Artin's Characters Table of the Group $\mathrm{Q}_{2 \mathrm{~m}} \times \mathrm{D}_{4}$ when m is an Odd Number

Naba Hasoon Jaber
Department of Mathematics,Faculty of eduction for Girl,University of Kufa,Najaf, Iraq

Abstract

The main purpose of this paper is to find Artin's characters table of the group $Q_{2 m} \times D_{4}$ when m is an odd number, which is denoted by $\operatorname{Ar}\left(Q_{2 m} \times D_{4}\right)$, where $Q_{2 m}$ is denoted to quaternion group of order $4 m$, such that for each positive integer m, there are two generators x and y for $Q_{2 m}$ satisfies $Q_{2 m}=\left\{x^{h} y^{k}, 0 \leq \square \leq 2 m-1, k=0,1\right\}$ which has the properties $x^{2 m}=y^{4}=I, y x^{r} y^{-1}=x^{-r}$ and D_{4} is the dihedral group of order 8 is generate by a rotation r of order 4 and reflection s of order 2. The eight elements of D_{4} can be written as: $\left\{I^{*}, r, r^{2}, r^{3}, s, s r, s r^{2}, s r^{3}\right\}$ with properties $s r^{k} s=r^{-k}, k=$ 0, 1,2,3.

Keywords: Characters, Artin, group, $\mathrm{Q}_{2 \mathrm{~m}}, \mathrm{D}_{4}$,odd number.

1. Introduction:

let G be a finite group, two elements of G are said to be Γ-conjugate if the cyclic subgroups they generate are conjugate in G and this defines an equivalence relation on G and its classes are called Γ-classes [1].
Let H be a subgroup of G and let ϕ be a class function on H, the induced class function on G, is given by: $\phi^{\prime}(\mathrm{g})=\frac{1}{|\mathrm{H}|} \sum_{\mathrm{h} \in \mathrm{G}} \phi^{\circ}\left(\mathrm{hgh}^{-1}\right), \forall \mathrm{g} \in \mathrm{G}$, where ϕ° is defined by:

$$
\phi^{\circ}(x)= \begin{cases}\phi(x) & \text { if } x \in H \tag{2}\\ 0 & \text { if } x \notin H\end{cases}
$$

Let H be a subgroup of G and ϕ be a character of H , then ϕ^{\prime} is a character of G , and it is called the induced character on G[3].
In 1976 ,David.G[4] studied "Artin Exponent of arbitrary characters of cyclic subgroup ", Journal of Algebra,61,p p.5876.

In 1996, Knwabusz .K[3] studied "Some Definitions of Artin's Exponent of finite Group", USA, National foundation Math,GR.
In this work we find Artin's characters table of the Group $\mathrm{Q}_{2 \mathrm{~m}} \times \mathrm{D}_{4}$ when m is an odd number.

2. Preliminaries

In this section we find Artin's characters table of the group $\mathrm{Q}_{2 \mathrm{~m}}$ when m is an odd number and Artin's characters table of the group D_{4}.
Theorem(2.1): [2]
Let H be a cyclic subgroup of G and $\mathrm{h}_{1}, \mathrm{~h}_{2}, \ldots, \mathrm{~h}_{\mathrm{m}}$ are chosen representatives for the m -conjugate classes of H contained in $\mathrm{CL}(\mathrm{g})$ in G,then: $\varphi^{\prime}(\mathrm{g})= \begin{cases}\frac{\left|C_{G}(g)\right|}{\left|C_{H}(g)\right|} \sum_{i=1}^{m} \varphi\left(h_{i}\right) & \text { if } h_{i} \in H \cap C L(g) \\ 0 & \text { if } H \cap C L(g)=\phi\end{cases}$

2.2 Artin's Characters Tables:

Definition(2.2.1) [2] :

Let G be a finite group, all the characters of G induced from a principal character of cyclic subgroups of G are called Artin characters of G.

Proposition(2.2.2) [1]:

The number of all distinct Artin characters on group G is equal to the number of Γ-classes on G. Furthermore, Artin characters are constant on each Γ-classes.

Definition(2.2.3) [5]:

Artin characters of the finite group G can be displayed in a table called Artin characters table of G which is denoted by $\operatorname{Ar}(\mathrm{G})$. The first row is the Γ-conjugate classes, the second row is the number of elements in each conjugate class, the third row is the size of the centralized $\left|C_{G}\left(C L_{\alpha}\right)\right|$ and other rows contains the values of Artin characters.

Theorem(2.2.4) [5]:

The general form of Artin characters table of $C_{p^{s}}$ when p is a prime number and s is a positive integer number is given by:

International Journal of Engineering and Information Systems (IJEAIS)
ISSN: 2643-640X
Vol. 4, Issue 8, August - 2020, Pages: 66-87
$\operatorname{Ar}\left(C_{p^{s}}\right)=$

Γ-classes	$[1]$	$\left[x^{p^{s-1}}\right]$	$\left[x^{p^{s-2}}\right]$	$\left[x^{p^{s-3}}\right]$	\cdots	$[\mathrm{x}]$
$\left\|C L_{\alpha}\right\|$	1	1	1	1	\cdots	1
$\left\|C_{p^{s}}\left(C L_{\alpha}\right)\right\|$	p^{s}	p^{s}	p^{s}	p^{s}	\cdots	p^{s}
φ_{1}^{\prime}	p^{s}	0	0	0	\cdots	0
φ_{2}^{\prime}	p^{s-1}	p^{s-1}	0	0	\cdots	0
φ_{3}^{\prime}	p^{s-2}	p^{s-2}	p^{s-2}	0	\cdots	0
\vdots	\vdots	\vdots	\vdots	\vdots	\ddots	\vdots
φ_{s}^{\prime}	p	p	p	p	\cdots	0
φ_{s+1}^{\prime}	1	1	1	1	\cdots	1

Table(1)

Corollary (2.2.5) [5]:

Let $\mathrm{m}=p_{1}^{\alpha_{1}} \cdot p_{2}^{\alpha_{2}} \ldots . p_{n}^{\alpha_{n}}$ where g.c.d $\left(\mathrm{p}_{i}, \mathrm{p}_{\mathrm{j}}\right)=1$, if $i \neq \mathrm{j}$ and p_{i} 's are prime numbers, and α_{i} any positive integers for all $1 \leq i \leq n$, then : $\operatorname{Ar}\left(\mathrm{C}_{\mathrm{m}}\right)=\operatorname{Ar}\left(C_{p_{1} \alpha_{1}}\right) \otimes \operatorname{Ar}\left(C_{p_{2} \alpha_{2}}\right) \otimes \ldots \otimes \operatorname{Ar}\left(C_{p_{n}}{ }^{\alpha_{n}}\right)$.

Theorem(2.2.6) [6]:

The Artin characters table of the quaternion group $\mathrm{Q}_{2 \mathrm{~m}}$ when m is an odd number is given as follows:

$\operatorname{Ar}\left(\mathrm{Q}_{2 \mathrm{~m}}\right)=$		Γ-classes of $\mathrm{C}_{2 \mathrm{~m}}$								
	Γ-classes	[1]	$\left[\mathrm{X}^{2 \mathrm{r}}\right]$			[x^{m}]	$\left[\mathrm{X}^{2 r+1}\right]$			[y]
	$\left\|C L_{\alpha}\right\|$	1	2	\cdots	2	1	2	...	2	2 m
	$\left\|C_{Q_{2 m}}\left(C L_{\alpha}\right)\right\|$	4 m	2 m	...	2 m	4 m	2 m	...	2 m	2
	Φ_{1}	$2 \operatorname{Ar}\left(\mathrm{C}_{2 m}\right)$								0
	Φ_{2}									0
	:									!
	Φ_{l}									0
	Φ_{l+1}	m	0	\cdots	0	m	0	...	0	1

Table(2)
where $0 \leq \mathrm{r} \leq \mathrm{m}-1, l$ is the number of Γ-classes of $\mathrm{C}_{2 \mathrm{~m}}$ and Φ_{j} are the Artin characters of the Quaternion group $\mathrm{Q}_{2 \mathrm{~m}}$, for all $1 \leq \mathrm{j} \leq l+1$.

Example(2.2.7) :

To find $\operatorname{Ar}\left(\mathrm{Q}_{22}\right)$ by using theorem(2.2.6) we get the following table: $\operatorname{Ar}\left(\mathrm{Q}_{22}\right)=\operatorname{Ar}\left(\mathrm{Q}_{2 \cdot 11}\right)=$

Γ-classes	$[1]$	$\left[\mathrm{x}^{2}\right]$	$\left[\mathrm{x}^{11}\right]$	$[\mathrm{x}]$	$[\mathrm{y}]$
$1 C L_{\alpha} 1$	1	2	1	2	2 p
$1 C_{Q_{2 p}}\left(C L_{\alpha}\right) 1$	44	22	44	22	2
Φ_{1}	44	0	0	0	0
Φ_{2}	4	4	0	0	0
Φ_{3}	22	0	22	0	0
Φ_{4}	2	2	2	2	0
Φ_{5}	11	0	11	0	1

Table(3)

International Journal of Engineering and Information Systems (IJEAIS)

ISSN: 2643-640X

Vol. 4, Issue 8, August - 2020, Pages: 66-87

Theorem(2.2.8):[6]

The Artin's character table of the dihedral group D_{n} when n is an even number is given as follows:
$\operatorname{Ar}\left(D_{\mathrm{n}}\right)=$

	[I]	$\left[r^{\frac{n}{2}}\right]$	Γ - Classes of C_{n}		$[s]$	$[s r]$
$\left\|C L_{\alpha}\right\|$	1	1	$22 \ldots$	2	$n / 2$	$n / 2$
$\left\|C_{D_{n}}\left(C L_{\alpha}\right)\right\|$	$2 n$	$2 n$	$n \quad n \quad \ldots$	n	2^{2}	2^{2}
Φ_{1}	2. $\operatorname{Ar}\left(\mathrm{C}_{\mathrm{n}}\right)$				0	0
\vdots					!	!
Φ_{l}					0	0
Φ_{l+1}	n	0	\ldots	0	0	2
Φ_{l+2}	n	0	\ldots	0	2	0

Table (4)

3. The main results:

Propostion(3.1)

If $\mathrm{m}=p_{1}^{\alpha_{1}} \cdot p_{2}^{\alpha_{2}} \ldots . p_{n}^{\alpha_{n}}$ where g.c. $\mathrm{d}\left(\mathrm{p}_{\mathrm{i}}, \mathrm{p}_{\mathrm{j}}\right)=1$, if $\mathrm{i} \neq \mathrm{j}$ and for all $\mathrm{i}, \mathrm{p}_{\mathrm{i}} \neq 2$ are prime numbers and α_{i} any positive integers, then The Artin's character table of the group $\left(Q_{2 m} \times D_{4}\right)$ when m is an odd number is given as:
$\operatorname{Ar}\left(\mathbf{Q}_{2 \mathrm{~m}} \times \mathbf{D}_{4}\right)=$

