Artin's Characters Table of the Group $Q_{2m} \times D_4$ when m is an Odd Number

Naba Hasoon Jaber

Department of Mathematics, Faculty of eduction for Girl, University of Kufa, Najaf, Iraq

Abstract: The main purpose of this paper is to find Artin's characters table of the group $Q_{2m} \times D_4$ when m is an odd number, which is denoted by $Ar(Q_{2m} \times D_4)$, where Q_{2m} is denoted to quaternion group of order 4m, such that for each positive integer m, there are two generators x and y for Q_{2m} satisfies $Q_{2m} = \{x^h \ y^k, 0 \le \square \le 2m - 1, k = 0, 1\}$ which has the properties $x^{2m} = y^4 = I$, $yx^ry^{-1} = x^{-r}$ and D_4 is the dihedral group of order 8 is generate by a rotation r of order 4 and reflection s of order 2. The eight elements of D_4 can be written as: $\{I^*, r, r^2, r^3, s, sr, sr^2, sr^3\}$ with properties $sr^k s = r^k$, k =0,1,2,3.

Keywords: Characters, Artin, group, Q_{2m}, D₄,odd number.

1. Introduction:

let G be a finite group, two elements of G are said to be Γ -conjugate if the cyclic subgroups they generate are conjugate in G and this defines an equivalence relation on G and its classes are called Γ -classes [1].

Let H be a subgroup of G and let ϕ be a class function on H, the induced class function on G, is given by: $\phi'(g) = \frac{1}{2} \sum_{h \in G} \phi^{\circ}(hgh^{-1}), \forall g \in G, \text{ where } \phi^{\circ} \text{ is defined by:}$

$$\phi(x) = \{\phi(x) \text{ if } x \in H \}$$

 $\phi^{\circ}(\mathbf{x}) = \begin{cases} \phi^{\circ}(\mathbf{x}) & \text{if } \mathbf{x} \in H \\ 0 & \text{if } \mathbf{x} \notin H \end{cases} [2].$ Let H be a subgroup of G and ϕ be a character of H, then ϕ° is a character of G, and it is called the induced character on G[3].

In 1976, David.G[4] studied "Artin Exponent of arbitrary characters of cyclic subgroup ", Journal of Algebra, 61, p.58-76.

In 1996, Knwabusz .K[3] studied "Some Definitions of Artin's Exponent of finite Group", USA, National foundation Math,GR.

In this work we find Artin's characters table of the Group $Q_{2m} \times D_4$ when m is an odd number.

2. Preliminaries

In this section we find Artin's characters table of the group Q_{2m} when m is an odd number and Artin's characters table of the group D₄.

Theorem(2.1): [2]

Let H be a cyclic subgroup of G and h₁, h₂,..., h_m are chosen representatives for the m-conjugate classes of H contained $(\underline{|C_G(g)|} \Sigma^m, \omega(h_i))$ if $h_i \in H \cap CL(g)$

in CL(g) in G,then:
$$\varphi'(g) =\begin{cases} \frac{|c_H(g)|}{|c_H(g)|} & \text{if } H \cap CL(g) \\ 0 & \text{if } H \cap CL(g) = \phi \end{cases}$$

2.2 Artin's Characters Tables:

Definition(2.2.1) [2] :

Let G be a finite group, all the characters of G induced from a principal character of cyclic subgroups of G are called Artin characters of G.

Proposition(2.2.2) [1]:

The number of all distinct Artin characters on group G is equal to the number of Γ -classes on G. Furthermore, Artin characters are constant on each Γ -classes.

Definition(2.2.3) [5]:

Artin characters of the finite group G can be displayed in a table called Artin characters table of G which is denoted by Ar(G). The first row is the Γ -conjugate classes, the second row is the number of elements in each conjugate class, the third row is the size of the centralized $|C_G(CL_\alpha)|$ and other rows contains the values of Artin characters.

Theorem(2.2.4) [5]:

The general form of Artin characters table of C_{p^s} when p is a prime number and s is a positive integer number is given by:

Γ-classes	[1]	$[x^{p^{s-1}}]$	$[x^{p^{s-2}}]$	$[x^{p^{s-3}}]$		[x]
$ CL_{\alpha} $	1	1	1	1		1
$ C_{p^s}(CL_{\alpha}) $	p^s	p^s	p^s	p^s		p^s
$ec{arphi_1}$	p^s	0	0	0		0
$arphi_2$	p^{s-1}	p^{s-1}	0	0		0
$arphi_3^{'}$	p^{s-2}	p^{s-2}	p^{s-2}	0		0
:	:	:	:	:	×.	:
$arphi_{s}^{'}$	р	p	p	p		0
φ_{s+1}	1	1	1	1		1
	Tal	ble(1)				

Corollary(2.2.5) [5]:

Let $m = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \dots p_n^{\alpha_n}$ where g.c.d(p_i, p_j) =1, if $i \neq j$ and p_i 's are prime numbers, and α_i any positive integers for all $1 \le i \le n$, then : Ar(C_m) = Ar($C_{p_1\alpha_1}$) \otimes Ar($C_{p_2\alpha_2}$) $\otimes \dots \otimes$ Ar($C_{p_n\alpha_n}$).

Theorem(2.2.6) [6]:

The Artin characters table of the quaternion group Q_{2m} when m is an odd number is given as follows:

					Γ-classe	es of C_{2r}							
	Γ-classes	[1]		[X ²	² r]	[x ^m]		$[X^{2r+1}]$		[y]			
	$ CL_{\alpha} $	1	2		2	1	2		2	2m			
$\operatorname{Ar}(Q_{2m}) =$	$ \mathcal{C}_{Q_{2m}}(\mathcal{C}L_{\alpha}) $	4m	2m		2m	4m	2m		2m	2			
	Φ_1												
	Φ_2				2Ar	(C_{2m})				0			
	:									:			
	Φ_l												
	Φ_{l+1}	m 0 0 m 0 0											

Table(2)

where $0 \le r \le m-1$, l is the number of Γ -classes of C_{2m} and Φ_j are the Artin characters of the Quaternion group Q_{2m} , for all $1 \le j \le l+1$.

