental values Theoretical values for 

E(MeV) 

J
+ 

J
π

 E(MeV) (hbusd)results 

3/2+ 0 0 3/21 

1/2+ 1.572378 1.726 1/21 

5/2+ 2.717 2.324 5/21 
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3/2+ 2.93864 2.732 3/22 

5/2+ 3.4211 3.44 5/22 

(1/2-,3/2-) 3.675 3.488 3/23 

(3/2,9/2-) 3.818 

3.971 3/24 (3/2-,5/2) 3.885 

(3/2-,5/2) 3.89  

(1/2,3/2,5/2)+ 4.106 

  4.235       5/23 

(1/2,3/2,5/2+) 4.18 

(1/2:5/2,7/2-) 4.302 

(1/2,3/2,5/2)+ 4.477 

(1/2:5/2)+ 4.576 

(1/2:9/2)+ 4.839 
4.677 1/23 (1/2:5/2)+ 4.99 

(1/2:9/2)+ 5.771 

  5.986       1/24 (1/2:7/2-) 5.841 

(1/2:9/2-) 5.752 

(1/2:9/2-) 6.354 

  6.564       1/25 (1/2:9/2-) 6.629 

(1/2:9/2-) 6.761 

(3/2:13/2)+ 7.712 7.395 3/28 

(1/2:7/2)(-) 8.16 8.494 7/26 

(1/2:7/2)(-) 8.16 8.583 1/26 

------- -------- 9.453 9/24 

------- -------- 9.498 7/28 

------- -------- 9.591 7/29 

------- -------- 9.618 1/28 

------- -------- 9.67 9/25 

------- -------- 10.053 9/26 

------- -------- 10.11 7/211 

------- -------- 10.228 13/21 

------- -------- 10.351 11/23 

------- -------- 10.473 1/29 

------- -------- 10.615 9/27 

------- -------- 11.107 9/28 

------- -------- 11.139 1/211 

------- -------- 11.357 11/24 

------- -------- 11.608 9/29 

------- -------- 11.677 11/25 

------- -------- 12.316 11/26 

------- -------- 12.53 9/211 

------- -------- 13.746 13/25 

------- -------- 13.763 11/27 

------- -------- 13.845 15/21 

------- -------- 14.075 11/28 

------- -------- 14.425 11/29 

------- -------- 14.716 13/23 

------- -------- 15.079 11/211 

------- -------- 15.29 13/24 

------- -------- 15.794 13/25 

------- -------- 16.557 13/26 

------- -------- 16.925 13/27 

------- -------- 17.186 15/22 

------- -------- 17.904 13/28 
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------- -------- 18.036 15/23 

------- -------- 18.339 13/29 

------- -------- 18.952 13/211 

------- -------- 20.891 17/21 

------- -------- 21.083 15/24 

------- -------- 21.799 15/25 

------- -------- 22.695 15/26 

------- -------- 23.557 15/27 

------- --------             24.15 17/22 

------- -------- 26.167 15/28 

------- -------- 27.687 15/29 

------- -------- 28.413 17/23 

------- -------- 29.008 15/211 

 

By comparing our theoretical results using the hbusd interaction with the experiment results of this isotope in the above table, the 

following was found: 

1. The total angular momentum and the symmetry had been compared for ground state of   ⁄  
 

 level when compared with the 

available experiment values. 

2. A good agreement of experiment energy values was obtained (1.572, 2.717, 2.938, 3.42) MeV Corresponding to the angular 

momentums and symmetry (    
 ,      

 ,   ⁄  
 
      

 ) when compared with the available experiment values. 

3. The total angular momentum and symmetry of the experiment energies (4.235) MeV had been confirmed, experimentally not 

confirmed that corresponds to the angular momentums (     
 ) when compared with the available experiment values.  

