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Abstract: The article explores trunk pipelines and pipelines of enterprises in the energy, petrochemical and other industries that 

make up a large part of their tangible assets. As a rule, pipelines are very highly loaded structures, since even during their design, 

in order to save metal, practically the lowest safety factors are studied. 
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INTRODUCTION 
This requires a very precise justification of strength and resource under all possible types of loading. Such an analysis is 

impossible without the use of modern computing systems. 

At the same time, the calculator needs to understand in advance the nature of the solution, and the numerical results should 

only clarify some of the coefficients. It is important to know the features of the deformation of a structure with its geometrically 

nonlinear behavior, taking into account that even for an ideally elastic material, a slight increase in load can lead to an uncontrolled 

increase in deformations and stresses. In addition, the modern standards for the design of equipment for nuclear power plants [1, 2, 

3] and the norms for assessing operating structures with detected imperfections [4] provide for the division of design stresses into 

different categories, to which different safety factors are applied. Without understanding the features of the deformation of various 

elements, achieved by analytical modeling, it is impossible to use the provisions of these standards. To solve the problem stated 

above, the finite element method and computer simulation were used. 

 

MATERIALS AND METHODS 
The mathematical model of the system is based on dynamic three-dimensional equations of the linear theory of 

viscoelasticity according to the Kelvin-Voigt rheological model: 

        
   

   
   (  )                ̇  

where ζ, ε are stress and strain tensors; ε is the deviator of the strain tensor ε = ε-θ⁄3 Е; Е is the unit tensor; u = u (r, t), fv 

= fv (r, t) are vectors of displacement and given volumetric forces that depend on the time t and the radius of the vector of points of 

the continuous medium r; λ, μ, η-Lamé coefficients and material viscosity; ρ-density; θ-volumetric deformation; Hamilton  -
differential operator. The presented differential formulation of the problem of the theory of viscoelasticity is equivalent to a 

variational formulation in the form of the principle of possible displacements: 

∫         

 

∫         

 

∫              

 

 

where δu is the vector of possible displacements of points of a continuous medium; the integrals on the left represent the 
work of external volumetric and surface forces. 

 
Fig. 1. Calculation scheme 
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and also forces of inertia on possible displacements; 

δπ - virtual work of internal forces during body deformation: 

   ∫          

To numerically solve this equation, we applied the standard procedure of finite element discretization in spatial variables using a 

20-node isoparametric element     ∫          

Taking into account the form of the constitutive relation written in matrix form using matrices of elastic and viscous modules D 

and 

S:δ = Dε + Se, 

the following matrix differential equation in time is obtained: 

 
   

   
   

  

  
     ( )         U=U(t) , F = F(t) — global vectors of nodal displacements and nodal forces as a function of 

time, K, M, R are global matrices of stiffness, masses and dissipation. Further transformation is based on the standard approach 

used in the linear theory of elastic vibrations [6]. Suppose that the external load changes in time according to a harmonic law, 

which can be written as: 

   ( )    
              F,ω- force amplitude and circular frequency, i - imaginary unit Then the particular solution 

corresponding to the steady-state forced oscillations of the system is sought in a similar form: 

 ( )    
                U - global vector of complex amplitudes of nodal displacements; U, and U2 are the real and 

imaginary parts, respectively. 

Substituting the expressions of force and displacement into the differential equation, we obtain a system of complex 

algebraic equations for the vector of complex amplitudes of nodal displacements: 

          )    
After solving the last system, the amplitude values of the nodal accelerations are calculated according to the following formula: 

    √  
    

  

 