	Γ-classes of $\mathrm{Q}_{2 \mathrm{~m}} \times\{\mathrm{I}\}$	Γ-classes of $\mathrm{Q}_{2 \mathrm{~m}} \times\left\{\mathrm{r}^{2}\right\}$	Γ-classes of $\mathrm{Q}_{2 \mathrm{~m}} \times\{\mathrm{r}\}$	Γ-classes of $\mathrm{Q}_{2 \mathrm{~m}} \times\{\mathrm{s}\}$	Γ-classes of $\mathrm{Q}_{2 \mathrm{~m}} \times\{\mathrm{sr}\}$
Γ-classes	$[1, \mathrm{I}]\left[\mathrm{x}^{2}, \mathrm{I}\right]\left[\mathrm{x}^{\mathrm{m}}, \mathrm{I}\right][\mathrm{x}, \mathrm{I}][\mathrm{y}, \mathrm{I}]$	$\left[1, r^{2}\right]\left[\mathrm{x}^{2}, \mathrm{r}^{2}\right]\left[\mathrm{x}^{\mathrm{m}}, \mathrm{r}^{2}\right]\left[\mathrm{x}, \mathrm{r}^{2}\right]\left[\mathrm{y}, \mathrm{r}^{2}\right]$	$[1, \mathrm{r}]\left[\mathrm{x}^{2}, \mathrm{r}\right]\left[\mathrm{x}^{\mathrm{m}}, \mathrm{r}\right][\mathrm{x}, \mathrm{r}][\mathrm{y}, \mathrm{r}]$	[1,s][$\left.{ }^{2}, \mathrm{~s}\right]\left[\mathrm{x}^{\mathrm{m}}, \mathrm{s}\right][\mathrm{x}, \mathrm{s}][\mathrm{y}, \mathrm{s}]$	$[1, \mathrm{sr}]\left[\mathrm{x}^{2}, \mathrm{sr}\right]\left[\mathrm{x}^{\mathrm{m}}, \mathrm{sr}\right][\mathrm{x}, \mathrm{sr}][\mathrm{y}, \mathrm{sr}]$
$\left\|C L_{\alpha}\right\|$	$1 \begin{array}{lllll}1 & 1 & 2\end{array}$	$1 \begin{array}{llllll}1 & 1 & 2\end{array}$	$\begin{array}{llllll}1 & 2 & 1 & 2 & 2 \mathrm{~m}\end{array}$	$\begin{array}{llllll}2 & 4 & 2 & 4 & 4 \mathrm{~m}\end{array}$	$\begin{array}{llllll}2 & 4 & 2 & 4 & 4 \mathrm{~m}\end{array}$
$\left\|C_{Q_{2 m^{*} D_{4}}}\left(C L_{\alpha}\right)\right\|$	$32 \mathrm{~m} \mathrm{16m} \mathrm{32m} \mathrm{16m}$ 16	32 m 16 m 32 m 16 m 16	32m 16m 32m 16m 16	$16 \mathrm{~m} \mathrm{8m} \mathrm{16m} \mathrm{8m} 8$	
$\begin{aligned} & \Phi_{(1,1)} \\ & \Phi_{(2,1)} \\ & \Phi_{(3,1)} \\ & \Phi_{(4,1)} \\ & \Phi_{(5,1)} \\ & \hline \end{aligned}$	$8 \mathrm{Ar}\left(\mathrm{Q}_{2 \mathrm{~m}}\right)$	0	0	0	0
$\begin{aligned} & \Phi_{(1,2)} \\ & \Phi_{(2,2)} \\ & \Phi_{(3,2)} \\ & \Phi_{(4,2)} \\ & \Phi_{(5,2)} \end{aligned}$	$4 \mathrm{Ar}\left(\mathrm{Q}_{2 \mathrm{~m}}\right)$	$4 \mathrm{Ar}\left(\mathrm{Q}_{2 \mathrm{~m}}\right)$	0	0	0
$\begin{aligned} & \Phi_{(1,3)} \\ & \Phi_{(2,3)} \\ & \Phi_{(3,3)} \\ & \Phi_{(4,3)} \\ & \Phi_{(5,3)} \end{aligned}$	$2 \mathrm{Ar}\left(\mathrm{Q}_{2 \mathrm{~m}}\right)$	$2 \mathrm{Ar}\left(\mathrm{Q}_{2 \mathrm{~m}}\right)$	$2 \mathrm{Ar}\left(\mathrm{Q}_{2 \mathrm{~m}}\right)$	0	0
$\begin{aligned} & \hline \Phi_{(1,4)} \\ & \Phi_{(2,4)} \\ & \Phi_{(3,4)} \\ & \Phi_{(4,4)} \\ & \Phi_{(5,4)} \end{aligned}$	$4 \mathrm{Ar}\left(\mathrm{Q}_{2 \mathrm{~m}}\right)$	0	0	0	$2 \mathrm{Ar}\left(\mathrm{Q}_{2 \mathrm{~m}}\right)$
$\begin{aligned} & \Phi_{(1,5)} \\ & \Phi_{(, 2)} \\ & \Phi_{(, 3,5)} \\ & \Phi_{(4,5)} \\ & \Phi_{(5,5)} \\ & \hline \end{aligned}$	$4 \mathrm{Ar}\left(\mathrm{Q}_{2 \mathrm{~m}}\right)$	0	0	$2 \mathrm{Ar}\left(\mathrm{Q}_{2 \mathrm{~m}}\right)$	0

Table(5)
which is (25×25) square matrix .

Proof: Let $\mathrm{g} \in\left(Q_{2 \mathrm{~m}} \times \mathrm{D}_{4}\right) ; \mathrm{g}=(\mathrm{q}, \mathrm{d}), \mathrm{q} \in \mathrm{Q}_{2 \mathrm{~m}}, \mathrm{~d} \in \mathrm{D}_{4}$

Case (I):

Consider the group $\mathrm{G}=\left(\mathrm{Q}_{2 \mathrm{~m}} \times \mathrm{D}_{4}\right)$ and if H is a cyclic subgroup of $\left(\mathrm{Q}_{2 \mathrm{~m}} \times\{\mathrm{I}\}\right)$, then 1- $\mathrm{H}=<(\mathrm{x}, \mathrm{I})>2-\mathrm{H}=<(\mathrm{y}, \mathrm{I})>$ and φ the principle character of $\mathrm{H}, \varphi_{\mathrm{j}}$ Artin's characters of $\mathrm{Q}_{2 \mathrm{p}}, 1 \leq \mathrm{j} \leq l+1$, then by using theorem (3.1):

$$
\Phi_{j}(\mathrm{~g})=\left\{\begin{array}{ll}
\frac{\left|C_{G}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} \sum_{i=1}^{m} \varphi\left(h_{i}\right) & \text { if } h_{i} \in H \cap C L(\mathrm{~g}) \\
0 & \text { if } H \cap C L(\mathrm{~g})=\phi
\end{array}\right\}
$$

1- $\quad \mathrm{H}=\langle(\mathrm{x}, \mathrm{I})\rangle$
(i) If $g=(1, I)$ then
$\Phi_{(\mathrm{j}, 1)}(1, \mathrm{I})=\frac{\left|C_{G}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} \cdot \varphi(\mathrm{g})=\frac{32 m}{\left|C_{H}(\mathrm{~g})\right|} \cdot 1=\frac{8.4 m}{\left|C_{H}(\mathrm{~g})\right|} \cdot 1$
$=\frac{8\left|C_{Q_{2 m}}(1)\right|}{|C<x>(1)|} \cdot \varphi(1)=8 . \Phi_{\mathrm{j}}(1) \quad$ (since $\left.\mathrm{H} \cap C L(1, \mathrm{I})=\{(1, \mathrm{I})\}\right)$
(ii) If $\mathrm{g}=\left(\mathrm{x}^{\mathrm{m}}, \mathrm{I}\right), \mathrm{g} \in \mathrm{H}$ then

$$
\begin{aligned}
\Phi_{(\mathrm{j}, 1)}(\mathrm{g})=\frac{\left|C_{G}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} \varphi(\mathrm{g}) & =\frac{32 m}{\left|C_{H}(\mathrm{~g})\right|} \cdot 1 \\
& =\frac{8\left|C_{2 m}\left(x^{m}\right)\right|}{\left|C<x>\left(x^{m}\right)\right|} \varphi\left(x^{m}\right)=8 \cdot \Phi_{j}\left(x^{m}\right)(\text { since } \mathrm{H} \cap C L(\mathrm{~g})=\{\mathrm{g}\}, \varphi(\mathrm{g})=1)
\end{aligned}
$$

(iii) If $\mathrm{g} \neq\left(\mathrm{x}^{\mathrm{m}}, \mathrm{I}\right), \mathrm{g} \in \mathrm{H}$ then
$\Phi_{(\mathrm{j}, 1)}(\mathrm{g})=\frac{\left|C_{G}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|}\left(\varphi(\mathrm{g})+\varphi\left(\mathrm{g}^{-1}\right)\right)=\frac{16 m}{\left|C_{H}(\mathrm{~g})\right|}(1+1)=\frac{4.4 m}{\left|C_{H}(\mathrm{~g})\right|} \cdot 2$
$=\frac{4\left|C_{Q 2 m(q)}\right|}{\left|C_{H(q)}\right|} \cdot 2=8 . \Phi_{\mathrm{j}}(\mathrm{q}) \quad \quad$ Since $\mathrm{H} \cap \mathrm{CL}(\mathrm{g})=\left\{\mathrm{g}, \mathrm{g}^{-1}\right\}$ and $\varphi(\mathrm{g})=\varphi\left(\mathrm{g}^{-1}\right)=1$ and since $\left.\mathrm{g}=(\mathrm{q}, \mathrm{I}), \mathrm{q} \in \mathrm{Q}_{2 \mathrm{~m}}, \mathrm{q} \neq \mathrm{x}^{\mathrm{m}}\right)$
If $\mathrm{g} \notin \mathrm{H}$ then
$\Phi_{(\mathrm{j}, 1)}(\mathrm{g})=0=8.0=8 . \Phi_{\mathrm{j}}(\mathrm{q}) \quad($ since $\mathrm{H} \cap C L(\mathrm{~g})=\phi)$
2-If $\mathrm{H}=<(\mathrm{y}, \mathrm{I})>=\left\{(1, \mathrm{I}),(\mathrm{y}, \mathrm{I}),\left(\mathrm{y}^{2}, \mathrm{I}\right),\left(\mathrm{y}^{3}, \mathrm{I}\right)\right\}$ then
(i) If $\mathrm{g}=(1, \mathrm{I})$ then
$\Phi_{(l+1,1)}(\mathrm{g})=\frac{\left|C_{G}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} \varphi(\mathrm{g})=\frac{32 m}{4} \cdot 1=8 \cdot \mathrm{p}=8 . \Phi_{l+1}(1)($ since $\mathrm{H} \cap C L(1, \mathrm{I})=\{(1, \mathrm{I})\})$
(ii)If $\mathrm{g}=\left(\mathrm{x}^{\mathrm{m}}, \mathrm{I}\right)=\left(\mathrm{y}^{2}, \mathrm{I}\right)$ and $\mathrm{g} \in H$ then

$$
\begin{aligned}
& \Phi_{(5,1)}(\mathrm{g})=\frac{\left|C_{G}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} \varphi(\mathrm{g})=\frac{32 m}{4} \cdot 1=8 \cdot \mathrm{~m} \quad\left(\text { since } \mathrm{m}=\frac{\left|C_{Q_{2 m}}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|}\right. \\
&=8 \cdot \Phi_{5}\left(\mathrm{x}^{\mathrm{m}}\right) \quad(\quad \text { since } \mathrm{H} \cap C L(\mathrm{~g})=\{\mathrm{g}\}, \varphi(\mathrm{g})=1)
\end{aligned}
$$