Example(2.2.7) :

To find Ar(Q₂₂) by using theorem(2.2.6) we get the following table: Ar(Q₂₂) = Ar(Q_{2.11}) =

$$Ar(Q_{22}) =$$

Γ-classes	[1]	[x ²]	[x ¹¹]	[x]	[y]
$ CL_{\alpha} $	1	2	1	2	2p
$ C_{Q_{2p}}(CL_{\alpha}) $	44	22	44	22	2
Φ_1	44	0	0	0	0
Φ_2	4	4	0	0	0
Φ_3	22	0	22	0	0
Φ_4	2	2	2	2	0
Φ_5	11	0	11	0	1
	Γ	able(3)		

Theorem(2.2.8):[6]

The Artin's character table of the dihedral group D_n when n is an even number is given as follows:

	[<i>I</i>]	$\left[r^{\frac{n}{2}}\right]$	Γ – Classes of C _n		[<i>s</i>]	[sr]
$ CL_{\alpha} $	1	1	2 2	2	n / 2	n/2
$C_{D_n}(CL_{\alpha})$	2 <i>n</i>	2 <i>n</i>	n n	п	2 ²	2 ²
Φ_1			2 Ar(C)		0	0
:			$2.\mathrm{Ar}(\mathrm{C}_{\mathrm{n}})$:	÷
Φ_l					0	0
Φ_{l+1}	п	0		0	0	2
Φ_{l+2}	п	0		0	2	0
			Table (4)	•		

 $Ar(D_n) =$

3. The main results:

Propostion(3.1)

If $m = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \dots \cdot p_n^{\alpha_n}$ where g.c.d(p_i, p_j) =1, if $i \neq j$ and for all i, $p_i \neq 2$ are prime numbers and α_i any positive integers, then The Artin's character table of the group ($Q_{2m} \times D_4$) when m is an odd number is given as: **Ar**($Q_{2m} \times D_4$) =

Ar	$\mathbf{Q}_{2\mathbf{m}} \times \mathbf{D}_4$ =				
	Γ -classes of $Q_{2m} \times \{I\}$	Γ -classes of $Q_{2m} \times \{r^2\}$	Γ -classes of $Q_{2m} \times \{r\}$	Γ -classes of $Q_{2m} \times \{s\}$	Γ -classes of $Q_{2m} \times \{sr\}$
Γ-classes	$[1,I][x^2,I][x^m,I][x,I][y,I]$	$[1,r^2][x^2,r^2][x^m,r^2][x,r^2][y,r^2]$			$[1,sr][x^2,sr][x^m,sr][x,sr][y,sr]$
$ CL_{\alpha} $	1 2 1 2 2m	1 2 1 2 2m	1 2 1 2 2m	2 4 2 4 4m	2 4 2 4 4m
$ C_{Q_{2m^{x}D_{4}}}(CL_{\alpha}) $	32m 16m 32m 16m 16	32m 16m 32m 16m 16	32m 16m 32m 16m 16	16m 8m 16m 8m 8	16m 8m 16m 8m 8
$\begin{array}{c} \Phi_{(1,1)} \\ \Phi_{(2,1)} \\ \Phi_{(3,1)} \\ \Phi_{(4,1)} \\ \Phi_{(5,1)} \end{array}$	8Ar(Q _{2m})	0	0	0	0
$\begin{array}{c} \Phi_{(1,2)} \\ \Phi_{(2,2)} \\ \Phi_{(3,2)} \\ \Phi_{(4,2)} \\ \Phi_{(5,2)} \end{array}$	4Ar(Q _{2m})	4Ar(Q _{2m})	0	0	0
$\begin{array}{c} \Phi_{(1,3)} \\ \Phi_{(2,3)} \\ \Phi_{(3,3)} \\ \Phi_{(4,3)} \\ \Phi_{(5,3)} \end{array}$	2Ar(Q _{2m})	2Ar(Q _{2m})	2Ar(Q _{2m})	0	0
$\begin{array}{c} \Phi_{(1,4)} \\ \Phi_{(2,4)} \\ \Phi_{(3,4)} \\ \Phi_{(4,4)} \\ \Phi_{(5,4)} \end{array}$	4Ar(Q _{2m})	0	0	0	2Ar(Q _{2m})
$\begin{array}{c} \Phi_{(1,5)} \\ \Phi_{(2,5)} \\ \Phi_{(3,5)} \\ \Phi_{(4,5)} \\ \Phi_{(5,5)} \end{array}$	4Ar(Q _{2m})	0	0	2Ar(Q _{2m})	0

which is (25×25) square matrix.

Proof: Let $g \in (Q_{2m} \times D_4)$; $g=(q,d), q \in Q_{2m}, d \in D_4$

Case (I):

Consider the group $G=(Q_{2m}\times D_4)$ and if H is a cyclic subgroup of $(Q_{2m}\times \{I\})$, then 1-H =<(x,I)>2- H= <(y,I)> and φ the principle character of H, φ_j Artin's characters of Q_{2p} , $1 \le j \le l+1$, then by using theorem (3.1):

$$\Phi_{j}(\mathbf{g}) = \begin{cases} \frac{|C_{G}(\mathbf{g})|}{|C_{H}(\mathbf{g})|} \sum_{i=1}^{m} \varphi(h_{i}) & \text{if } h_{i} \in H \cap CL(\mathbf{g}) \\ 0 & \text{if } H \cap CL(\mathbf{g}) = \phi \end{cases}$$

1- $H = \langle (x,I) \rangle$

(i) If g = (1,I) then

$$\Phi_{(j,1)}(1,I) = \frac{|C_G(g)|}{|C_H(g)|} \cdot \varphi(g) = \frac{32m}{|C_H(g)|} \cdot 1 = \frac{8.4m}{|C_H(g)|} \cdot 1$$

$$= \frac{8|C_{Q_{2m}}(1)|}{|C < x > (1)|} \cdot \varphi(1) = 8 \cdot \Phi_j(1) \quad (\text{since } H \cap CL(1,I) = \{(1,I)\})$$