DISCUSSION 
To begin with, the work deduces the equation of dynamics for curved rods. A feature of the structure operation under 

dynamic action is the need to take into account the inertial forces associated with the relative displacement of the point of the 

deformable body. Fundamentally, this problem is solved by adding an inertial term to the right-hand side of the equilibrium 

equation, which after the addition is called the equation of motion. Therefore, for static problems, this term is not taken into 

account. The system of equations of the 12th order is solved problematically. But even if it is solved, a problem arises - the 

unification of the rods into a single system. For a curved bar, the local coordinate system is determined by the Frenet trihedral. To 

connect two or more rods into a single system, you need to be able to convert local coordinates into global ones. The presented 

algorithm is implemented in the form of the author's software package MATLAB and allows calculating the viscoelastic steady-

state vibrations of mechanical structures under the action of an external harmonic force. It is known that if the stress concentration 

is not considered, then a small number of finite elements are sufficient to describe elastic vibrations. Taking into account that the 

model uses high-order elements with quadratic approximation of displacements, then only 62 finite elements were used. The global 

number of degrees of freedom of the pipeline model was 1242. 
 

The retainer material (stainless steel alloy) is characterized by an elastic modulus of E = 206 GPa, a shear modulus of G = 80 

GPa and a density of p = 7000 kg / m3. One of the sources of elastic vibrations of pipes and pipelines are pressure pulsations of the 

working medium. Under the influence of pulsations, the pipe performs the usual forced vibrations associated with the expansion-

compression of the wall (the pipe “breathes”). Under certain conditions, stationary vibration modes become dynamically unstable, 

and parametric resonance develops in the system. The results of studying the stability of axisymmetric vibration modes of 

rectilinear pipes as thin-walled cylindrical shells are presented in numerous works, for example [4]. A distinctive feature of 

parametric vibrations of curved tubes is the presence, along with simple resonances, of combination resonances of the total type 

[4]. Consider a pipe (Fig. 1), the axial line of which is an arc of a circle of radius R, length L, with a central angle (bend angle) Ф0. 

The pipe has a perfectly circular cross-section of radius r 

 
with r / R <1/5. Wall thickness h. The pipe is under the influence of monoharmonic pressure p (t) = pm (1 + ψ cosΩt), where 

rt is the average (working) pressure, - ψ = p0 / pm * 1 is the pulsation parameter; p0 and Ω - amplitude, angular frequency. The 
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perturbed form corresponding to the deviation of motion from the unperturbed one is approximated by functions of the 

form: (     )  ∑ [   (   )         (   )      ]
 
    

 (     )  ∑[   (   )         (   )      ]
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)     (   )         
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RESULT 
Here v and w are the displacements of the points of the middle surface in the circumferential and radial directions, s and θ 

are the axial and circumferential coordinates, t is the time, wmn = wmn (t) ~ generalized coordinates corresponding to the pivotal 

(m = 1,2 and n = I ) and shell (m = 1.2 and n = 2, 3.4, ...) forms. Index m = 1 corresponds to vibrations in the plane of the pipe, 

index m = 2 - to vibrations along the normal to the plane. The rod (beam) shape reflects the movements associated with the 

movements of the cross-section of the pipe as a rigid whole, the shell forms - the movements associated with the deformation of the 
shell wall. We consider n = 2, 3,4, ... ∞ waves in the circumferential direction and one half-wave in the axial direction. Based on 

approximation (1), the semi-momentless theory of anisotropic layered shells, and Lagrange equations of the second kind, two 

independent systems of coupled differential equations with variable stiffness coefficients are obtained  

[A] {w} +2ε[B]{w} + α([С] - 2 µ[F] cos Ω t) {w} = 0,       (2) 

which describe parametric vibrations of the pipe, both in the plane of its curvature and along the normal to the plane. In 

this case, α = 6πD2 / (mTr3) is a factor, тт = Iπphr is the mass of a unit length of the pipe, D2 = E2h3 / (l2 (l-v12v21)) is the 

stiffness of the wall for bending in the circumferential direction, E2, v12, v21 are the effective elastic constants [4], µ = 0.5 р0 / 

ркр coefficient of parametric excitation, ркр = 3D2 / r3 - critical external pressure corresponding to static buckling, ε - damping 

coefficient, fm = пг-1. The elements of the matrices [A], [B], [C] are determined by recursive formulas [4]. 