(iii) If $\mathrm{g} \neq\left(\mathrm{x}^{\mathrm{m}}, \mathrm{I}\right)$ and $\mathrm{g} \in \mathrm{H}$,i.e. $\left\{\mathrm{g}=(\mathrm{y}, \mathrm{I})\right.$ or $\left.\mathrm{g}=\left(\mathrm{y}^{3}, \mathrm{I}\right)\right\}$ then
$\Phi_{(5,1)}(\mathrm{g})=\frac{\left|C_{G}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|}\left(\varphi(\mathrm{g})+\varphi\left(\mathrm{g}^{-1}\right)\right)=\frac{16}{4}(1+1)$
$=4.2=8 \quad$ since $\mathrm{H} \cap C L(\mathrm{~g})=\left\{\mathrm{g}, \mathrm{g}^{-1}\right\}$ and $\varphi(\mathrm{g})=\varphi\left(\mathrm{g}^{-1}\right)=1$
Otherwise
$\Phi_{(5,1)}(\mathrm{g})=0 \quad($ since $\mathrm{H} \cap \mathrm{CL}(\mathrm{g})=\phi)$

Case (II):

If H is a cyclic subgroup of $\left(Q_{2 m} \times\left\{r^{2}\right\}\right)$ then:

$$
1-\mathrm{H}=\left\langle\left(\mathrm{x}, \mathrm{r}^{2}\right)\right\rangle \quad 2-\mathrm{H}=\left\langle\left(\mathrm{y}, \mathrm{r}^{2}\right)\right\rangle
$$

and φ the principle character of H , then by using theorem (3.1)

$$
\begin{aligned}
& \Phi_{j}(g)=\left\{\begin{array}{ll}
\frac{\left|C_{G}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} \sum_{i=1}^{m} \varphi\left(h_{i}\right) & \text { if } h_{i} \in H \cap C L(\mathrm{~g}) \\
0 & \text { if } H \cap C L(\mathrm{~g})=\phi
\end{array}\right\} \\
& 1-\mathrm{H}=<\left(\mathrm{x}, \mathrm{r}^{2}\right)>=\left\{(1, \mathrm{I}),\left(1, \mathrm{r}^{2}\right),\left(\mathrm{x}, \mathrm{r}^{2}\right), \ldots,\left(\mathrm{x}^{\mathrm{m}}, \mathrm{r}^{2}\right)\right\}
\end{aligned}
$$

If $\mathrm{g}=(1, \mathrm{I})$ then

$$
\begin{aligned}
\Phi_{(\mathrm{j}, 2)}(\mathrm{g})=\frac{\left|C_{G}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} \varphi(\mathrm{g}) & =\frac{32 m}{\left|C_{H}(1, I)\right|} \cdot 1=\frac{8.4 m}{\left|C_{H}(1, I)\right|} \cdot 1 \\
& =\frac{8 \mid C_{Q_{2 m}(1) \mid}^{2\left|C_{<x\rangle}(1)\right|}}{} \varphi(1)=4 \cdot \Phi_{j}(1) \quad \text { since } \mathrm{H} \cap C L(\mathrm{~g})=\left\{(1, \mathrm{I}),\left(1, \mathrm{r}^{2}\right)\right\}
\end{aligned}
$$

If $\mathrm{g}=\left(1, \mathrm{r}^{2}\right)$ then

$$
\begin{aligned}
\Phi_{(\mathrm{j}, 2)}(\mathrm{g})=\frac{\left|C_{G}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} \varphi(\mathrm{g}) & =\frac{32 m}{\left|C_{H}(1, l)\right|} \cdot 1=\frac{8.4 m}{\left|C_{H}(1, I)\right|} \cdot 1 \\
& =\frac{8 \mid C_{Q_{2 m}(1) \mid}^{2\left|C_{<x\rangle}(1)\right|}}{} \varphi(1)=4 \cdot \Phi_{j}(1) \text { since } \mathrm{H} \cap C L(\mathrm{~g})=\left\{(1, \mathrm{I}),\left(1, \mathrm{r}^{2}\right)\right\}
\end{aligned}
$$

(i)If $\mathrm{g}=\left(\mathrm{x}^{\mathrm{m}}, \mathrm{I}\right) ; \mathrm{g} \in \mathrm{H}$ then

$$
\begin{aligned}
\Phi_{(\mathrm{j}, 2)}(\mathrm{g})= & =\frac{\left|C_{G}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} \varphi(\mathrm{g})=\frac{32 m}{\left|C_{H}(\mathrm{~g})\right|} \cdot 1=\frac{8.4 m}{\left|C_{H}(\mathrm{~g})\right|} \cdot 1 \\
& =\frac{8\left|C_{Q 2 m}\left(x^{m}\right)\right|}{2\left|C_{<x\rangle}\left(x^{m}\right)\right|} \varphi(1)=4 \Phi_{\mathrm{j}}\left(x^{m}\right)(\text { since H} \cap C L(\mathrm{~g})=\{\mathrm{g}\} \text { and } \varphi(\mathrm{g})=1)
\end{aligned}
$$

If $g=\left(x^{m}, r^{2}\right) ; g \in H$ then
$\Phi_{(\mathrm{j}, 2)}(\mathrm{g})=\frac{\left|C_{G}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} \varphi(\mathrm{g})=\frac{32 m}{\left|C_{H}(\mathrm{~g})\right|} \cdot 1=\frac{8.4 m}{\left|C_{H}(\mathrm{~g})\right|} \cdot 1 \quad=\frac{8\left|C_{Q 2 m}\left(x^{m}\right)\right|}{2\left|C_{\langle x\rangle}\left(x^{m}\right)\right|} \varphi(1)=4 \Phi_{\mathrm{j}}\left(x^{m}\right)($ since $\mathrm{H} \cap C L(\mathrm{~g})=\{\mathrm{g}\}$ and $\quad \varphi(\mathrm{g})=1)$
(iii) If $\mathrm{g} \neq\left(\mathrm{x}^{\mathrm{m}}, \mathrm{I}\right),\left(\mathrm{x}^{\mathrm{m}}, \mathrm{r}^{2}\right)$ and $\mathrm{g} \in H$ then

$$
\begin{aligned}
\Phi_{(\mathrm{j}, 2)}(\mathrm{g})=\frac{\left|C_{G}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|}(\varphi(\mathrm{g})+ & \left.\varphi\left(\mathrm{g}^{-1}\right)\right)=\frac{16 m}{\left|C_{H}(\mathrm{~g})\right|}(1+1) \\
& =\frac{4\left|C_{02 m}(q)\right|}{2\left|C_{<x>}(q)\right|} \cdot 2=4 \Phi_{\mathrm{j}}(q)\left(\text { sinceH} \cap C L(\mathrm{~g})=\left\{\mathrm{g}, \mathrm{~g}^{-1}\right\} \text { and } \varphi(\mathrm{g})=\varphi\left(\mathrm{g}^{-1}\right)=1\right)
\end{aligned}
$$

(iv) If $\mathrm{g} \notin H$ then

$$
\Phi_{(\mathrm{j}, 2)}(\mathrm{g})=0=\Phi_{\mathrm{j}}(\mathrm{q}) \quad(\text { since } \mathrm{H} \cap \mathrm{CL}(\mathrm{~g})=\phi)
$$

$$
\text { 2-If } \mathrm{H}=<\left(\mathrm{y}, \mathrm{r}^{2}\right)>=\left\{(1, \mathrm{I}),(\mathrm{y}, \mathrm{I}),\left(\mathrm{y}^{2}, \mathrm{I}\right),\left(\mathrm{y}^{3}, \mathrm{I}\right),\left(1, \mathrm{r}^{2}\right),\left(\mathrm{y}, \mathrm{r}^{2}\right),\left(\mathrm{y}^{2}, \mathrm{r}^{2}\right),\left(\mathrm{y}^{3}, \mathrm{r}^{2}\right)\right\}
$$

(i)If $\mathrm{g}=(1, \mathrm{I})$ then

$$
\Phi_{(5,2)}(\mathrm{g})=\frac{\left|C_{G}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} \varphi(\mathrm{g})=\frac{32 m}{8} \cdot 1=4 \mathrm{p}=4 \Phi_{5}(\mathrm{~g})
$$

If $\mathrm{g}=\left(1, \mathrm{r}^{2}\right)$ then

$$
\Phi_{(5,2)}(\mathrm{g})=\frac{\left|C_{G}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} \varphi(\mathrm{g})=\frac{32 \mathrm{~m}}{8} \cdot 1=4 \mathrm{~m}=4 \Phi_{5}(\mathrm{~g})
$$

If $g=\left(y^{2}, I^{*}\right)=\left(x^{m}, I^{*}\right)$ and $g \in H$ then

$$
\begin{aligned}
& \Phi_{(l+1,2)}(\mathrm{g})=\frac{\left|C_{G}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} \varphi(\mathrm{g})=\frac{32 m}{8} \cdot 1 \\
& =4 \mathrm{p}=4 \Phi_{5}(\mathrm{~g})(\text { since } \mathrm{H} \cap C L(\mathrm{~g})=\{\mathrm{g}\} \text { and } \varphi(\mathrm{g})=1)
\end{aligned}
$$

If $g=\left(y^{2}, r^{2}\right)=\left(x^{m}, r^{2}\right)$ and $g \in H$ then
$\Phi_{(5,2)}(\mathrm{g})=\frac{\left|C_{G}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} \varphi(\mathrm{g})=\frac{32 \mathrm{~m}}{8} \cdot 1=4 \mathrm{~m}=4 \Phi_{5}(\mathrm{~g})$
If $g \neq\left(x^{m}, I\right)$ and $g \in H$ i.e. $g=\left\{(y, I),\left(y, r^{2}\right)\right\}$ or $g=\left\{\left(y, r^{2}\right),\left(y^{3}, r^{2}\right)\right\}$ then

$$
\begin{aligned}
& \text { If } \mathrm{g}=(\mathrm{y}, \mathrm{I}) \text { then } \\
& \begin{aligned}
\Phi_{(5,2)}(\mathrm{g})=\frac{\left|C_{G}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|}(\varphi(\mathrm{g})+ & \left.\varphi\left(\mathrm{g}^{-1}\right)\right) \\
& =\frac{16}{8} \cdot(1+1)=4 \quad\left(\text { since } \mathrm{H} \cap \mathrm{CL}(\mathrm{~g})=\left\{\mathrm{g}, \mathrm{~g}^{-1}\right\} \text { and } \varphi(\mathrm{g})=\varphi\left(\mathrm{g}^{-1}\right)=1\right)
\end{aligned}
\end{aligned}
$$

If $g=\left(y, r^{2}\right)$ then

International Journal of Engineering and Information Systems (IJEAIS)