(ii) If $g = (x^m, I)$, $g \in H$ then

$$\Phi_{(j,1)}(g) = \frac{|\mathcal{C}_G(g)|}{|\mathcal{C}_H(g)|} \varphi(g) = \frac{32m}{|\mathcal{C}_H(g)|} \cdot 1$$

= $\frac{8|\mathcal{C}_{Q_{2m}}(x^m)|}{|\mathcal{C} < x > (x^m)|} \varphi(x^m) = 8 \cdot \Phi_j(x^m) \text{ (since H} \cap \mathcal{CL}(g) = \{g\}, \varphi(g) = 1)$

(iii) If $g \neq (x^m, I)$, $g \in H$ then

$$\Phi_{(j,1)}(g) = \frac{|c_G(g)|}{|c_H(g)|} (\varphi(g) + \varphi(g^{-1})) = \frac{16m}{|c_H(g)|} (1+1) = \frac{4.4m}{|c_H(g)|} . 2$$

= $\frac{4|c_{Q2m(q)}|}{|c_{H(q)}|} . 2 = 8. \ \Phi_j(q)$ (Since H \cap CL(g) = {g,g⁻¹} and $\varphi(g) = \varphi(g^{-1}) = 1$ and since g = (q,I),q \in Q_{2m}, q \neq x^m)

If g∉H then

$$\Phi_{(j,1)}(g) = 0 = 8.0 = 8.\Phi_j(q)$$
 (since $H \cap CL(g) = \phi$)

2-If H=<(y,I)>={(1,I),(y,I),(y^2,I),(y^3,I)} then

(i) If g=(1,I) then

$$\Phi_{(l+1,1)}(g) = \frac{|C_G(g)|}{|C_H(g)|} \varphi(g) = \frac{32m}{4} \cdot 1 = 8 \cdot p = 8 \cdot \Phi_{l+1}(1) \text{ (since } H \cap CL(1,I) = \{(1,I)\} \text{)}$$

(ii)If $g=(x^m,I)=(y^2,I)$ and $g \in H$ then

$$\Phi_{(5,1)}(g) = \frac{|C_G(g)|}{|C_H(g)|} \varphi(g) = \frac{32m}{4} \cdot 1 = 8.m \text{ (since } m = \frac{|C_{Q_{2m}}(g)|}{|C_H(g)|} \text{)}$$
$$= 8.\Phi_5(x^m) \text{ (since } H \cap CL(g) = \{g\}, \varphi(g) = 1)$$

(iii) If $g \neq (x^m, I)$ and $g \in H$, i.e. $\{g=(y, I) \text{ or } g=(y^3, I)\}$ then

$$\Phi_{(5,1)}(g) = \frac{|C_G(g)|}{|C_H(g)|} (\varphi(g) + \varphi(g^{-1})) = \frac{16}{4} (1+1)$$

= 4.2 = 8 since $H \cap CL(g) = \{g, g^{-1}\}$ and $\varphi(g) = \varphi(g^{-1}) = 1$

Otherwise

$$\Phi_{(5,1)}(g) = 0$$
 (since $H \cap CL(g) = \phi$)

Case (II):

If H is a cyclic subgroup of $(Q_{2m} \times \{r^2\})$ then:

$$1-H = \langle (x,r^2) \rangle$$
 2- H = $\langle (y,r^2) \rangle$

and φ the principle character of H, then by using theorem (3.1)

$$\Phi_{j}(g) = \begin{cases} \frac{|C_{G}(g)|}{|C_{H}(g)|} \sum_{i=1}^{m} \varphi(h_{i}) & \text{if } h_{i} \in H \cap CL(g) \\ 0 & \text{if } H \cap CL(g) = \phi \end{cases}$$
1-H=<(x,r²)>={(1,1),(1,r²),(x,r²),...,(x^m,r²)}

If g=(1,I) then

$$\Phi_{(j,2)}(g) = \frac{|C_G(g)|}{|C_H(g)|} \varphi(g) = \frac{32m}{|C_H(1,I)|} \cdot 1 = \frac{8.4m}{|C_H(1,I)|} \cdot 1$$
$$= \frac{8|C_{Q_{2m}}(1)|}{2|C_{}(1)|} \varphi(1) = 4 \cdot \Phi_j(1) \text{ since } H \cap CL(g) = \{(1,I),(1,r^2)\}$$

If $g=(1,r^2)$ then

$$\Phi_{(j,2)}(g) = \frac{|C_G(g)|}{|C_H(g)|} \varphi(g) = \frac{32m}{|C_H(1,I)|} \cdot 1 = \frac{8.4m}{|C_H(1,I)|} \cdot 1$$
$$= \frac{8|C_{Q_{2m}}(1)|}{2|C_{}(1)|} \varphi(1) = 4 \cdot \Phi_j(1) \text{ since } H \cap CL(g) = \{(1,I),(1,r^2)\}$$

(i)If $g = (x^m, I)$; $g \in H$ then

$$\Phi_{(\mathbf{j},\mathbf{2})}(\mathbf{g}) = \frac{|C_G(\mathbf{g})|}{|C_H(\mathbf{g})|} \varphi(\mathbf{g}) = \frac{32m}{|C_H(\mathbf{g})|} \cdot 1 = \frac{8.4m}{|C_H(\mathbf{g})|} \cdot 1$$
$$= \frac{8|C_{Q2m}(x^m)|}{2|C_{}(x^m)|} \varphi(1) = 4\Phi_{\mathbf{j}}(x^m) \text{ (since } \mathbf{H} \cap CL(\mathbf{g}) = \{\mathbf{g}\} \text{ and } \varphi(\mathbf{g}) = 1)$$