4. The total angular momentum has been confirmed only for experiment energies values (4.106, 4.477, 4.576, 4.839, 4.99, 5.771, 

7.712) MeV, experimentally not confirmed that corresponds to the angular momentums (    
      

      
      

       
      

     
  
       

 ), when compared with the available experiment values.  

5. The total angular momentum has been confirmed for experiment energies values for which do not determined her symmetry 

(3.818, 4.302, 5.841,5.752, 6.354,6.629 ,6.761, 8.16, 8.16) MeV, that corresponds to the angular momentums (   ⁄  
 
     

  

    
      

      
      

      
      

      
 ) when compared with the available experiment values.  

6. The total angular momentum has been confirmed for experiment energies values for which did not determined her symmetry 

(3.675, 3.885, 3.89) MeV, that corresponds to the angular momentums (  ⁄  
 
    ⁄  

 
    ⁄  

 
) when compared with the available 

experiment values.  

7. We noticed that there are experiment energies values with angular momentum and symmetry that were not compared with our 

theoretical calculations because they do not converge with them. 

8. We noticed through our calculations that there are (forty four) levels with total angular momentum and symmetry that were not 

matched by any available experiment value as well. We also noted that the highest value of the calculated energy theoretically is 

(29.008) MeV, while the highest experiment value of energy is (9.155) MeV meaning that we have obtained (forty four) new 

energy levels above the experiment value. 

 

3.2 The probability of reduced electric quadrupole transition B (E2): 

Information about the nuclei can be obtained from the study of electromagnetic transitions using the harmonic oscillator 

voltage b, HO (b> 0) for each beam transmission. Where b (parameter) is the size of the harmonic oscillator and its value is equal 

to [5] 

     
(  ) 

(   )(  )
  = 

           

  
 

Where, ħc = 197.33      fm,     = 940     ,    = 41A
-1/3     

            

b = 1.005    . 

The probability of transition is  from very important quantities in nuclear studies after the excitation energies, therefore 

The probability of reduced electric quadrupole transition B (E2) was calculated in the nucleus of the sulfur isotope 
35

S for the 

interactions w and hbusd, which corresponds to the experiment values available for this isotope as shown in the table (3):  

Table (3): A comparison between of the probability of reduced electric quadrupole transition B (E2) in the 
35

S nucleus 

computed using the two-effective interaction hbusd and w with available experiment results [12] 
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We observe through the above table the values of B (E2) for the two reactions (w, hbusd) and we found that through our 

calculations we have obtained new transitions that have no experiment values yet.  

 

4. Conclusions: 

 By application nuclear shell model and using an OXBASH computer software 

For the two interactions W and HBUSD, the energy levels and the probability of reduced electric quadrupole transition B (E2) for 

the 
35

S isotope had been studied. From the values we obtained for the energy levels, we conclude the following: 

• The angular momentum and the symmetry for the ground state had been obtained agreement for both HBUSD and W 

interactions. 

• An acceptable agreement was reached between the theoretical and experiment values for both HBUSD and W interactions 

• Total angular momentum and symmetry levels have been confirmed for some uncertain energy angular momentum and 

symmetry experimentally for both HBUSD and W interactions. 

•  Total angular momentum is confirmed only for some uncertain energy levels by angular momentum experimentally for 

both HBUSD and W interactions. 

• The total angular momentum is confirmed only for some values of experiment energies for which do not determined her 

symmetry for both HBUSD and W interactions.  

• The total angular momentum has been confirmed for some experiment energies values but with a different symmetry for 

the HBUSD interaction. 

•  Higher energy levels were obtained from the higher values for the experiment levels of both HBUSD and W interactions. 

from studying the probability of reduced electric quadrupole transition B (E2) for the 
35

S isotope using HBUSD and W 

interactions, we found acceptable agreement compatibility between theoretical and experiment results.  

Through the results, we observed that the two HBUSD and W interactions were appropriate for calculating energy levels and the 

probability of reduced electric quadrupole transition B (E2) for the studied isotopes, and we did not notice significant differences 

between them. 
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