ISSN: 2643-640X

Vol. 4, Issue 8, August - 2020, Pages: 66-87
$\Phi_{(5,2)}(\mathrm{g})=\frac{\left|C_{G}(\mathrm{~g})\right|}{\left|c_{H}(\mathrm{~g})\right|}\left(\varphi(\mathrm{g})+\varphi\left(\mathrm{g}^{-1}\right)\right)$

$$
=\frac{16}{8} \cdot(1+1)=4 \quad\left(\text { since } \mathrm{H} \cap C L(\mathrm{~g})=\left\{\mathrm{g}, \mathrm{~g}^{-1}\right\} \text { and } \varphi(\mathrm{g})=\varphi\left(\mathrm{g}^{-1}\right)=1\right)
$$

(since $\mathrm{H} \cap \mathrm{CL}(\mathrm{g})=\left\{\left(\mathrm{y}, \mathrm{r}^{2}\right),\left(\mathrm{y}^{3}, \mathrm{r}^{2}\right)\right\}$ and $\left.\varphi(\mathrm{g})=\varphi\left(\mathrm{g}^{-1}\right)=1\right)$
otherwise $\Phi_{(5,2)}(\mathrm{g})=0$ since $\mathrm{H} \cap \mathrm{CL}(\mathrm{g})=\phi$

Case (III):

If H is a cyclic subgroup of $\left(\mathrm{Q}_{2 \mathrm{~m}} \times\{\mathrm{r}\}\right)$ then:

$$
1-\mathrm{H}=\langle(\mathrm{x}, \mathrm{r})\rangle \quad 2-\mathrm{H}=\langle(\mathrm{y}, \mathrm{r})\rangle
$$

and φ the principle character of H , then by using theorem (3.1)

$$
\Phi_{j}(g)=\left\{\begin{array}{ll}
\frac{\left|C_{G}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} \sum_{i=1}^{m} \varphi\left(h_{i}\right) & \text { if } h_{i} \in H \cap C L(\mathrm{~g}) \\
0 & \text { if } H \cap C L(\mathrm{~g})=\phi
\end{array}\right\}
$$

$1-\mathrm{H}=<(\mathrm{x}, \mathrm{r})>=\left\{(1, \mathrm{I}),(1, \mathrm{r}),\left(1, \mathrm{r}^{2}\right),(\mathrm{x}, \mathrm{r}), \ldots,\left(\mathrm{x}^{2 \mathrm{p}-1}, \mathrm{r}\right),\left(\mathrm{x}, \mathrm{r}^{2}\right), \ldots,\left(\mathrm{x}^{2 \mathrm{p}-1}, \mathrm{r}^{2}\right)\right\}$
If $\mathrm{g}=(1, \mathrm{I})$ then

$$
\begin{gathered}
\Phi_{(\mathrm{j}, 2)}(\mathrm{g})=\frac{\left|C_{G}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} \varphi(\mathrm{g})=\frac{32 m}{\left|C_{H}(1, I)\right|} \cdot 1=\frac{8.4 m}{\left|C_{H}(1, I)\right|} \cdot 1 \\
=\frac{8 \mid C_{Q_{2 m}(1) \mid}}{4\left|C_{<x\rangle}(1)\right|} \varphi(1)=2 . \Phi_{j}(1) \text { since } \mathrm{H} \cap C L(\mathrm{~g})=\left\{(1, \mathrm{I}),(1, \mathrm{r}),\left(1, \mathrm{r}^{2}\right)\right\}
\end{gathered}
$$

If $\mathrm{g}=(1, \mathrm{r})$ then

$$
\begin{aligned}
\Phi_{(\mathrm{j}, 3)}(\mathrm{g})= & =\frac{\left|C_{G}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|}\left(\varphi(\mathrm{g})+\varphi\left(\mathrm{g}^{-1}\right)\right)=\frac{16 \cdot m}{\left|C_{H}(\mathrm{~g})\right|}(1+1)=\frac{4.4 m}{\left|C_{H}(\mathrm{~g})\right|} \cdot 2 \\
& =\frac{4 \mid C_{Q_{2 m}(1) \mid}^{4\left|C_{<x\rangle}(1)\right|}}{} \cdot 2=2 \cdot \Phi_{j}(\mathrm{q}) \quad \text { sinceH} \cap C L(\mathrm{~g})=\left\{\left((1, \mathrm{r}),\left(1, \mathrm{r}^{2}\right)\right\}\right.
\end{aligned}
$$

(i)If $\mathrm{g}=\left(\mathrm{x}^{\mathrm{m}}, \mathrm{I}\right) ; \mathrm{g} \in \mathrm{H}$ then

$$
\begin{array}{rlr}
\Phi_{(\mathrm{j}, 3)}(\mathrm{g})= & =\frac{\left|C_{G}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} \varphi(\mathrm{g})=\frac{32 p}{\left|C_{H}(\mathrm{~g})\right|} \cdot 1=\frac{8.4 p}{\left|C_{H}(\mathrm{~g})\right|} \cdot 1 \\
& \left.=\frac{8\left|C_{Q 2 m}\left(x^{m}\right)\right|}{4\left|C_{<x\rangle}\left(x^{p}\right)\right|} \varphi(1)=2 \Phi_{\mathrm{j}}\left(x^{m}\right) \quad \quad \text { (since } \mathrm{H} \cap C L(\mathrm{~g})=\{\mathrm{g}\} \text { and } \varphi(\mathrm{g})=1\right)
\end{array}
$$

If $\mathrm{g}=\left(\mathrm{x}^{\mathrm{m}}, \mathrm{r}\right) ; \mathrm{g} \in \mathrm{H}$ then
$\Phi_{(\mathrm{j}, 3)}(\mathrm{g})=\frac{\left|C_{G}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|}\left(\varphi(\mathrm{g})+\varphi\left(\mathrm{g}^{-1}\right)\right)=\frac{16 m}{\left|C_{H}(\mathrm{~g})\right|}(1+1)\left(\right.$ sinceH $\cap C L(\mathrm{~g})=\left\{\mathrm{g}, \mathrm{g}^{-1}\right\}$ and $\left.\varphi(\mathrm{g})=\varphi\left(\mathrm{g}^{-1}\right)=1\right)$
$=\frac{4\left|C_{Q 2 m}(q)\right|}{4\left|C_{<x\rangle}(q)\right|} \cdot 2=2 \Phi_{\mathrm{j}}(q)$
(iii) If $\mathrm{g} \neq\left(\mathrm{x}^{\mathrm{m}}, \mathrm{I}\right),\left(\mathrm{x}^{\mathrm{m}}, \mathrm{r}\right)$ and $\mathrm{g} \in H$ then

$$
\begin{aligned}
\Phi_{(\mathrm{j}, 3)}(\mathrm{g})=\frac{\left|C_{G}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} \sum_{i=1}^{m} \varphi\left(h_{i}\right)=\frac{8 m}{4\left|C_{H}(\mathrm{~g})\right|} & (1+1+1+1) \\
=\frac{32 m}{4\left|C_{H}(\mathrm{~g})\right|}=\frac{8.4 m}{4\left|C_{H}(\mathrm{~g})\right|} & \left(\text { sinceH } \cap C L(\mathrm{~g})=\left\{(\mathrm{x}, \mathrm{r}),\left(\mathrm{x}^{2 \mathrm{~m}-1}, \mathrm{r}^{2}\right),\left(\mathrm{x}, \mathrm{r}^{2}\right),\left(\mathrm{x}^{2 \mathrm{~m}-1}, \mathrm{r}\right)\right\} \text { and } \varphi(\mathrm{g})=\varphi\left(\mathrm{g}^{-1}\right)=1\right) \\
& =\frac{8\left|C_{Q 2 m}(\mathrm{q})\right|}{4\left|C_{<x>}(q)\right|}=2 \Phi_{\mathrm{j}}(q) \quad\left(\text { Since } \mathrm{g}=(\mathrm{q}, \mathrm{r}), \mathrm{q} \in \mathrm{Q}_{2 \mathrm{p}}, \mathrm{q} \neq \mathrm{x}^{\mathrm{p}}\right)
\end{aligned}
$$

(iv) If $\mathrm{g} \notin H$ then

$$
\Phi_{(\mathrm{j}, 3)}(\mathrm{g})=0=\Phi_{\mathrm{j}}(\mathrm{q}) \quad(\text { since } \mathrm{H} \cap \mathrm{CL}(\mathrm{~g})=\phi)
$$

2-If $\mathrm{H}=<(\mathrm{y}, \mathrm{r})>=\left\{(1, \mathrm{I}),(\mathrm{y}, \mathrm{I}),\left(\mathrm{y}^{2}, \mathrm{I}\right),\left(\mathrm{y}^{3}, \mathrm{I}\right),(1, \mathrm{r}),(\mathrm{y}, \mathrm{r}),\left(\mathrm{y}^{2}, \mathrm{r}\right),\left(\mathrm{y}^{3}, \mathrm{r}\right),\left(1, \mathrm{r}^{2}\right)\right.$,
$\left.\left(\mathrm{y}, \mathrm{r}^{2}\right),\left(\mathrm{y}^{2}, \mathrm{r}^{2}\right),\left(\mathrm{y}^{3}, \mathrm{r}^{2}\right)\right\}$
(i)If $\mathrm{g}=(1, \mathrm{I})$ then

$$
\Phi_{(l+1,2)}(\mathrm{g})=\frac{\left|C_{G}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} \varphi(\mathrm{g})=\frac{32 m}{16} \cdot 1=2 \mathrm{~m}=2 \Phi_{5}(\mathrm{~g})
$$

International Journal of Engineering and Information Systems (IJEAIS)

ISSN: 2643-640X

Vol. 4, Issue 8, August - 2020, Pages: 66-87
If $\mathrm{g}=(1, \mathrm{r})$ then

$$
\Phi_{(5,3)}(\mathrm{g})=\frac{\left|C_{G}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|}\left(\varphi(\mathrm{g})+\varphi\left(\mathrm{g}^{-1}\right)\right)
$$

$$
=\frac{16 p}{16} \cdot(1+1)=2 \mathrm{~m}=2 \Phi_{5}(\mathrm{~g})
$$

If $\mathrm{g}=\left(\mathrm{y}^{2}, \mathrm{I}\right)=\left(\mathrm{x}^{\mathrm{m}}, \mathrm{I}\right)$ and $\mathrm{g} \in H$ then

$$
\Phi_{(5,3)}(\mathrm{g})=\frac{\left|C_{G}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} \varphi(\mathrm{g})=\frac{32 m}{16} .1
$$

$$
=2 \cdot \mathrm{p}=2 \Phi_{5}(\mathrm{~g})(\text { since } \mathrm{H} \cap \mathrm{CL}(\mathrm{~g})=\{\mathrm{g}\} \text { and } \varphi(\mathrm{g})=1)
$$

If $\mathrm{g}=\left(\mathrm{y}^{2}, \mathrm{r}\right)=\left(\mathrm{x}^{\mathrm{m}}, \mathrm{r}\right)$ or $\mathrm{g}=\left(\mathrm{y}^{2}, \mathrm{r}^{2}\right)=\left(\mathrm{x}^{\mathrm{m}}, \mathrm{r}^{2}\right)$ and $\mathrm{g} \in H$ then

$$
\begin{aligned}
\Phi_{(5,3)}(\mathrm{g})=\frac{\left|C_{G}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} & \left(\varphi(\mathrm{g})+\varphi\left(\mathrm{g}^{-1}\right)\right) \\
& =\frac{16 m}{16} \cdot(1+1)=2 \mathrm{~m}=2 \Phi_{5}(\mathrm{~g})
\end{aligned}
$$