If $g = (x^m, r^2)$; $g \in H$ then

$$\Phi_{(j,2)}(g) = \frac{|C_G(g)|}{|C_H(g)|} \varphi(g) = \frac{32m}{|C_H(g)|}, 1 = \frac{8.4m}{|C_H(g)|}, 1 = \frac{8|C_{Q2m}(x^m)|}{2|C_{}(x^m)|} \varphi(1) = 4\Phi_j(x^m) \text{ (since H} \cap CL(g) = \{g\} \text{ and } \varphi(g) = 1)$$

(iii) If $g \neq (x^m, I), (x^m, r^2)$ and $g \in H$ then

$$\Phi_{(j,2)}(g) = \frac{|c_G(g)|}{|c_H(g)|} (\varphi(g) + \varphi(g^{-1})) = \frac{16m}{|c_H(g)|} (1 + 1)$$

= $\frac{4|c_{Q2m}(q)|}{2|c_{}(q)|} \cdot 2 = 4\Phi_j(q) \text{ (since H} \cap CL(g) = \{g, g^{-1}\} \text{ and } \varphi(g) = \varphi(g^{-1}) = 1)$

(iv) If $g \notin H$ then

$$\Phi_{(j,2)}(g) = 0 = \Phi_j(q) \qquad (\text{ since } H \cap CL(g) = \phi)$$

2-If
$$H = \langle (y,r^2) \rangle = \{(1,I), (y,I), (y^2,I), (y^3,I), (1,r^2), (y,r^2), (y^2,r^2), (y^3,r^2)\}$$

(i) If g = (1,I) then

$$\Phi_{(5,2)}(g) = \frac{|C_G(g)|}{|C_H(g)|} \varphi(g) = \frac{32m}{8} \cdot 1 = 4p = 4\Phi_5(g)$$

If $g=(1,r^2)$ then

$$\Phi_{(5,2)}(g) = \frac{|C_G(g)|}{|C_H(g)|} \varphi(g) = \frac{32m}{8} \cdot 1 = 4m = 4\Phi_5(g)$$

If
$$g=(y^2, I^*)=(x^m, I^*)$$
 and $g \in H$ then

$$\begin{aligned}
\Phi_{(l+1,2)}(g) = \frac{|C_G(g)|}{|C_H(g)|} \varphi(g) = \frac{32m}{8} \cdot 1 \\
= 4p = 4\Phi_5(g) \text{ (since } H \cap CL(g) = \{g\} \text{ and } \varphi(g) = 1)
\end{aligned}$$
If $g = (y^2, r^2) = (x^m, r^2)$ and $g \in H$ then

$$\begin{aligned}
\Phi_{(5,2)}(g) = \frac{|C_G(g)|}{|C_H(g)|} \varphi(g) = \frac{32m}{8} \cdot 1 = 4m = 4\Phi_5(g)
\end{aligned}$$
If $g \neq (x^m, I)$ and $g \in H$ i.e. $g = \{(y, I), (y, r^2)\}$ or $g = \{(y, r^2), (y^3, r^2)\}$ then
If $g = (y, I)$ then

$$\begin{aligned}
\Phi_{(5,2)}(g) = \frac{|C_G(g)|}{|C_H(g)|} (\varphi(g) + \varphi(g^{-1})) \\
= \frac{16}{8} \cdot (1 + 1) = 4 \quad (\text{since } H \cap CL(g) = \{g, g^{-1}\} \text{ and } \varphi(g) = \varphi(g^{-1}) = 1)
\end{aligned}$$
If $g = (y, r^2)$ then

 $\Phi_{(5,2)}(g) = \frac{|c_G(g)|}{|c_H(g)|} (\varphi(g) + \varphi(g^{-1}))$

$$= \frac{^{16}}{^8} \cdot (1 + 1) = 4 \quad (\text{since } H \cap CL(g) = \{g, g^{-1}\} \text{ and } \varphi(g) = \varphi(g^{-1}) = 1)$$

(since $H \cap CL(g) = \{(y, r^2), (y^3, r^2)\} \text{ and } \varphi(g) = \varphi(g^{-1}) = 1)$
otherwise $\Phi_{(5,2)}(g) = 0 \text{ since } H \cap CL(g) = \phi$

Case (III):

If H is a cyclic subgroup of $(Q_{2m} \times \{r\})$ then:

$$1-H = \langle (x,r) \rangle$$
 2- H = $\langle (y,r) \rangle$

and φ the principle character of H, then by using theorem (3.1)

$$\Phi_{j}(g) = \begin{cases} \frac{|C_{G}(g)|}{|C_{H}(g)|} \sum_{i=1}^{m} \varphi(h_{i}) & \text{if } h_{i} \in H \cap CL(g) \\ 0 & \text{if } H \cap CL(g) = \phi \end{cases}$$

 $1-H = <(x,r) > = \{(1,I),(1,r),(1,r^2),(x,r),...,(x^{2p-1},r),(x,r^2),...,(x^{2p-1},r^2)\}$ If g=(1,I) then

$$\Phi_{(j,2)}(g) = \frac{|C_G(g)|}{|C_H(g)|} \varphi(g) = \frac{32m}{|C_H(1,I)|} \cdot 1 = \frac{8.4m}{|C_H(1,I)|} \cdot 1$$
$$= \frac{8|C_{Q_{2m}}(1)|}{4|C_{g_{2m}}(1)|} \varphi(1) = 2 \cdot \Phi_j(1) \text{ since } H \cap CL(g) = \{(1,I),(1,r),(1,r^2)\}$$

If g=(1,r) then

$$\Phi_{(j,3)}(g) = \frac{|C_G(g)|}{|C_H(g)|} (\varphi(g) + \varphi(g^{-1})) = \frac{16.m}{|C_H(g)|} (1+1) = \frac{4.4m}{|C_H(g)|} \cdot 2$$
$$= \frac{4|C_{Q_{2m}}(1)|}{4|C_{}(1)|} \cdot 2 = 2 \cdot \Phi_j(q) \quad \text{since} H \cap CL(g) = \{((1,r),(1,r^2))\}$$

