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Abstract: The absorption and amplification of ultrasound in semiconductors with high mobility in the presence of an external 

electric field E satisfying the conditions     ̅        ̅   (  -wave sound vector,    – pulse relaxation time,  ̅,  ̅– is the 

characteristic value of the electron energy and momentum). It is shown that the absorption and amplification coefficients of 

sound essentially from the mechanisms of electron scattering. 
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1. INTRODUCTION 

 So far, many theoretical and experimental scientific studies [1-5] have emerged in which the absorption and 

amplification of a sound wave in piezoelectric semiconductors with a frequency of   and a wave vector   satisfy the following 

conditions 

     ,       (1) 

here   - is the free path length of the electrons and   - is the energy relaxation time. The condition ensuring the fulfillment of 

this inequality can be observed in semiconductors of n-type InSb100, where charge carriers have high mobility. In studies [6-9], 

it was found that sound absorption and amplification under such conditions could be significantly different from those in the 

hydrodynamic regime. This difference is especially noticeable in cases where the electron energy increases with increasing the 

energy relaxation time of electron. In such cases, it was observed that the absorption of sound might be significantly higher 

than the value of White’s in the hydrodynamic theory, as well as the frequency dependence of the absorption coefficient may 

be completely different [7-9] 

Here we show that even with the fulfillment of inequalities 

      ,                (2) 

there are specific frequency dependencies in the sound absorption coefficient. Here             ,     is the electron 

diffusion tensor.  

2. FREQUENCY DEPENDENCIES OF THE SOUND ABSORPTION COEFFICIENT 

 The conditions satisfying the inequality (2) can be fulfilled experimentally, but this has not been considered in 

theoretical studies [5,7,9]. In work    , formulas are given that are appropriate for any size of     parameters, but they are 

derived for the presence of electron temperature.  

At the same time, on the one hand, for the existence of these waves, the fulfillment of the following inequalities is required. 

       ,                                            ( ) 

Here     -is the characteristic time of the interelectron collision. On the other hand, in the field of the existence of wave 

electron temperature, the specific connections of absorption and amplification disappear. We assume that the opposite of one 

of the (3) inequalities is fulfilled. We also consider its intensity to be small when we look at sound absorption and 

amplification. Then we can use the usual Fourier analysis and assume that all quantities are proportional to       ( ⃗ ⃗    ) . 
Using the elasticity equation and the Poisson equation and considering the interaction of sound with electrons to be 

piezoelectric, the law of dispersion for a sound wave can be written as [6]: 

     
 ( )

  
 ( )

  *  
    

   
   ⃗⃗( )+

  

                       ( ) 
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Here   
    

   с0

24




   -is the dimensionless constant of the electromechanical coupling,   -is the modulus of elasticity, 

  -is the piezo-module,    -is the electrical absorption,   
 ( )        ,   -is the crystal density. The coefficient of sound 

absorption   ( ) is determined by the law of dispersion as        ⃗⃗( ). Where   ⃗⃗( ) -is the response function of the 

electron concentration     to the variable electric field potential   : 

                                            ( )        ⃗⃗( )                                  ( )  

To determine this response function, we need to solve the kinetic equation for the electron distribution function   ⃗: 

  ⃗    (  ⃗  )    ⃗
( )

, 

here   -is the equilibrium distribution function. This equation has the following appearance: 

(      ⃗ ⃗)  ⃗
( )   ̂  ⃗

( )   ( ⃗ ⃗)   
   

   ⃗⃗⃗
,                       ( ) 

3. DISEQUILIBRIUM SURFACE DISTRIBUTION FOR CONSTANT ENERGY  

 In (6)  ̂ -is a linear collision operator. Fourier component of concentration   ⃗⃗ 

                      ( )  
 

(   ) 
 ∫   ⃗  ⃗

( )  ∫    ( ) ̃( )
 

 
            ( )  

 

Here  ( )  
 