(ii) If $\mathrm{g} \neq\left(\mathrm{x}^{\mathrm{m}}, \mathrm{I}\right)$ and $\mathrm{g} \in H$ i.e. $\mathrm{g}=\{(\mathrm{y}, \mathrm{I}),(\mathrm{y}, \mathrm{r})\}$ or $\mathrm{g}=\left\{\left(\mathrm{y}^{3}, \mathrm{I}\right),\left(\mathrm{y}^{3}, \mathrm{r}\right),\left(\mathrm{y}, \mathrm{r}^{2}\right),\left(\mathrm{y}^{3}, \mathrm{r}^{2}\right)\right\}$ then If $g=(y, I)$ then
$\Phi_{(5,3)}(\mathrm{g})=\frac{\left|C_{G}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|}\left(\varphi(\mathrm{g})+\varphi\left(\mathrm{g}^{-1}\right)\right)$

$$
=\frac{16}{16} \cdot(1+1)=2 \quad\left(\text { since } \operatorname{HOCL}(\mathrm{g})=\left\{\mathrm{g}, \mathrm{~g}^{-1}\right\} \text { and } \varphi(\mathrm{g})=\varphi\left(\mathrm{g}^{-1}\right)=1\right)
$$

If $g=(y, r)$ then

$$
\begin{aligned}
& \Phi_{(5,3)}(\mathrm{g})=\frac{\left|C_{G}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} \sum_{i=1}^{p} \varphi\left(h_{i}\right)= \frac{8}{16} \cdot(1+1+1+1) \\
&=\frac{32}{16}=2 \\
& \quad\left(\text { since } \operatorname{H\cap CL}(\mathrm{g})=\left\{(\mathrm{y}, \mathrm{r}),\left(\mathrm{y}^{3}, \mathrm{r}^{2}\right),\left(\mathrm{y}, \mathrm{r}^{2}\right),\left(\mathrm{y}^{3}, \mathrm{r}\right)\right\} \text { and } \varphi(\mathrm{g})=\varphi\left(\mathrm{g}^{-1}\right)=1\right)
\end{aligned}
$$

otherwise $\Phi_{(5,3)}(\mathrm{g})=0$ since $\mathrm{H} \cap \mathrm{CL}(\mathrm{g})=\phi$

Case (IV):

If H is a cyclic subgroup of $\left(\mathrm{Q}_{2 \mathrm{~m}} \times\{\mathrm{s}\}\right)$ then

$$
\text { 1- } \mathrm{H}=\langle(\mathrm{x}, \mathrm{~s})\rangle \quad, 2-\mathrm{H}=<(\mathrm{y}, \mathrm{~s})
$$

and φ the principle character of H , then by using theorem (3.1)

$$
\Phi_{j}(\mathrm{~g})=\left\{\begin{array}{ll}
\frac{\left|C_{G}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} \sum_{i=1}^{m} \varphi\left(h_{i}\right) & \text { if } h_{i} \in H \cap C L(\mathrm{~g}) \\
0 & \text { if } H \cap C L(\mathrm{~g})=\phi
\end{array}\right\}
$$

1- $\quad \mathrm{H}=<(\mathrm{x}, \mathrm{s})>$
(i) If $\mathrm{g}=(1, \mathrm{I})$ then

If $\mathrm{g}=(1, \mathrm{sr})$ then

$$
\Phi_{(\mathrm{j}, 4)}(\mathrm{g})=\frac{\left|C_{G}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} \varphi(\mathrm{g})=\frac{16 m}{\left|C_{H}(1, s)\right|} \cdot 1=\frac{4.4 m}{\left|C_{H}(1, s)\right|} \cdot 1
$$

$$
=\frac{4\left|C_{Q 2 m}(1)\right|}{2\left|C_{<x\rangle}(1)\right|} \cdot 1=2 \Phi_{\mathrm{j}}(1) \text { sinceH } \cap C L(\mathrm{~g})=\{(1, \mathrm{~s})\}
$$

(ii) $\mathrm{g}=\left(\mathrm{x}^{\mathrm{p}}, \mathrm{I}\right) ; \mathrm{g} \in H$
$\Phi_{(\mathrm{j}, 4)}(\mathrm{g})=\frac{\left|C_{G}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} \varphi(\mathrm{g})=\frac{32 m}{\left|C_{H}(\mathrm{~g})\right|} \cdot 1=\frac{8.4 m}{\left|C_{H}(\mathrm{~g})\right|} \cdot 1=\frac{8 \mid C_{Q_{2 p}\left(x^{m}\right) \mid}^{2\left|C_{<x\rangle}\left(x^{m}\right)\right|}}{} \varphi(1)=4 \Phi_{\mathrm{j}}\left(\mathrm{x}^{m}\right)$
(iii) If $\mathrm{g}=\left(\mathrm{x}^{\mathrm{m}}, \mathrm{sr}\right)$ then

$$
\begin{aligned}
& \Phi_{(\mathrm{j}, 4)}(\mathrm{g})=\frac{\left|C_{G}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} \varphi(\mathrm{g})=\frac{32 m}{\left|C_{H}(1, I)\right|} \cdot 1=\frac{8.4 m}{\left|C_{H}(1, I)\right|} \cdot 1= \\
& \frac{8\left|C_{Q 2 m}(1)\right|}{2\left|C_{\text {<x> }}(1)\right|} \cdot 1=4 \Phi_{\mathrm{j}}(1) \quad(\text { since } \mathrm{H} \cap C L(\mathrm{~g})=\{(1, \mathrm{I})\})
\end{aligned}
$$

International Journal of Engineering and Information Systems (IJEAIS)

ISSN: 2643-640X
Vol. 4, Issue 8, August - 2020, Pages: 66-87
$\Phi_{(\mathrm{j}, 4)}(\mathrm{g})=\frac{\left|C_{G}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} \varphi(\mathrm{g})=\frac{16 m}{\left|C_{H}(\mathrm{~g})\right|} \cdot 1=\frac{4.4 m}{\left|C_{H}(\mathrm{~g})\right|} \cdot 1=\frac{4 \mid C_{Q_{2 p}\left(x^{m}\right) \mid}^{2\left|C_{\langle\chi\rangle}\left(x^{m}\right)\right|}}{} \varphi(1)=2 \Phi_{\mathrm{j}}\left(\mathrm{x}^{m}\right)$
(iv)If $\mathrm{g} \neq\left(\mathrm{x}^{\mathrm{m}}, \mathrm{I}\right),\left(\mathrm{x}^{\mathrm{m}}, \mathrm{sr}\right)$ and $\mathrm{g} \in H$

If $\mathrm{g} \neq\left(\mathrm{x}^{\mathrm{m}}, \mathrm{I}\right)$ and $\mathrm{g} \epsilon\left(\mathrm{Q}_{2 \mathrm{p}} \times\{\mathrm{I}\}\right)$ then
$\Phi_{(\mathrm{j}, 4)}(\mathrm{g})=\frac{\left|C_{G}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|}\left(\varphi(\mathrm{g})+\varphi\left(\mathrm{g}^{-1}\right)\right)$
$=\frac{16 m}{\left|C_{H}(\mathrm{~g})\right|}(1+1) \quad\left(\right.$ since $\mathrm{H} \cap \mathrm{CL}(\mathrm{g})=\left\{\mathrm{g}, \mathrm{g}^{-1}\right\}$ and $\left.\varphi(\mathrm{g})=\varphi\left(\mathrm{g}^{-1}\right)=1\right)$
$=\frac{4.4 m}{\left|C_{H}(g)\right|} \cdot 2=\frac{4\left|C_{Q_{2 m}}(q)\right|}{2\left|C_{<x>}(q)\right|} 2=4 \Phi_{\mathrm{j}}(q)$ Since $\mathrm{g}=(\mathrm{q}, \mathrm{I}), \mathrm{q} \in \mathrm{Q}_{2 \mathrm{p}}, \mathrm{q} \neq \mathrm{x}^{\mathrm{m}}$ If $\mathrm{g} \neq\left(\mathrm{x}^{\mathrm{p}}, \mathrm{sr}\right)$ and $\mathrm{g} \epsilon\left(\mathrm{Q}_{2 \mathrm{~m}} \times\{\mathrm{sr}\}\right)$ then
$\Phi_{(\mathrm{j}, 4)}(\mathrm{g})=\frac{\left|C_{G}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} \cdot \varphi(\mathrm{g})=\frac{8 p}{\left|C_{H}(\mathrm{~g})\right|} \cdot(1+1)=\frac{2.4 m}{\left|C_{H}(\mathrm{~g})\right|} \cdot 2=\frac{2 \mid C_{Q_{2 m}(q) \mid}}{2\left|C_{<\chi\rangle}(q)\right|} \cdot 2=2 \Phi_{\mathrm{j}}(q) \quad$ Since $\mathrm{g}=(\mathrm{q}, \mathrm{s}), \mathrm{q} \in \mathrm{Q}_{2 \mathrm{~m}}, \mathrm{q} \neq \mathrm{x}^{\mathrm{m}}$
(since $\mathrm{H} \cap C L(\mathrm{~g})=\left\{\mathrm{g}, \mathrm{g}^{-1}\right\}$ and $\varphi(\mathrm{g})=\varphi\left(\mathrm{g}^{-1}\right)=1$)
(v) If $g \notin H$ then

$$
\Phi_{(\mathrm{j}, 4)}(\mathrm{g})=0=\Phi_{\mathrm{j}}(\mathrm{q}) \quad \text { since } \mathrm{H} \cap \mathrm{CL}(\mathrm{~g})=\phi
$$