(i)If $g = (x^m, I); g \in H$ then

$$\begin{split} \Phi_{(j,3)}(g) &= \frac{|C_G(g)|}{|C_H(g)|} \varphi(g) = \frac{32p}{|C_H(g)|} \cdot 1 = \frac{8.4p}{|C_H(g)|} \cdot 1 \\ &= \frac{8|C_{Q2m}(x^m)|}{4|C_{}(x^p)|} \varphi(1) = 2\Phi_j(x^m) \quad (\text{since } H \cap CL(g) = \{g\} \text{and } \varphi(g) = 1) \end{split}$$

If $g = (x^m, r); g \in H$ then

$$\Phi_{(j,3)}(g) = \frac{|C_G(g)|}{|C_H(g)|} (\varphi(g) + \varphi(g^{-1})) = \frac{16m}{|C_H(g)|} (1 + 1) (\text{since} H \cap CL(g) = \{g, g^{-1}\} \text{ and } \varphi(g) = \varphi(g^{-1}) = 1)$$

$$= \frac{4|C_{Q2m}(q)|}{4|C_{}(q)|} \cdot 2 = 2\Phi_j(q)$$

(iii) If $g \neq (x^m, I), (x^m, r)$ and $g \in H$ then

$$\begin{split} \Phi_{(j,3)}(g) &= \frac{|C_G(g)|}{|C_H(g)|} \sum_{i=1}^m \varphi(h_i) = \frac{8m}{4|C_H(g)|} \cdot (1+1+1+1) \\ &= \frac{32m}{4|C_H(g)|} = \frac{8.4m}{4|C_H(g)|} \quad (\text{since} H \cap CL(g) = \{(x,r), (x^{2m-1}, r^2), (x, r^2), (x^{2m-1}, r) \} \text{and } \varphi(g) = \varphi(g^{-1}) = 1) \\ &= \frac{8|C_{Q2m}(q)|}{4|C_{}(q)|} = 2\Phi_j(q) \quad (\text{Since } g = (q,r), q \in Q_{2p}, q \neq x^p) \end{split}$$

(iv) If $g \notin H$ then

$$\Phi_{(j,3)}(g) = 0 = \Phi_j(q) \qquad (\text{ since } H \cap CL(g) = \phi)$$
2-If $H = \langle (y,r) \rangle = \{(1,I), (y,I), (y^2,I), (y^3,I), (1,r), (y,r), (y^2,r), (y^3,r), (1,r^2), (y,r^2), (y^2,r^2), (y^3,r^2)\}$
(i)If $g = (1,I)$ then

$$\Phi_{(l+1,2)}(g) = \frac{|C_G(g)|}{|C_H(g)|} \varphi(g) = \frac{32m}{16} \cdot 1 = 2m = 2\Phi_5(g)$$

 $\Phi_{(5,3)}(g) = \frac{|C_G(g)|}{|C_H(g)|} (\varphi(g) + \varphi(g^{-1}))$ If g=(1,r) then $=\frac{16p}{16}$. (1 + 1)=2m=2 $\Phi_5(g)$ If $g=(y^2,I)=(x^m,I)$ and $g\in H$ then $\Phi_{(5,3)}(g) = \frac{|C_G(g)|}{|C_H(g)|} \varphi(g) = \frac{32m}{16} \cdot 1$ =2.p=2 $\Phi_5(g)$ (since H \cap CL(g)={g} and φ (g)=1) If $g = (y^2, r) = (x^m, r)$ or $g = (y^2, r^2) = (x^m, r^2)$ and $g \in H$ then $\Phi_{(5,3)}(g) = \frac{|\mathcal{C}_{G}(g)|}{|\mathcal{C}_{H}(g)|} (\varphi(g) + \varphi(g^{-1}))$ $=\frac{16m}{16}$. (1 + 1) = 2m=2\Phi_5(g) If $g \neq (x^m, I)$ and $g \in H$ i.e. $g = \{(y, I), (y, r)\}$ or $g = \{(y^3, I), (y^3, r), (y, r^2), (y^3, r^2)\}$ then (ii) If g = (y,I) then $\Phi_{(5,3)}(g) = \frac{|C_G(g)|}{|C_H(g)|} (\varphi(g) + \varphi(g^{-1}))$ $=\frac{^{16}}{^{16}} \cdot (1+1) = 2 \text{ (since H \cap CL(g) = {g,g^{-1}} and \varphi(g) = \varphi(g^{-1}) = 1)}$ If g = (y,r) then $\Phi_{(5,3)}(g) = \frac{|C_G(g)|}{|C_H(g)|} \sum_{i=1}^p \varphi(h_i) = \frac{8}{16} \cdot (1+1+1+1)$ $=\frac{32}{16}=2$

(since H∩CL(g)={(y,r),(y³,r²),(y,r²),(y³,r)} and
$$\varphi$$
 (g)= φ (g⁻¹)=1)

otherwise $\Phi_{(5,3)}(g)=0$ since $H\cap CL(g)=\phi$

Case (IV):

If H is a cyclic subgroup of $(Q_{2m} \times \{s\})$ then

$$1-H = \langle (x,s) \rangle$$
, $2-H = \langle (y,s) \rangle$

and φ the principle character of H, then by using theorem (3.1)

$$\Phi_{j}(\mathbf{g}) = \begin{cases} \frac{|C_{G}(\mathbf{g})|}{|C_{H}(\mathbf{g})|} \sum_{i=1}^{m} \varphi(h_{i}) & \text{if } h_{i} \in H \cap CL(\mathbf{g}) \\ 0 & \text{if } H \cap CL(\mathbf{g}) = \phi \end{cases}$$

1- $H = \langle (x,s) \rangle$

(i) If
$$g = (1,I)$$
 then

$$\Phi_{(j,4)}(g) = \frac{|C_G(g)|}{|C_H(g)|} \varphi(g) = \frac{32m}{|C_H(1,I)|} \cdot 1 = \frac{8.4m}{|C_H(1,I)|} \cdot 1 = \frac{8|C_{Q2m}(1)|}{2|C_{}(1)|} \cdot 1 = 4\Phi_j(1) \quad \text{(since } H \cap CL(g) = \{(1,I)\} \text{)}$$

