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Abstract: Fuzzy Tarig transform ( ̃-Transformation) method be used in this paper to estimate the exact solutions of 

a fuzzy differential equations with generalized differentiability of Hukuhara. Moreover, this fuzzy integral is more 

suitable and accurate for solving fuzzy      order differential equations due to that fuzzy transform such as Laplace  

Sumudu and Tarig reduce the ordinary differential equation to an algebraic systems. To explain this approach, 

some important concepts and theorems are discussed in this work associated with some examples. 
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1. Inroduction 

Fuzzy set theory is a important method for modeling. Especially, the linear equations with constant coefficients are 

worth studying due to they fit as mathematical models for famous physical problems and another fields such as real 

problems in the golden  mean [5], particle systems [8], quantum mechanics and gravity [9], synchronize 

hyperchaotic systems [17], unstable systems [10,15,166], medicine [1,3], difficulties in engineering [11]. Actually, 

fuzzy transformation  was proposed as a pilot fuzzy approximation approach to apply in various  application fields 

such as numerical solution of ordinary differential equations. In  recent years, many researchers in the theoretical and 

functional fields did several works (see [4,6 ,13,14,17]). 

 

2.Basic Concepts 

The basic definitions of a fuzzy number are given as follows:  

Definition 1. [2]  
A fuzzy number is a fuzzy set like  : R→ [0, 1] which satisfies: 

1. π is an upper semi-continuous function, 

2. π( ) = 0 outside some interval [a,d], 

3. A real numbers x,y, z,w such as  x ≤y ≤ z ≤ w and 

3.1 π( ) a function is monotonic increasing on [x, y], 

3.2 π( ) a function is monotonic decreasing on [z, w], 

3.3 π( ) = 1 for all   ∈ [y, z].  

4. π  is upper semi-continuous,  

5. π is fuzzy convex, 

6. π  is normal,  

7.supp(A) is the support of the π , and its closure   cl(supp(A)) is compact.  

 

Definition 2. [14,7] The metric structure is given by the distance from Hausdorff to satisfy the following properties, 

that    is denoted the class of fuzzy subsets of real axis: 

  :    ×    →   ∪ 0 ,  ( (r), v(r)) = Max{sup|  −  |, sup|  −  |}, (  , ) is a complete metric space and following 

properties are well known: 

 (ρ +  , v + ω) =  (ρ, v), ∀ρ, v,ω ∈   . 

 (kρ, kv) = |k| (ρ, v), ∀ρ, v ∈    , ∀k ∈R. 

 (ρ+v,ω+e) ≤  (ρ,ω)+ (v, e), ∀ρ, v,ω, e ∈  . 
 

Definition 3. [2]  

Let m, n ∈    . If there exists z ∈   such that m = n + z then z is called the H-differential of m, n and it is denoted 

by m  n. 

Definition 4. [2]  

Suppose  (m) be a fuzzy valued function on [a, b]. Suppose that  (m, n) and  (m, n) are improper Riemman-

integrable on [a, b] then we say that  (x) is improper on [a, b], furthermore,  
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3. Generalization of  ̃-Transformation 

Theorem 1. [2]  

Let f(t) be a fuzzy valued function on [a,   represented by (              . For any fixed  ∈      , assume 

                  are Riemann-integrable on [a,b] for every b  , and there are two positive functions 

              such that∫ |      |   
 

 
     and ∫ |      |   

 

 
       for every b  . Then  (t) is improper 

fuzzy  Riemann-integable on [a, ) and the improper fuzzy Riemann-integral is fuzzy number. Furthermore, we have 

: ∫        (∫          ∫         
 

 

 

 
) 

 

 
  

Proposition 1.  [2]   

If each of  (t)  and  (t) are fuzzy valued functions and fuzzy Riemann-integable on [a, ) then  (t)+ (t) is fuzzy 

Riemann-integable on [a, ). Moreover, we have: ∫ (         )  
 

 
=∫        ∫       

 

 

 

 
. 

Theorem 2. [12] 

Suppose that                        are differentiable fuzzy valued functions such that                        

are (ii)-differentiable functions for                        ,         is (i)-differentiable for 

                 and       is denoted by                   , then: 

(a)  If    is an even number then                             . 

(b)  If    is an odd number then            *               +  

 

Theorem  3. 

 Suppose that                        continuous fuzzy valued functions [0, ) and of exponential order and that 

        is piecewise continuous fuzzy-valued function on [0, ).                       are (ii)-differentiable 

functions for                   and          is (i)-differentiable for                 , and if  -

cut representation of fuzzy- valued function      is denoted by                   , then 

1) m is an even number ,we have   ̃[       ]   
       

    
    

       ∑
       

          
   
      ,                                                                                                                                                                                  

------------------------- (1) 

such that  

 

{
 
 

 
                                                         

                                   

                                                      

                                   

                                                 (2) 

 

2)   is an odd number ,we have 

 ̃[       ] = 
     

      
        

     ∑
       

          
   
                                                                                (3) 

Such that 

 

{
 
 

 
                                                         

                                   

                                                      

                                   

                                                (4) 

 

Proof (1):  Let                        be  (ii)-differentiable functions and   be an  even number, then by theorem 

(2/a), we get 

                       
         . 