(   ) 
∫   ⃗ (    ⃗)  -is the density of states, and the function   ( )   -is the disequilibrium part of the 

distribution function averaged over the constant energy surface of  

 ̃( )  
 

(   )  ( )
∫   ⃗  ⃗

( ) (    ⃗)                 ( ) 

It can easily be seen that the part of the distribution function that is symmetric on the momentum  ⃗ depends only on the energy 

  and corresponds to the function  ̃( ) [11].The equation (6)  for   ̃( ) can be found by averaging over the constant energy and 

has the following appearance [7,9]: 

[       (  ⃗)] ̃  ⌌ ̂ ⌍     (  ⃗)   ⃗⃗

   

   ⃗⃗⃗
               ( ) 

here 

 (  ⃗)  
    

     (  ⃗) ,    (  ⃗)  ⌌   ̂
    ⌍ 

Here the magnitude  (  ⃗) has the meaning of the diffusion coefficient of the given energy electrons in  ⃗⃗ direction of wave 

vector. Let’s assume that electrons obey Boltzmann's statistics, and that the leading mechanism of energy relaxation is 

scattering in acoustic phonons. In this case [11] 

⌌ ̂  ⌍   
 

   

 

√ 
  (  

 

  
)  ̃( )                                    (  ) 

Here  
 

 
 ,   -is the temperature per unit of energy, 

   
       

 √      √ 
                                                     (  ) 

-relaxation time of electron energy,  - its effective mass,  - deformation potential constant. If the energy dependence of  ( ) 

assuming as the power function of  ( ) the equation (9) can be written as: 

*     
 

√ 
       

  

 (   )
 

 

  
  (  

 

  
)+  ̃( )   

   

 
     

  

 (   )
     (13) 
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The solution of this equation can be easily found in the cases         ,       . In this case,  ̃( )        , in which   

is a constant, it is found by integrating (13) by  , and we get the usual hydrodynamic expression for   ( ) 

  ( )  
   

 

   
                                          (  ) 

Here   -is the total concentration of electrons,               -is the inverse of the square of the Debye radius;    
  

   
 - 

Maxwell time of relaxation;    
          

      -is the velocity tensor of electrons. When condition (2) is satisfied, the 

abstract part of   is much smaller than its actual part. Therefore, when calculating the actual part of it, we can say that    , 

and it is possible not to take into account the energy relaxation. As a result, 

    ( )  
  

 
                                             (  ) 

If at this time it is    , it is possible to find the abstract part of    ( ) (13)by integrating   without taking into account the 

relaxation of energy in phonons. In this case  

      ( )  
  

 

   

     

 (   ) (   )

  (   )
                         (  ) 

as a result, we obtain the formula (11) of the work for the sound absorption coefficient [4]. If     (     when scattering 

occurs in mixtures without a magnetic field, and       when scattering in acoustic phonons in a strong magnetic field) is 

written for     ( ) the integral in the expression becomes distant, excluding the relaxation of energy. If we express    ̃( )  

as  

   ̃( )   ( )                                        (  ) 

we can obtain the following equation from (13) 

  ̈  (     ) ̇        √                          (  ) 

Here  

  
     

 (   )
 ,    

 

√ 

   

 
    

Since the differential operator is significant only at small values of   (parameter     ), the coefficient in front of  ̇ can be 

omitted    relative to    . Then, by substituting     the equation (18) can be reduced to following  

 ̈                                            (  ) 

The boundary conditions for this equation are determined by ∑  ̂      and  

      ⌊     ⌋        ⌊   
  ⌋                          (  ) 

The fundamental solutions of the homogeneous equation in (19) are the √     (  
   √   )and √     (  

   √   ) 

functions, where   ,   are the modified functions of Bessel. Accordingly, the solution of (19) corresponding to the boundary 

conditions (20) can be written as follows: 

 ( )  
  

 √ 
[
    (  

   √   )∫       (  
   √   )  

 

 

     (  
   √   )∫   

 

 
    (  

   √   )
].               (  ) 

Since we have    , it is     ( ) that connects  ( )  with  

    ( )   
   