2-If $\mathrm{H}=<(\mathrm{y}, \mathrm{s})>=\left\{(1, \mathrm{I}),(\mathrm{y}, \mathrm{I}),\left(\mathrm{y}^{2}, \mathrm{I}\right),\left(\mathrm{y}^{3}, \mathrm{I}\right),(1, \mathrm{~s}),(\mathrm{y}, \mathrm{s}),\left(\mathrm{y}^{2}, \mathrm{~s}\right),\left(\mathrm{y}^{3}, \mathrm{~s}\right)\right\}$
(i) If $\mathrm{g}=(1, \mathrm{I})$ then
$\Phi_{(5,4)}(\mathrm{g})=\frac{\left|C_{G}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} \varphi(\mathrm{g})=\frac{32 m}{8} \cdot 1=4 . \mathrm{m}=4 \Phi_{5}(\mathrm{~g})$
If $\mathrm{g}=(1, \mathrm{~s})$ then
$\Phi_{(5,4)}(\mathrm{g})=\frac{\left|C_{G}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} \cdot \varphi(\mathrm{g})=\frac{16 m}{8} \cdot 1=4 \mathrm{p}=\Phi_{5}(\mathrm{~g})$
(ii)If $\mathrm{g}=\left(\mathrm{y}^{2}, \mathrm{I}\right)=\left(\mathrm{x}^{\mathrm{m}}, \mathrm{I}\right)$ and $\mathrm{g} \in H$
$\Phi_{(5,4)}(\mathrm{g})=\frac{\left|C_{G}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} \varphi(\mathrm{g})=\frac{32 p}{8} .1=4 . \mathrm{m}=4 \Phi_{5}(\mathrm{~g})$ since $\mathrm{H} \cap C L(\mathrm{~g})=\{\mathrm{g}\}$ and $\varphi(\mathrm{g})=1$
If $\mathrm{g}=\left(\mathrm{y}^{2}, \mathrm{~s}\right)$ and $\mathrm{g} \in H$
$\Phi_{(5,4)}(\mathrm{g})=\frac{\left|C_{G}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} \varphi(\mathrm{g})=\frac{16 p}{8} \cdot 1=4 \mathrm{p}=\Phi_{5}(\mathrm{~g})$ since $\mathrm{H} \cap C L(\mathrm{~g})=\{\mathrm{g}\}$ and $\varphi(\mathrm{g})=1$
(iii) If $\mathrm{g} \neq\left(\mathrm{x}^{\mathrm{p}}, \mathrm{I}\right) \quad$ and $\mathrm{g} \in H$ i.e. $\mathrm{g}=\{(\mathrm{y}, \mathrm{I}),(\mathrm{y}, \mathrm{s})\}$ or $\mathrm{g}=\left\{\left(\mathrm{y}^{3}, \mathrm{I}\right),\left(\mathrm{y}^{3}, \mathrm{~s}\right)\right\}$

If $g=(y, I)$ then

$$
\begin{aligned}
\Phi_{(5,4)}(\mathrm{g})= & \frac{\left|C_{G}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|}\left(\varphi(\mathrm{g})+\varphi\left(\mathrm{g}^{-1}\right)\right)=\frac{16}{8}(1+1)=4 \\
& \text { since } \mathrm{H} \cap C L(\mathrm{~g})=\left\{\mathrm{g}, \mathrm{~g}^{-1}\right\} \text { and } \varphi(\mathrm{g})=\varphi\left(\mathrm{g}^{-1}\right)=1
\end{aligned}
$$

(iv)If $g=(y, s)$ then

$$
\begin{aligned}
\Phi_{(5,4)}(\mathrm{g})=\frac{\left|C_{G}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|}\left(\varphi(\mathrm{g})+\varphi\left(\mathrm{g}^{-1}\right)\right)= & \frac{8}{\left|C_{H}(\mathrm{~g})\right|} \cdot(1+1)=\frac{8}{8} \cdot 2=2 \\
& \text { since } \mathrm{H} \cap C L(\mathrm{~g})=\left\{\mathrm{g}, \mathrm{~g}^{-1}\right\} \text { and } \varphi(\mathrm{g})=\varphi\left(\mathrm{g}^{-1}\right)=1
\end{aligned}
$$

otherwise $\Phi_{(5,4)}(\mathrm{g})=0$ since $\mathrm{H} \cap C L(\mathrm{~g})=\phi$

Case (V):

If H is a cyclic subgroup of $\left(Q_{2 m} \times\{s\}\right)$ then

$$
\text { 1- } \mathrm{H}=<(\mathrm{x}, \mathrm{sr})>, 2-\mathrm{H}=<(\mathrm{y}, \mathrm{sr})
$$

and φ the principle character of H , then by using theorem (3.1)

$$
\Phi_{j}(\mathrm{~g})=\left\{\begin{array}{lc}
\frac{\left|C_{G}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} \sum_{i=1}^{m} \varphi\left(h_{i}\right) & \text { if } h_{i} \in H \cap C L(\mathrm{~g}) \\
0 & \text { if } H \cap C L(\mathrm{~g})=\phi
\end{array}\right\}
$$

1- $\quad \mathrm{H}=<(\mathrm{x}, \mathrm{sr})>$

International Journal of Engineering and Information Systems (IJEAIS)

ISSN: 2643-640X

Vol. 4, Issue 8, August - 2020, Pages: 66-87
(i) If $\mathrm{g}=(1, \mathrm{I})$ then

$$
\begin{aligned}
& \Phi_{(\mathrm{i}, 5)}(\mathrm{g})=\frac{\left|C_{G}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} \varphi(\mathrm{g})=\frac{32 \mathrm{~m}}{\left|C_{H}(1, l)\right|} \cdot 1=\frac{8.4 m}{\left|C_{H}(1, I)\right|} \cdot 1= \\
& \frac{8\left|C_{Q 2 m}(1)\right|}{2\left|C_{<x\rangle}(1)\right|} \cdot 1=4 \Phi_{\mathrm{j}}(1) \quad(\text { since } \operatorname{H} \cap C L(\mathrm{~g})=\{(1, \mathrm{I})\})
\end{aligned}
$$

If $\mathrm{g}=(1, \mathrm{~s})$ then

$$
\begin{aligned}
\Phi_{(\mathrm{j}, 5)}(\mathrm{g})= & =\frac{\left|C_{G}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} \varphi(\mathrm{g})=\frac{16 m}{\left|C_{H}(1, s)\right|} \cdot 1=\frac{4.4 m}{\left|C_{H}(1, s)\right|} \cdot 1 \\
& =\frac{4\left|C_{Q 2 m}(1)\right|}{2\left|C_{<x>}(1)\right|} \cdot 1=2 \Phi_{\mathrm{j}}(1) \operatorname{sinceH} \cap C L(\mathrm{~g})=\{(1, \mathrm{~s})\}
\end{aligned}
$$

(ii) $\mathrm{g}=\left(\mathrm{x}^{\mathrm{m}}, \mathrm{I}\right) ; \mathrm{g} \in H$

$$
\Phi_{(\mathrm{i}, 5)}(\mathrm{g})=\frac{\left|C_{G}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} \varphi(\mathrm{g})=\frac{32 m}{\left|C_{H}(\mathrm{~g})\right|} \cdot 1=\frac{8.4 m}{\left|C_{H}(\mathrm{~g})\right|} \cdot 1=\frac{8\left|C_{Q_{2 p}}\left(x^{m}\right)\right|}{2\left|C_{\langle x\rangle}\left(x^{m}\right)\right|} \varphi(1)=4 \Phi_{\mathrm{j}}\left(\mathrm{x}^{m}\right)
$$

(iii) If $\mathrm{g}=\left(\mathrm{x}^{\mathrm{m}}, \mathrm{s}\right)$ then

(iv)If $\mathrm{g} \neq\left(\mathrm{x}^{\mathrm{m}}, \mathrm{I}\right),\left(\mathrm{x}^{\mathrm{m}}, \mathrm{s}\right)$ and $\mathrm{g} \in H$

If $\mathrm{g} \neq\left(\mathrm{x}^{\mathrm{m}}, \mathrm{I}\right)$ and $\mathrm{g} \epsilon\left(\mathrm{Q}_{2 \mathrm{~m}} \times\{\mathrm{I}\}\right)$ then
$\Phi_{(\mathrm{j}, 5)}(\mathrm{g})=\frac{\left|C_{G}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|}\left(\varphi(\mathrm{g})+\varphi\left(\mathrm{g}^{-1}\right)\right)$
$=\frac{16 p}{\left|C_{H}(\mathrm{~g})\right|}(1+1) \quad\left(\right.$ since $\mathrm{H} \cap \mathrm{CL}(\mathrm{g})=\left\{\mathrm{g}, \mathrm{g}^{-1}\right\}$ and $\left.\varphi(\mathrm{g})=\varphi\left(\mathrm{g}^{-1}\right)=1\right)$
$=\frac{4.4 m}{\left|C_{H}(g)\right|} \cdot 2=\frac{4\left|C_{Q_{2 m}}(q)\right|}{2\left|C_{<x\rangle}(q)\right|} 2=4 \Phi_{\mathrm{j}}(q)$ Since $\mathrm{g}=(\mathrm{q}, \mathrm{I}), \mathrm{q} \in \mathrm{Q}_{2 \mathrm{p}}, \mathrm{q} \neq \mathrm{x}^{\mathrm{m}}$ If $\mathrm{g} \neq\left(\mathrm{x}^{\mathrm{p}}, \mathrm{sr}\right)$ and $\mathrm{g} \epsilon\left(\mathrm{Q}_{2 \mathrm{p}} \times\{\mathrm{sr}\}\right)$
then
$\Phi_{(\mathrm{j}, 4)}(\mathrm{g})=\frac{\left|C_{G}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} \cdot \varphi(\mathrm{g})=\frac{8 m}{\left|C_{H}(\mathrm{~g})\right|} \cdot(1+1)=\frac{2.4 m}{\left|C_{H}(\mathrm{~g})\right|} \cdot 2=\frac{2\left|C_{Q_{2 p}}(q)\right|}{2\left|C_{\langle x\rangle}(q)\right|} \cdot 2=2 \Phi_{\mathrm{j}}(q) \quad$ Since $\mathrm{g}=(\mathrm{q}, \mathrm{s}), \mathrm{q} \in \mathrm{Q}_{2 \mathrm{~m}}, \mathrm{q} \neq \mathrm{x}^{\mathrm{m}}$
(since $\mathrm{H} \cap C L(\mathrm{~g})=\left\{\mathrm{g}, \mathrm{g}^{-1}\right\}$ and $\varphi(\mathrm{g})=\varphi\left(\mathrm{g}^{-1}\right)=1$)
(v) If $g \notin H$ then

$$
\Phi_{(\mathrm{j}, 5)}(\mathrm{g})=0=\Phi_{\mathrm{j}}(\mathrm{q}) \quad \text { since } \mathrm{H} \cap \mathrm{CL}(\mathrm{~g})=\phi
$$

2-If $\mathrm{H}=<(\mathrm{y}, \mathrm{s})>=\left\{(1, \mathrm{I}),(\mathrm{y}, \mathrm{I}),\left(\mathrm{y}^{2}, \mathrm{I}\right),\left(\mathrm{y}^{3}, \mathrm{I}\right),(1, \mathrm{~s}),(\mathrm{y}, \mathrm{s}),\left(\mathrm{y}^{2}, \mathrm{~s}\right),\left(\mathrm{y}^{3}, \mathrm{~s}\right)\right\}$
(i) If $\mathrm{g}=(1, \mathrm{I})$ then
$\Phi_{(5,5)}(\mathrm{g})=\frac{\left|C_{G}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} \varphi(\mathrm{g})=\frac{32 m}{8} \cdot 1=4 . \mathrm{p}=4 \Phi_{5}(\mathrm{~g})$
If $\mathrm{g}=(1, \mathrm{~s})$ then
$\Phi_{(5,5)}(\mathrm{g})=\frac{\left|C_{G}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} \cdot \varphi(\mathrm{g})=\frac{16 m}{8} \cdot 1=4 \mathrm{p}=\Phi_{5}(\mathrm{~g})$
(ii)If $\mathrm{g}=\left(\mathrm{y}^{2}, \mathrm{I}\right)=\left(\mathrm{x}^{\mathrm{m}}, \mathrm{I}\right)$ and $\mathrm{g} \in H$
$\Phi_{(5,5)}(\mathrm{g})=\frac{\left|C_{G}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} \varphi(\mathrm{g})=\frac{32 m}{8} \cdot 1=4 . \mathrm{m}=4 \Phi_{5}(\mathrm{~g})$ since $\mathrm{H} \cap C L(\mathrm{~g})=\{\mathrm{g}\}$ and $\varphi(\mathrm{g})=1$
If $\mathrm{g}=\left(\mathrm{y}^{2}, \mathrm{~s}\right)$ and $\mathrm{g} \in H$
$\Phi_{(5,5)}(\mathrm{g})=\frac{\left|C_{G}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|} \varphi(\mathrm{g})=\frac{16 m}{8} \cdot 1=4 \mathrm{p}=\Phi_{5}(\mathrm{~g})$ since $\mathrm{H} \cap C L(\mathrm{~g})=\{\mathrm{g}\}$ and $\varphi(\mathrm{g})=1$
(iii) If $\mathrm{g} \neq\left(\mathrm{x}^{\mathrm{m}}, \mathrm{I}\right) \quad$ and $\mathrm{g} \in H$ i.e. $\mathrm{g}=\{(\mathrm{y}, \mathrm{I}),(\mathrm{y}, \mathrm{s})\}$ or $\mathrm{g}=\left\{\left(\mathrm{y}^{3}, \mathrm{I}\right),\left(\mathrm{y}^{3}, \mathrm{~s}\right)\right\}$