The resolving system of equations (2) describes the parametric vibrations of a coupled shell-and-rod system. The source of 

parametric excitation is a periodic change in the volume of the internal cavity. At the same time, the pressure “works” not on the 

main (axisymmetric) displacements, but on additional displacements associated with bending deformations of the wall. 
  From the analysis of the structure of the matrix [C] it follows that the rod form (n = 1) is associated with the shell form (n 

= 2). This means that vibrations of the pipe as a rod are accompanied by vibrations of the shell wall associated with flattening of 

the cross section (the Karman effect appears). The interaction of the rod and shell forms is due to elastic bonds, the intensity of 

which is characterized by off-diagonal matrix elements [C] and depends on the pipe length L and the curvature parameter r / R. 

The shorter the pipe and the larger the r / R parameter, the stronger these connections are. In addition, the shell forms interact with 

each other: separately n - even harmonics (n = 2, 4, 6, ...) and n - odd harmonics (u = 3, 5, 7, ...). The smaller the radius of 

curvature R and the larger the number n, the stronger the interaction. Under the conditions of the nominal operating mode, the 

ideal pipe is considered as a parametrically excited system with a small modulation depth of the parameter µ. We restrict the 

analysis of the stability of elastic vibrations to the region of the lowest natural frequencies. To calculate the boundaries of the 

instability regions at the main simple resonances Ω = 2ωi and the main combination resonances Ω = ωi, + ωj (i, j = 1,2,5), we use 

the small parameter method [6]. We represent the perturbed form of movement as a superposition of its own forms. To solve the 
eigenvalue problem, we use the Jacobi method. The report presents the results of a study of the dependence of the spectra of the 

lowest natural forms and frequencies on the operating pressure, as well as geometric, structural and technological factors. The 

results obtained are compared with the FEM calculation data. 

The pictures of resonant bands are shown depending on the angle Ф0 = 5 °, 90 °, 135 °, 180 ° (at L = const) and reinforcement 

angles φ = ± 55 °, ± 65 °, ± 75 °. It was found that with a decrease in the curvature of the pipe, the lowest natural frequency ω 

increases, while the higher frequencies ω2, ω3, ω4, ω5, on the contrary, decrease and approach the natural frequencies of a straight 

pipe. In this case, the regions of dynamic instability are shifted towards different values of 0.1 (2 ωх), and the relative width of the 

bands narrows. At Ф0 = 5 °, the instability regions 2 ω1, and ω1, + ω2 practically disappear. 

With an increase in the reinforcement angles ± φ, the regions of dynamic instability corresponding to the main simple and main 

combination resonances shift towards large values of Ω (2ω1). In this case, the instability regions 2ω and ω1 + ω2 narrow, and the 

instability regions 2 ω2, 2 ω3, 2 ω4, 2 ω5 and ω2 + ω4, ω3 + ω5, on the contrary, expand.  

Table 1 

The values of the critical bending moment Mkr for a pipe with 

initial curvature of the axis 

γ0 MCR 
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Received 

results 

Literary source 

[3] [98] 

0 0,322  ода 

0,1 0,282 0,281 0,285 

0,2 0,247 0,254 0,254 

0,3 0,167 0,191 0,190 

Table 1 shows the values of the critical bending moment M cr for pipes with the initial curvature of the Ro axis, calculated on the 

basis of the refined solution. As expected, the critical moment values decrease with an increase in the initial and 

 

 

 

Fig. 2. Limiting curves under the combined action of bending moment and pressure for a straight pipe: 1 - our 

results; 2 - data [2]; 3 - data [3]. 

CONCLUSION 
Let us construct the dependence of the critical bending moment on pressure in normalized coordinates t and q (Fig. 2). 

The graph represents the limit curve 1, which characterizes the combination of loading leading to loss of stability. For points 

that lie in the plane bounded by this curve, the level of torque and pressure loading does not correspond to buckling. The points 

above the curve correspond to such a combination of loads, for which the loss of pipe stability is inevitable. 

In the region q <0 (internal pressure), all the graphs practically coincide; therefore, in Fig. 2 they are given for the region 

q> 0. 
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