                                                                     
 

Therefore,                     ,  
                    . Thus    
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 ̃[       ]   ̃            
   

                         
   

       ,                (5)  

by the relationship between fuzzy Laplace and Tarig transformations : 

we know          ̃        ,              . 
In general,          ̃          ,                    :  

         ̃[       ]  
  (

 
  )

 
 

        
 

 
[ 

 

   
   (

 

  )   
 

   
          ∑

       

         
   
     ] 

                  
      

    
    

       ∑
       

          
   
     .                

From the ordinary differential equations, we have  

 (         )    
         

    
      

      ∑
         

          
   
                              

which can be written as:  

 (         )    
 *      +

    
      

      ∑
         

          

  
      ∑

         

          

  
         ∑

         

           
  
          

∑
         

          
   
            

                                                                                                                 ----------------------------------- (6) 

In a similar way, we can get  

 ( 
   

     )    
         

    
      

      ∑
 

   
     

          

  
      ∑

 
   

     

          

  
         ∑

 
   

     

           
  
          

∑
 

   
     

          
   
                                                                 ---------------------------------- (7)                                       

Since                  we can apply theorem (2/a) for each             where          as 

following:  

                      ,  
                           , 

 
                                                       , 

                     ,  
                                , 

    

                      ,  
                                . 

The last  equations yields from theorem (2/a) due to that  m is an even number. Substituting  (6) and (7) in (5) to get: 

 ̃[       ]   

  
 *      +

    
      

      ∑
         

          

  
      ∑

         

          

  
         ∑

         

           
  
          

∑
         

          
   
          

         

    
      

      ∑
         

          

  
      ∑

         

          

  
         ∑

         

          

  
          

∑
         

          
   
         . 

 

(2) Let                        be  (ii)-differentiable functions and   be an  odd number, then by theorem (2/b), 

we get 

             
   

                .
                                                            

 

Therefore,                                    
         .                 

 ̃[       ]     ̃            
   

            
   

                      

                                                             ---------------------------------------(3.8) 
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by the same procedure for  (1) we have  

         ̃[       ]  
  (

 
  )

 
 

        
 

 
[  

 

   
           

 

   
   (

 

  )   ∑
       

         
   
     ] 

  
       

    
     

       ∑
       

          
   
     . 

which can be written as:  

 (         )    
 *      +

    
      

      ∑
         

          

  
      ∑

         

          

  
         ∑

         

           
  
          

∑
         

          
   
         .---------------------------------- (9)                           

In a similar way, we can get  

 ( 
   

     )    
         

    
      

      ∑
 

   
     

          

  
      ∑

 
   

     

          

  
         ∑

 
   

     

           
  
          

∑
 

   
     

          
   
        -------------------------------------(10)                  

 

Since                  we can apply theorem (2/b) for each           where          as 

following:  

                      ,  
                            

 
                                                        

                     ,  
                                 

               
 

    

                      ,  
                                . 

The last  equations yields from theorem (2/b) due to that  m is an odd number. Substituting  (9), (10) in (8) to get: 

 ̃[       ]   

  
         

    
      

      ∑
         

          

  
      ∑

         

          

  
         ∑

         

          

  
          ∑

         

          
   
          

 *      +

    

      

      ∑
         

          

  
      ∑

         

          

  
         ∑

         

           
  
          ∑

         

          
   
          . 

 

 

 

Remark .1 

By theorem (3), there are     cases for  ̃-transformation for          ∈   . So, we have  ∑ ( 
 
) 

           , where
 

( 
 
) is the number of cases that contains k functions of the type (ii)-differentiable among the functions 

                      .   

4.   Ilustrative examples 

Following are examples of order 5 derivative, that solved to show the validity of  theorem  (3).  

1. Example  

Consider the following second-order FIVP: 

   ( ) =                                                                                         

µ(0) =   (0) = (         ) 
note that  (0) =   (0) =     

  (0) =    (0) =      
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 (               )    ( ) = (     ,     ) ,  

 (               )                                   

and  (               )        .There are    = 4 cases: 

 

Case (1):  Let
 
 ( ),       i- differentiable. Then :  

               ,               , 

Thus: 

   (               )          ],                          
              

 

   (               )          ].                                                                                                                         
                                                    

                  Using theorem (3) when   is an even number, we get:  

     

    
    

   
     

   = T(    ) 

T(   ( ))- (    )(u+   )                

T(   ( )) 
      (    )

      
 

     which implies that          , 

T( 
 
( ))   

      (    )

      
 

     which implies that  
 
        . 