If $g=(y, I)$ then

$$
\begin{aligned}
\Phi_{(5,4)}(\mathrm{g})= & \frac{\left|C_{G}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|}\left(\varphi(\mathrm{g})+\varphi\left(\mathrm{g}^{-1}\right)\right)=\frac{16}{8}(1+1)=4 \\
& \text { since } \mathrm{H} \cap C L(\mathrm{~g})=\left\{\mathrm{g}, \mathrm{~g}^{-1}\right\} \text { and } \varphi(\mathrm{g})=\varphi\left(\mathrm{g}^{-1}\right)=1
\end{aligned}
$$

International Journal of Engineering and Information Systems (IJEAIS)

ISSN: 2643-640X

Vol. 4, Issue 8, August - 2020, Pages: 66-87
(iv)If $\mathrm{g}=(\mathrm{y}, \mathrm{s})$ then

$$
\Phi_{(5,5)}(\mathrm{g})=\frac{\left|C_{G}(\mathrm{~g})\right|}{\left|C_{H}(\mathrm{~g})\right|}\left(\varphi(\mathrm{g})+\varphi\left(\mathrm{g}^{-1}\right)\right)=\frac{8}{\left|C_{H}(\mathrm{~g})\right|} \cdot(1+1)=\frac{8}{8} \cdot 2=2
$$

$$
\text { since } \mathrm{H} \cap C L(\mathrm{~g})=\left\{\mathrm{g}, \mathrm{~g}^{-1}\right\} \text { and } \varphi(\mathrm{g})=\varphi\left(\mathrm{g}^{-1}\right)=1
$$

otherwise $\Phi_{(5,5)}(\mathrm{g})=0$ since $\mathrm{H} \cap C L(\mathrm{~g})=\phi$

Example(3.2):

To find Artin's characters table of the group $\mathrm{Q}_{150} \times \mathrm{D}_{4}$, we must find Artin's characters table of the group Q_{150} from (2.2.8) we get: $\operatorname{Ar}\left(\mathrm{Q}_{150}\right)=\operatorname{Ar}\left(\mathrm{Q}_{2.3 .5}{ }^{2}\right)$

Γ-classes	[1]	[x^{50}]	$\left[\mathrm{x}^{30}\right]$	$\left[\mathrm{x}^{10}\right]$	[x^{6}]	[x^{2}]	$\left[\mathrm{x}^{75}\right]$	$\left[\mathrm{x}^{25}\right]$	[x^{15}]	[x^{5}]	[x^{3}]	[x]	[y]
$\left\|C L_{\alpha}\right\|$	1	2	2	2	2	2	1	2	2	2	2	2	150
$\left\|C_{Q_{150}}\left(C L_{\alpha}\right)\right\|$	300	150	150	150	150	150	300	150	150	150	150	150	2
Φ_{1}	300	0	0	0	0	0	0	0	0	0	0	0	0
Φ_{2}	100	100	0	0	0	0	0	0	0	0	0	0	0
Φ_{3}	60	0	60	0	0	0	0	0	0	0	0	0	0
Φ_{4}	20	20	20	20	0	0	0	0	0	0	0	0	0
Φ_{5}	12	0	12	0	12	0	0	0	0	0	0	0	0
Φ_{6}	4	4	4	4	4	4	0	0	0	0	0	0	0
Φ_{7}	150	0	0	0	0	0	150	0	0	0	0	0	0
Φ_{8}	50	50	0	0	0	0	50	50	0	0	0	0	0
Φ_{9}	30	0	30	0	0	0	30	0	30	0	0	0	0
Φ_{10}	10	10	10	10	0	0	10	10	10	10	0	0	0
Φ_{11}	6	0	6	0	6	0	6	0	6	0	6	0	0
Φ_{12}	2	2	2	2	2	2	2	2	2	2	2	2	0
Φ_{13}	75	0	0	0	0	0	75	0	0	0	0	0	1

Table(6)
and we must find Artin's characters table of the group D_{4} from (2.2.9) we get:

$\operatorname{Ar}\left(\mathrm{D}_{4}\right)=\quad$| Γ-classes | $[\mathrm{I}]$ | $\left[\mathrm{r}^{2}\right]$ | $[\mathrm{r}]$ | $[\mathrm{s}]$ | $[\mathrm{sr}]$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $1 C L_{\alpha} 1$ | 1 | 1 | 2 | 2 | 2 |
| $\mid C_{D_{3}}\left(C L_{\alpha}\right) 1$ | 8 | 8 | 4 | 4 | 4 |
| Φ_{1} | 8 | 0 | 0 | 0 | 0 |
| Φ_{2} | 4 | 4 | 0 | 0 | 0 |
| Φ_{3} | 2 | 2 | 2 | 0 | 0 |
| Φ_{4} | 4 | 0 | 0 | 0 | 2 |
| Φ_{5} | 4 | 0 | 0 | 2 | 0 |

Table(7)
Then from theorem (3.1) we get
$\operatorname{Ar}\left(\mathrm{Q}_{150} \times \mathrm{D}_{4}\right)=$

International Journal of Engineering and Information Systems (IJEAIS)

ISSN: 2643-640X
Vol. 4, Issue 8, August - 2020, Pages: 66-87

Γ-classes	[1, $\left.{ }^{*}{ }^{*}\right]$	$\left[\mathrm{x}^{50}, \mathrm{I}^{*}\right]$	$\left[\mathrm{x}^{30}, \mathrm{I}^{*}\right]$	$\left[\mathrm{x}^{10}, \mathrm{I}^{*}\right]$	$\left[\mathrm{x}^{6}, \mathrm{I}^{*}\right]$	[$\left.\mathrm{x}^{2}, \mathrm{I}^{*}\right]$	[$\left.\mathrm{x}^{75}, \mathrm{I}^{*}\right]$	$\left[\mathrm{X}^{25}, \mathrm{I}^{*}\right]$	$\left[\mathrm{x}^{15}, \mathrm{I}^{*}\right]$	[$\left.\mathrm{x}^{5}, \mathrm{I}^{*}\right]$	[$\left.\mathrm{x}^{3}, \mathrm{I}^{*}\right]$	[$\mathrm{x}, \mathrm{I}^{*}$]	[y, I^{*}]	[1, r^{2}]	$\left[\mathrm{x}^{50}, \mathrm{r}^{2}\right]$	$\left[\mathrm{x}^{30}, \mathrm{r}^{2}\right]$	[$\left.\mathrm{x}^{10}, \mathrm{r}^{2}\right]$	[$\left.\mathrm{x}^{6}, \mathrm{r}^{2}\right]$	[$\left.\mathrm{x}^{2}, \mathrm{r}^{2}\right]$	[$\left.\mathrm{x}^{75}, \mathrm{r}^{2}\right]$	$\left[\mathrm{x}^{25}, \mathrm{r}^{2}\right]$
$\left\|C L_{\alpha}\right\|$	1	2	2	2	2	2	1	2	2	2	2	2	150	2	2	2	2	2	2	1	2
$\left\|C_{Q_{150} \times D_{3}}\left(C L_{\alpha}\right)\right\|$	2400	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	16	1200	1200	1200	1200	1200	1200	2400	1200
$\Phi_{(1,1)}$	2400	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\Phi_{(2,1)}$	1200	1200	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\Phi_{(3,1)}$	600	600	600	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\Phi_{(4,1)}$	1200	0	0	0	600	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\Phi_{(5,1)}$	1200	0	0	600	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\Phi_{(6,1)}$	800	0	0	0	0	800	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\Phi_{(7,1)}$	400	400	0	0	0	400	400	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\Phi_{(8,1)}$	200	200	200	0	0	200	200	200	0	0	0	0	0	0	0	0	0	0	0	0	0
$\Phi_{(9,1)}$	400	0	0	0	200	400	0	0	0	200	0	0	0	0	0	0	0	0	0	0	0
$\Phi_{(10,1)}$	400	0	0	200	0	400	0	0	200	0	0	0	0	0	0	0	0	0	0	0	0
$\Phi_{(11,1)}$	480	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	480
$\Phi_{(12,1)}$	240	240	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	024
$\Phi_{(13,1)}$	120	120	120	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	120

Table(8)

International Journal of Engineering and Information Systems (IJEAIS)

ISSN: 2643-640X
Vol. 4, Issue 8, August - 2020, Pages: 66-87

$\left[\mathrm{x}^{15} \mathrm{r}^{2}\right]$	[$\mathrm{x}^{5}, \mathrm{r}^{2}$]	[$\left.\mathrm{x}^{3}, \mathrm{r}^{2}\right]$	[$\left.\mathrm{x}, \mathrm{r}^{2}\right]$	[y, ${ }^{2}$]	[1,r]	[x^{50}, r]	[x^{30}, r]	[x^{10}, r]	[${ }^{6}$, r]	[${ }^{2}$, r]	[x^{75},r]	[x^{25}, r$]$	[${ }^{15}$, r$]$	[${ }^{5}$,r]	[$\left.{ }^{3}, \mathrm{r}\right]$	[x, r]	[y,r]
2	2	2	2	150	3	3	3	3	3	3	3	3	3	3	3	3	150
1200	1200	1200	1200	16	800	800	800	800	800	800	800	800	800	800	800	800	16
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
240	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
120	120	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
240	0	0	0	120	0	0	0	0	0	0	0	0	0	0	0	0	0
240	0	0	120	0	0	0	0	0	0	0	0	48	0	0	0	0	0
160	0	0	0	0	160	0	0	0	0	0	0	24	24	0	0	0	0
80	80	0	0	0	80	0	0	0	0	0	0	12	12	12	0	0	0
80	0	0	40	0	0	0	0	0	0	0	0	24	0	0	0	12	0
96	0	0	0	0	0	0	0	0	0	0	0	24	0	0	12	0	0
48	48	0	0	0	0	0	0	0	0	0	0	16	0	0	0	0	16
24	24	24	0	0	0	0	0	0	0	0	0	8	0	0	0	0	8
48	0	0	0	24	0	0	0	0	0	0	0	4	0	0	0	0	4
32	0	0	0	0	32	0	0	0	0	0	0	8	0	0	0	0	0
16	16	0	0	0	0	0	0	0	0	0	0	8	0	0	0	0	0
8	8	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