If g = (1,sr) then

$$\Phi_{(j,4)}(g) = \frac{|C_G(g)|}{|C_H(g)|} \varphi(g) = \frac{16m}{|C_H(1,s)|} \cdot 1 = \frac{4.4m}{|C_H(1,s)|} \cdot 1$$
$$= \frac{4|C_{Q2m}(1)|}{2|C_{}(1)|} \cdot 1 = 2\Phi_j(1) \text{ since} H \cap CL(g) = \{(1,s)\}$$
(ii) g= (x^p, I) ; g \in H

 $\Phi_{(\mathbf{j},4)}(\mathbf{g}) = \frac{|C_G(\mathbf{g})|}{|C_H(\mathbf{g})|} \varphi(\mathbf{g}) = \frac{32m}{|C_H(\mathbf{g})|} \cdot 1 = \frac{8.4m}{|C_H(\mathbf{g})|} \cdot 1 = \frac{8|C_{Q_{2p}}(x^m)|}{|C_H(\mathbf{g})|} \varphi(1) = 4\Phi_{\mathbf{j}}(x^m)$

(iii) If $g = (x^m, sr)$ then

 $\Phi_{(\mathbf{j},4)}(\mathbf{g}) = \frac{|C_G(\mathbf{g})|}{|C_H(\mathbf{g})|} \varphi(\mathbf{g}) = \frac{16m}{|C_H(\mathbf{g})|} \cdot 1 = \frac{4.4m}{|C_H(\mathbf{g})|} \cdot 1 = \frac{4|C_{Q_{2p}}(x^m)|}{2|C_{<x>}(x^m)|} \varphi(1) = 2\Phi_{\mathbf{j}}(x^m)$ (iv) If $g \neq (x^m, I), (x^m, sr)$ and $g \in H$ If $g \neq (x^m, I)$ and $g \in (Q_{2p} \times \{I\})$ then $\Phi_{(j,4)}(g) = \frac{|C_G(g)|}{|C_H(g)|} (\varphi(g) + \varphi(g^{-1}))$ $=\frac{16m}{|C_H(g)|}(1+1) \quad (\text{since } H \cap CL(g) = \{g, g^{-1}\} \text{ and } \varphi(g) = \varphi(g^{-1}) = 1)$ $=\frac{4.4m}{|C_H(g)|} \cdot 2 = \frac{4|C_{Q_{2m}}(q)|}{2|C_{<x>}(q)|} 2 = 4\Phi_j(q) \text{Since } g=(q,I), q \in Q_{2p}, q \neq x^m \text{ If } g \neq (x^p, sr) \text{ and } g \in (Q_{2m} \times \{sr\})$ then $\Phi_{(j,4)}(g) = \frac{|C_G(g)|}{|C_H(g)|}, \varphi(g) = \frac{8p}{|C_H(g)|}, (1+1) = \frac{2.4m}{|C_H(g)|}, 2 = \frac{2|C_{Q_{2m}}(q)|}{2|C_{<x>}(q)|}, 2 = 2\Phi_j(q) \text{ Since } g=(q,s), q \in Q_{2m}, q \neq x^m \text{ (since } H \cap CL(g) = \{g,g^{-1}\} \text{ and } \varphi(g) = \varphi(g^{-1}) = 1)$ (v) If $g \notin H$ then $\Phi_{(i,4)}(g)=0 = \Phi_i(q)$ since $H \cap CL(g) = \phi$ 2-If H=<(y,s)>={(1,I),(y,I),(y^2,I),(y^3,I),(1,s),(y,s),(y^2,s),(y^3,s)} (i) If g = (1,I) then $\Phi_{(5,4)}(g) = \frac{|C_G(g)|}{|C_H(g)|} \varphi(g) = \frac{32m}{8} \cdot 1 = 4 \cdot m = 4 \Phi_5(g)$ If g = (1,s) then $\Phi_{(5,4)}(g) = \frac{|C_G(g)|}{|C_H(g)|} \cdot \varphi(g) = \frac{16m}{8} \cdot 1 = 4p = \Phi_5(g)$ (ii) If $g = (y^2, I) = (x^m, I)$ and $g \in H$ $\Phi_{(5,4)}(g) = \frac{|C_G(g)|}{|C_H(g)|} \varphi(g) = \frac{32p}{8} \cdot 1 = 4 \cdot m = 4\Phi_5(g) \text{ since } H \cap CL(g) = \{g\} \text{ and } \varphi(g) = 1$ If $g=(y^2,s)$ and $g \in H$ $\Phi_{(5,4)}(g) = \frac{|C_G(g)|}{|C_H(g)|} \varphi(g) = \frac{16p}{8} \cdot 1 = 4p = \Phi_5(g) \text{ since } H \cap CL(g) = \{g\} \text{ and } \varphi(g) = 1$ (iii) If $g \neq (x^{p}, I)$ and $g \in H$ i.e. $g = \{(y, I), (y, s)\}$ or $g = \{(y^{3}, I), (y^{3}, s)\}$ If g=(y,I) then $\Phi_{(5,4)}(g) = \frac{|C_G(g)|}{|C_H(g)|} (\varphi(g) + \varphi(g^{-1})) = \frac{16}{8} (1+1) = 4$ since $H \cap CL(g) = \{g, g^{-1}\}$ and $\varphi(g) = \varphi(g^{-1}) = 1$

(iv) If g = (y,s) then $\Phi_{(5,4)}(g) = \frac{|C_G(g)|}{|C_H(g)|} (\varphi(g) + \varphi(g^{-1})) = \frac{8}{|C_H(g)|} \cdot (1+1) = \frac{8}{8} \cdot 2 = 2$ since $H \cap CL(g) = \{g, g^{-1}\}$ and $\varphi(g) = \varphi(g^{-1}) = 1$

otherwise $\Phi_{(5,4)}(g)=0$ since $H \cap CL(g) = \phi$

Case (V):