 √ 
∫ √ 
 

 
 ( )               (22) 

in the expression it will be possible to replace    with   , then it will be possible to find the connection of     ( ) from the 

parameter   by bringing the corresponding integral to it in a measurable form. As a result, we will have 

                                        ( )  
  

 

   

     
       

(   )                    (  ) 
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here  

   
 

 
(

 

  (   )
)
   

∫  
   

   

 
( )  ∫  

   

   
 

( )  
 

 

 

 
            (  ) 

4. THE INCREASE IN SOUND AT THE EXTERNAL ELECTRIC FIELD  

 Now let us look at the increase in sound at the external electric field E. In this work, we do not take into account the 

phenomenon of statistical heating of conductive electrons in such a field, and assume that the condition (   )      is 

fulfilled. Where     is the drift velocity of the electrons in the external electric field   
       . The external field can be 

taken into account in addition to the right side of equation (9) if the given condition is satisfied 

      

√ 

   

  

 

  
(√    ( ))                                 (  ) 

The results obtained depend significantly on whether the energy bonds of the combinations        ( ) and    ( ) are the 

same or different. In the absence of a magnetic field, as well as in the presence of a strong magnet ( ⃗    ⃗   ⃗⃗⃗ and  ⃗    ⃗    ⃗⃗⃗ 

when the Hall contacts are closed), such connections are the same. In practice, this case is considered in [4]. The value of the 

electric field added to     ( ) will be equal to the following 

 
  

 
( ⃗   ⃗ )                                                        (  ) 

In a strong magnetic field (v ⃗ ^ d ‖ q ⃗ H ⃗ and when the Hall contacts are disconnected)        ( ) gives the main 

contribution to the combination the nondiagonal part of the diffusion tensor proportional to  . In this case, except for scattering 

in acoustic phonons, the small range of energy values is not highlighted. The percentage of electric field is determined by the 

expression (26), in which 

   
 

 
 (   ) (   )                                          (  ) 

However, during the relaxation of electron pulses in deformation-acoustic phonons, the strong magnetic field is     (  

    )and a small energy field is highlighted. In this case, in order to calculate the contribution of the electric field to the 

abstract part of the response function, the same must be taken into account here as the relaxation of energy in sound absorption. 

The contribution of the electric field to     ( ) is carried out by replacing   with(  ⃗ ⃗ )  
 √ 

 
 in the expression (23).  

5. CONCLUSION  

         In the summary section of our work we present the formulas for the coefficient of sound absorption (amplification) for 

the cases that are not considered in the articles [3-5]. 

    , H = 0, as well as a strong magnetic field (in the case of  ⃗⃗⃗   ⃗   ⃗ and  ⃗⃗⃗   ⃗   ⃗   when the Hall contacts are closed) 

    (       )  ⌊   ( 
    )⌋                             (  ) 

 When     (acoustic scattering in a strong magnetic field  ⃗⃗⃗   ⃗   ⃗  and when Hall contacts are disconnected)  

    (  
  

  
)
  

  *  
 √ 

 
( ⃗ ⃗ )+                                   (  ) 

When     (in the case of a strong magnetic field  ⃗⃗⃗   ⃗   ⃗ and when the Hall contacts are disconnected) 

    
 

 
(  

  

  
)
  

 (   ) (   ) *  
 √ 

 
( ⃗ ⃗ )+         (  ) 

 The formulas given in (28-30) are drastically different from the formulas in hydrodynamic theory. It can be seen from 

them that the threshold of amplification at the frequencies seen in the study is generally frequency-dependent, the appearance 

of such a coupling is determined by the predominant mechanism of electron pulse relaxation. The study of the absorption and 

amplification of ultrasound in the frequencies we are looking at in transmitters is, in our view, a very effective method of 

studying kinetic phenomena in such materials. It should be noted that the results of this study, together with the results of the 

study in [6-9], fully cover the experimental cases that can be carried out in high-speed semiconductors. 
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