 

 

Case (2):  Let
 
 ( ),       ii- differentiable. Then:  

                 ,                  , 

Thus: 

   (               )          ],                            
               

 

   (               )          ].                                                                                                                                
                                                    

                  Using theorem (3) when   is an even number, we get:  

     

    
    

   
     

   = T(    ) 

 *     +                            ,
           

(1) 

and  

               *     +                          (2)
 

solving (1),(2)
 

 *    +    
      (    )(     )

      
 

       and 

   
        

                   

       
 

      which implies that                
 
    . 

Other cases are solved by the same way. 

 

2. Example  

Consider the following fifth-order FIVP: 

    ( ) =                                                                                         

µ(0) =   (0) =    (0) … =     (0) = (         ) 

note that  (0) =   (0) =    (0) =     (0) =     (0) =     

  (0) =    (0) =     (0) =     (0) =     (0) =     

 (                                )    ( ) = (     ,     ) ,  

 (                                )                                   

and  (                                )        .There are    = 32 cases: 

 

Case (1):  Let
 
 ( ),              ( ),     ( ),     ( ) be i- differentiable. Then :  
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               ,               ,                 ,                    

                   ,                   ,                   ,                     

T
hus: 

   (                                )          ],                                         

   (                                )          ].                                                                                                                                                                                               

Using theorem (3) when   is an even number, we get:  

     

   
 
    

  
 
     

  
 
      

  
-
       

  
 
       

 
 = T(    ) 

T(   ( ))- (    )(u+     +  +  )                

T(   ( )) 
      (             )

     
 

 

     which implies that          , 

T( 
 
( ))   

      (             )

     
 

 

     which implies that  
 
        . 

 

 

Case (2):  Let      ,           ( ),     ( )   be (i)-differentiable and   ( ) be (ii)-differentiable. Then:  

                 ,                  ,                   ,                      

                   ,                   ,                   ,                     

Thus: 

   (                                )          ],                                            

   (                                )          ].                                                                                                                                                                                                      

Using theorem (3) when   is an odd number, we get:  

     

   
 
    

  
 
     

  
 
      

  
-
       

  
 
       

 
 = T(    ) 

 *     +          
                           ,           (3) 

and  

   
            *     +                                   (4) 

solving (3),(4) 

 *    +    
      (             )(     )

     
 

  

       
   and 

   
        

                            

     
 

  

          
  which implies that              

 
          . 

Case (3):  Let  ( ),           ( ),     ( ) 
 
be (i)-differentiable and       be (ii)-differentiable. Then we have: 

                 ,                  ,                   ,                      

                   ,                   ,                   ,                     

Thus: 

   (                                )          ],                                             

   (                                )          ].                                                                                                                                                                                                       

Using theorem (3) when   is an odd number, we get:  

     

   
 
    

  
 
     

  
 
      

  
-
       

  
 
       

 
 = T(    ) 

 *     +                                     ,
           

(5) 

and  

               *     +                                    (6)
 

solving (5),(6)
 

 *    +    
                            

     
   

  

        
    and  

   
       

                            

     
   

  

          
 which implies that               
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Case (4): Let  ( ),           ( ),     ( )  be (i)-differentiable and        be (ii)-differentiable. Then:  

               ,               ,                 ,                    

                   ,                   ,                   ,                     

Thus: 

   (                                )          ],                                             

   (                                )          ].                                                                                                                                 
                                                    

                  Using theorem (3) when   is an odd number, we get:  

     

   
 
    

  
 
     

  
 
      

  
-
       

  
 
       

 
 = T(    ) 

 *     +                                     ,
           

(7) 

and  

               *     +                                    (8)
 

solving (7),(8)
 

 *    +    
      (             )(     )

     
   

  

       
   and  

   
      

                            

     
 

  

          
  which implies that 

            
 
            

 

Case (5):  Let            ,       ,     ( ) be (i)-differentiable and     ( ) be (ii)-differentiable.  Then: 

               ,                                 ,                   

                   ,                   ,                   ,                     

Thus: 

   (                                )          ],                                           

   (                                )          ].                                                                                                                                                                                                      

Using theorem (3) when   is an odd number, we get:  

     

   
 
    

  
 
     

  
 
      

  
 
       

  
 
       

 
 = T(    ) 

 *     +          
                           ,           (7) and  

   
            *     +                                    (8)

 
solving (7),(8) 

 *    +    
      (             )(     )

     
   

  

        
 ,  and 

   
      

      (             )(     )

     
  

  

          
  which implies that  

             
 
             Other cases are solved by the same way. 
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