16	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

$\begin{gathered} {[1, \mathrm{~s}} \\ \mathrm{j} \end{gathered}$	$\begin{gathered} {\left[\mathrm{x}^{30}, \mathrm{~s}\right.} \\ \hline \end{gathered}$	$\left[\begin{array}{c} {\left[\mathrm{x}^{30}, \mathrm{~s}\right.} \\ \hline \end{array}\right.$	$\begin{gathered} {\left[\mathrm{x}^{10,}, \mathrm{~s}\right.} \\ \hline \end{gathered}$	$\left[\begin{array}{c} {\left[x^{6}, \mathrm{~s}\right.} \\] \end{array}\right.$	$\left[\begin{array}{c} {\left[x^{2}, s\right.} \\] \end{array}\right.$	$\left[\begin{array}{c} x^{15}, s \\ \hline \end{array}\right.$	$\left[\begin{array}{c} {\left[x^{25}, s\right.} \\ \hline \end{array}\right.$	$\left[\begin{array}{c} {\left[x^{15}, s\right.} \\ \hline \end{array}\right.$	$\begin{gathered} {\left[\mathrm{xx}^{3}, \mathrm{~s}\right.} \\] \end{gathered}$	$\begin{gathered} {\left[x^{3}, \mathrm{~s}\right.} \\] \end{gathered}$	$\begin{gathered} {[\mathrm{x}, \mathrm{~s}} \\ \hline \end{gathered}$	$\begin{gathered} \hline[y, s \\ \hline \end{gathered}$	$\left[\begin{array}{c} {[1, \mathrm{~s}} \end{array}\right.$	$\left[\begin{array}{c} \mathrm{x}^{50}, \mathrm{~s} \\ \hline \end{array}\right.$	$\left[\begin{array}{c} {\left[x^{30}, s\right.} \\] \end{array}\right.$	$\left[\begin{array}{c} {\left[x^{10}, \mathrm{~s}\right.} \end{array}\right.$	$\left[\begin{array}{c} {\left[\mathrm{x}^{6}, \mathrm{~s}\right.} \\] \end{array}\right.$	$\begin{gathered} \hline\left[x^{2}, s\right. \\] \end{gathered}$	$\left[\begin{array}{c} {\left[\mathrm{x}^{15}, \mathrm{~s}\right.} \\ \hline \end{array}\right.$	$\begin{gathered} {\left[\mathrm{x}^{25}, \mathrm{~s}\right.} \\ \hline \end{gathered}$	$\begin{gathered} {\left[\mathrm{x}^{15,},\right.} \\] \end{gathered}$	$\begin{gathered} {\left[\mathrm{x}^{5}, \mathrm{~s}\right.} \\] \end{gathered}$	$\left[\begin{array}{c} {\left[\mathrm{x}^{3}, \mathrm{~s}\right.} \\] \end{array}\right.$	[x,s	$[y, 5$
3	3	3	3	3	3	3	3	3	3	3	3	$\begin{gathered} 15 \\ 0 \end{gathered}$	3	3	3	3	3	3	3	3	3	3	3	3	15 0
$\begin{gathered} 80 \\ 0 \end{gathered}$	800	800	800	800	800	800	800	800	800	800	$\begin{gathered} 80 \\ 0 \end{gathered}$	16	$\begin{gathered} 80 \\ 0 \end{gathered}$	800	800	800	800	800	800	800	800	800	800	$\begin{gathered} 80 \\ 0 \end{gathered}$	16
240	0	0	0	0	0	0	0	240	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
120	120	0	0	0	0	0	0	120	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\begin{gathered} 24 \\ 0 \end{gathered}$	0	0	0	120	0	0	0	240	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\begin{gathered} 24 \\ 0 \end{gathered}$	0	0	120	0	0	0	0	240	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\begin{gathered} 16 \\ 0 \end{gathered}$	0	0	0	0	160	0	0	160	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
80	80	0	0	0	80	0	0	80	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
80	0	0	40	0	0	0	0	80	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
96	0	0	0	0	0	0	0	96	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
48	48	0	0	0	0	0	0	48	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
24	24	24	0	0	0	0	0	24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
48	0	0	0	24	0	0	0	48	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
32	0	0	0	0	32	0	0	32	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16	16	0	0	0	0	0	0	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

$\Phi_{(1,1)}$	240	0	0	0	120	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\Phi_{(2,2)}$	240	0	0	120	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\Phi_{(3,2)}$	160	0	0	0	0	160	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\Phi_{(4,2)}$	80	80	0	0	80	80	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\Phi_{(5,2)}$	40	40	40	0	0	40	40	40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\Phi_{(6,2)}$	80	0	0	0	40	80	0	0	0	40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\Phi_{(7,2)}$	80	0	0	40	0	80	0	0	40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\Phi_{(8,2)}$	96	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\Phi_{(9,2)}$	48	48	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\Phi_{(10,2)}$	24	24	24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\Phi_{(11,2)}$	48	0	0	0	24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\Phi_{(12,2)}$	48	0	0	24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\Phi_{(13,2)}$	32	0	0	0	0	32	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

1200	0	0	0	0	0	0	0	0	0	0	0	0
600	600	0	0	0	0	0	0	0	0	0	0	0
300	300	300	0	0	0	0	0	0	0	0	0	0
600	0	0	0	300	0	0	0	0	0	0	0	0
600	0	0	300	0	0	0	0	0	0	0	0	0
400	0	0	0	0	400	0	0	0	0	0	0	0
200	200	0	0	0	200	200	0	0	0	0	0	0
100	100	100	0	0	100	100	100	0	0	0	0	0
200	0	0	0	100	200	0	0	0	100	0	0	0
1200	0	0	0	0	0	0	0	0	0	0	0	0
600	600	0	0	0	0	0	0	0	0	0	0	0
300	300	300	0	0	0	0	0	0	0	0	0	0
600	0	0	0	300	0	0	0	0	0	0	0	0

$\Phi_{(1,3)}$	16	16	0	0	0	16	16	0	0	0	0	0	0
$\Phi_{(2,3)}$	8	8	8	0	0	8	8	8	0	0	0	0	0
$\Phi_{(3,3)}$	16	0	0	8	16	0	0	8	0	0	0	0	0
$\Phi_{(4,3)}$	16	0	0	8	0	16	0	0	16	0	0	0	0
$\Phi_{(5,3)}$	1200	0	0	0	0	0	0	0	0	0	0	0	0
$\Phi_{(6,3)}$	600	600	0	0	0	0	0	0	0	0	0	0	0
$\Phi_{(7,3)}$	300	300	300	0	0	0	0	0	0	0	0	0	0
$\Phi_{(8,3)}$	600	0	0	0	300	0	0	0	0	0	0	0	0
$\Phi_{(9,3)}$	600	0	0	300	0	0	0	0	0	0	0	0	0
$\Phi_{(10,3)}$	400	0	0	0	0	400	0	0	0	0	0	0	0
$\Phi_{(11,3)}$	200	200	0	0	0	200	200	0	0	0	0	0	0
$\Phi_{(12,3)}$	100	100	100	0	0	100	100	100	0	0	0	0	0
$\Phi_{(13,3)}$	200	0	0	0	100	200	0	0	0	100	0	0	0

0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0

International Journal of Engineering and Information Systems (IJEAIS)
ISSN: 2643-640X
Vol. 4, Issue 8, August - 2020, Pages: 66-87

$\Phi_{(1,4)}$	200	0	0	100	0	200	0	0	100	0	0	0	0
$\Phi_{(2,4)}$	240	0	0	0	0	0	0	0	0	0	0	0	0
$\Phi_{(3,4)}$	120	120	0	0	0	0	0	0	0	0	0	0	0
$\Phi_{(4,4)}$	60	60	60	0	0	0	0	0	0	0	0	0	0
$\Phi_{(5,4)}$	120	0	0	0	60	0	0	0	0	0	0	0	0
$\Phi_{(6,4)}$	120	0	0	60	0	0	0	0	0	0	0	0	0
$\Phi_{(7,4)}$	80	0	0	0	0	80	0	0	0	0	0	0	0
$\Phi_{(8,4)}$	40	40	0	0	0	40	40	0	0	0	0	0	0
$\Phi_{(9,4)}$	20	20	20	0	0	20	20	20	0	0	0	0	0
$\Phi_{(10,4)}$	40	0	0	0	20	40	0	0	0	0	0	0	0
$\Phi_{(11,4)}$	40	0	0	20	0	40	0	0	20	0	0	0	0
$\Phi_{(12,4)}$	48	0	0	0	0	0	0	0	0	0	0	0	0
$\Phi_{(13,4)}$	24	24	0	0	0	0	0	0	0	0	0	0	

0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0

$\Phi_{(1,5)}$	12	12	12	0	0	0	0	0	0	0	0	0	0
$\Phi_{(2,5)}$	24	0	0	0	12	0	0	0	0	0	0	0	0
$\Phi_{(3,5)}$	24	0	0	12	0	0	0	0	0	0	0	0	0
$\Phi_{(4,5)}$	16	0	0	0	0	16	0	0	0	0	0	0	0
$\Phi_{(5,5)}$	8	8	0	0	0	8	8	0	0	0	0	0	0
$\Phi_{(6,5)}$	4	4	4	0	0	4	4	4	0	0	0	0	0
$\Phi_{(7,5)}$	8	0	0	0	4	8	0	0	4	0	0	0	0
$\Phi_{(8,5)}$	8	0	0	4	0	8	0	0	0	0	0	0	0
$\Phi_{(9,5)}$	600	0	0	0	0	0	0	0	0	0	0	0	0
$\Phi_{(10,5)}$	300	300	0	0	0	0	0	0	0	0	0	0	0
$\Phi_{(11,5)}$	150	150	150	0	0	0	0	0	0	0	0	0	0
$\Phi_{(12,5)}$	300	0	0	0	150	0	0	0	0	0	0	0	0
$\Phi_{(13,5)}$	300	0	0	150	0	0	0	0	0	0	0	0	0

0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0

References

[1] C. Curits \& I. Reiner, "Methods Of Representation Theory with Application to Finite Groups And Order", John Wily \& Sons, Newyork,1981.
[2] G. D. James \& M. Liebeck, " Representations and groups", $2^{\text {nd }}$ edition, Cambridge University Press, 2001.
[3] W. Lederman, "Introduction to Group Characters", Cambridge University, 1977.
[4] M. J. Hall, "The Theory of Group", Macmillan, Newyork, 1959.
[5] A. S. Abid, "Artin's Characters Table Of Dihedral Group for Odd Number", M.Sc. thesis, University of Kufa, 2006.
[6] A. H. Abdul-Munem, "On Artin Cokernel Of The Quaternion group $\mathrm{Q}_{2 \mathrm{~m}}$ when m is an odd number",M. Sc. thesis,University of Kufa,2008.