If H is a cyclic subgroup of $(Q_{2m} \times \{s\})$ then

1- $H = \langle (x,sr) \rangle$, 2- $H = \langle (y,sr) \rangle$

and φ the principle character of H, then by using theorem (3.1)

$$\Phi_{j}(\mathbf{g}) = \begin{cases} \frac{|C_{G}(\mathbf{g})|}{|C_{H}(\mathbf{g})|} \sum_{i=1}^{m} \varphi(h_{i}) & \text{if } h_{i} \in H \cap CL(\mathbf{g}) \\ 0 & \text{if } H \cap CL(\mathbf{g}) = \phi \end{cases}$$

1- $H = \langle (x, sr) \rangle$

(i) If g = (1,I) then
$$\begin{split} \Phi_{(j,5)}(g) &= \frac{|C_G(g)|}{|C_H(g)|} \ \varphi(g) = \frac{32m}{|C_H(1,l)|}, 1 = \frac{8.4m}{|C_H(1,l)|}, 1 = \frac{8.4m}{|C_H(1,l)|}, 1 = \frac{8|C_{Q2m}(1)|}{|C_H(1)|}, 1 = 4\Phi_j(1) \quad \text{(since } H \cap CL(g) = \{(1,I)\} \text{)} \end{split}$$
If g = (1,s) then $\Phi_{(j,5)}(g) = \frac{|C_G(g)|}{|C_H(g)|} \varphi(g) = \frac{16m}{|C_H(1,s)|} \cdot 1 = \frac{4.4m}{|C_H(1,s)|} \cdot 1$ $=\frac{4|C_{Q2m}(1)|}{2|C_{Q2m}(1)|} \cdot 1 = 2\Phi_{j}(1) \text{ since } H \cap CL(g) = \{(1,s)\}$ (ii) $g = (x^m, I)$; $g \in H$ $\Phi_{(\mathbf{j},5)}(\mathbf{g}) = \frac{|C_G(\mathbf{g})|}{|C_H(\mathbf{g})|} \varphi(\mathbf{g}) = \frac{32m}{|C_H(\mathbf{g})|} \cdot 1 = \frac{8.4m}{|C_H(\mathbf{g})|} \cdot 1 = \frac{8|C_{Q_{2p}}(x^m)|}{2|C_{<x}>(x^m)|} \varphi(1) = 4\Phi_{\mathbf{j}}(\mathbf{x}^m)$ (iii) If $g = (x^m, s)$ then $\Phi_{(\mathbf{j},5)}(\mathbf{g}) = \frac{|C_G(\mathbf{g})|}{|C_H(\mathbf{g})|} \varphi(\mathbf{g}) = \frac{16m}{|C_H(\mathbf{g})|} \cdot 1 = \frac{4.4m}{|C_H(\mathbf{g})|} \cdot 1 = \frac{4|C_{Q_{2m}}(x^m)|}{2|C_{<x>}(x^m)|} \varphi(1) = 2\Phi_{\mathbf{j}}(x^m)$ (iv) If $g \neq (x^m, I), (x^m, s)$ and $g \in H$ If $g \neq (x^m, I)$ and $g \in (Q_{2m} \times \{I\})$ then $\Phi_{(j,5)}(g) = \frac{|\mathcal{C}_{\mathcal{G}}(g)|}{|\mathcal{C}_{H}(g)|} (\varphi(g) + \varphi(g^{-1}))$ $=\frac{16p}{|G_{H}(g)|}(1+1) \quad (\text{since } H \cap CL(g) = \{g, g^{-1}\} \text{ and } \varphi(g) = \varphi(g^{-1}) = 1)$ $=\frac{4.4m}{|C_H(g)|} \cdot 2 = \frac{4|C_{Q_{2m}}(q)|}{2|C_{<x>}(q)|} 2 = 4\Phi_j(q) \text{Since } g=(q,I), q \in Q_{2p}, q \neq x^m \text{ If } g \neq (x^p, sr) \text{ and } g \in (Q_{2p} \times \{sr\})$ $\Phi_{(j,4)}(g) = \frac{|C_G(g)|}{|C_H(g)|}, \varphi(g) = \frac{8m}{|C_H(g)|}, (1+1) = \frac{2.4m}{|C_H(g)|} = 2 = \frac{2|C_{Q_2p}(q)|}{2|C_{<x>}(q)|}, 2 = 2\Phi_j(q) \text{ Since } g=(q,s), q \in Q_{2m}, q \neq x^m \text{ (since } H \cap CL(g) = \{g, g^{-1}\} \text{ and } \varphi(g) = \varphi(g^{-1}) = 1)$ (v) If $g \notin H$ then $\Phi_{(i,5)}(g) = 0 = \Phi_i(q)$ since $H \cap CL(g) = \phi$ 2-If H= $\langle (y,s) \rangle = \{(1,I), (y,I), (y^2,I), (y^3,I), (1,s), (y,s), (y^2,s), (y^3,s)\}$ (i) If g = (1,I) then $\Phi_{(5,5)}(g) = \frac{|C_G(g)|}{|C_H(g)|} \varphi(g) = \frac{32m}{8} \cdot 1 = 4 \cdot p = 4 \Phi_5(g)$ If g = (1,s) then $\Phi_{(5,5)}(g) = \frac{|C_G(g)|}{|C_H(g)|} \cdot \varphi(g) = \frac{16m}{8} \cdot 1 = 4p = \Phi_5(g)$ (ii) If $g = (y^2, I) = (x^m, I)$ and $g \in H$ $\Phi_{(5,5)}(g) = \frac{|C_G(g)|}{|C_H(g)|} \varphi(g) = \frac{32m}{8}. 1 = 4.m = 4\Phi_5(g) \text{ since } H \cap CL(g) = \{g\} \text{ and } \varphi(g) = 1$ If $g=(y^2,s)$ and $g \in H$ $\Phi_{(5,5)}(g) = \frac{|C_G(g)|}{|C_{I}(g)|} \varphi(g) = \frac{16m}{8}. \ 1 = 4p = \Phi_5(g) \text{ since } H \cap CL(g) = \{g\} \text{ and } \varphi(g) = 1$ (iii) If $g \neq (x^m, I)$ and $g \in H$ i.e. $g = \{(y, I), (y, s)\}$ or $g = \{(y^3, I), (y^3, s)\}$ If g=(y,I) then

$$\Phi_{(5,4)}(g) = \frac{|C_G(g)|}{|C_H(g)|} (\varphi(g) + \varphi(g^{-1})) = \frac{16}{8} (1+1) = 4$$

since H \cap CL(g) = {g,g^{-1}} and \varphi(g) = \varphi(g^{-1}) = 1

(iv)If g = (y,s) then

$$\Phi_{(5,5)}(g) = \frac{|C_G(g)|}{|C_H(g)|} (\varphi(g) + \varphi(g^{-1})) = \frac{8}{|C_H(g)|} \cdot (1+1) = \frac{8}{8} \cdot 2 = 2$$

since $H \cap CL(g) = \{g, g^{-1}\}$ and $\varphi(g) = \varphi(g^{-1}) = 1$

otherwise $\Phi_{(5,5)}(g)=0$ since $H \cap CL(g) = \phi$

Example(3.2):

To find Artin's characters table of the group $Q_{150} \times D_4$, we must find Artin's characters table of the group Q_{150} from (2.2.8) we get: $Ar(Q_{150}) = Ar(Q_{2.3.5}^2)$

Γ-classes	[1]	[x ⁵⁰]	[x ³⁰]	[x ¹⁰]	[x ⁶]	[x ²]	[x ⁷⁵]	[x ²⁵]	[x ¹⁵]	[x ⁵]	[x ³]	[x]	[y]
$ CL_{\alpha} $	1	2	2	2	2	2	1	2	2	2	2	2	150
$ C_{Q_{150}}(CL_{\alpha}) $	300	150	150	150	150	150	300	150	150	150	150	150	2
Φ_1	300	0	0	0	0	0	0	0	0	0	0	0	0
Φ_2	100	100	0	0	0	0	0	0	0	0	0	0	0
Φ_3	60	0	60	0	0	0	0	0	0	0	0	0	0
Φ_4	20	20	20	20	0	0	0	0	0	0	0	0	0
Φ_5	12	0	12	0	12	0	0	0	0	0	0	0	0
Φ_6	4	4	4	4	4	4	0	0	0	0	0	0	0
Φ_7	150	0	0	0	0	0	150	0	0	0	0	0	0
Φ ₈	50	50	0	0	0	0	50	50	0	0	0	0	0
Φ ₉	30	0	30	0	0	0	30	0	30	0	0	0	0
Φ_{10}	10	10	10	10	0	0	10	10	10	10	0	0	0
Φ_{11}	6	0	6	0	6	0	6	0	6	0	6	0	0
Φ ₁₂	2	2	2	2	2	2	2	2	2	2	2	2	0
Φ_{13}	75	0	0	0	0	0	75	0	0	0	0	0	1

Table(6)

and we must find Artin's characters table of the group D_4 from (2.2.9) we get:

 $Ar(D_4) =$

Γ-classes	[I]	[r ²]	[r]	[s]	[sr]
$ CL_{\alpha} $	1	1	2	2	2
$ C_{D_3}(CL_{\alpha}) $	8	8	4	4	4
Φ_1	8	0	0	0	0
Φ2	4	4	0	0	0
Φ_3	2	2	2	0	0
Φ_4	4	0	0	0	2
Φ_5	4	0	0	2	0

Table(7)

Then from theorem (3.1) we get

 $Ar(Q_{150} \times D_4) =$

Γ-classes	$[1,I^*]$	$[x^{50},I^*]$	$[x^{30},I^*]$	$[x^{10},I^*]$	$[x^{6},I^{*}]$	$[x^2, I^*]$	$[x^{75},I^*]$	$[x^{25},I^*]$	$[x^{15},I^*]$	$[x^{5},I^{*}]$	$[x^{3},I^{*}]$	$[x,I^*]$	[y,I [*]]	$[1,r^2]$	$[x^{50},r^2]$	$[x^{30},r^2]$	$[x^{10}, r^2]$	$[x^6, r^2]$	$[x^2, r^2]$	$[x^{75},r^2]$	$[x^{25},r^2]$
$ CL_{\alpha} $	1	2	2	2	2	2	1	2	2	2	2	2	150	2	2	2	2	2	2	1	2
$ C_{Q_{150} \times D_3}(CL_{\alpha}) $	2400	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	16	1200	1200	1200	1200	1200	1200	2400	1200
Φ _(1,1)	2400	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Φ _(2,1)	1200	1200	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ф _(3,1)	600	600	600	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ф _(4,1)	1200	0	0	0	600	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Φ _(5,1)	1200	0	0	600	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Φ _(6,1)	800	0	0	0	0	800	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Φ _(7,1)	400	400	0	0	0	400	400	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Φ _(8,1)	200	200	200	0	0	200	200	200	0	0	0	0	0	0	0	0	0	0	0	0	0
Φ _(9,1)	400	0	0	0	200	400	0	0	0	200	0	0	0	0	0	0	0	0	0	0	0
Ф(10,1)	400	0	0	200	0	400	0	0	200	0	0	0	0	0	0	0	0	0	0	0	0
Φ _(11,1)	480	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	480
Φ _(12,1)	240	240	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	024
Φ _(13,1)	120	120	120	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	120
	1	I	I			1	I	I		ablo(8)	l.	1	I	I	1	I	I	I	1	1	L

Table(8)

k ³ ·r ¹ k ³ ·r ² <t< th=""><th> Tugust</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	 Tugust																	
ind ind <td>$[x^{15},r^2]$</td> <td>$[x^5, r^2]$</td> <td>$[x^3, r^2]$</td> <td>[x,r²]</td> <td>[y,r²]</td> <td>[1,r]</td> <td>[x⁵⁰,r]</td> <td>[x³⁰,r]</td> <td>[x¹⁰,r]</td> <td>[x⁶,r]</td> <td>[x²,r]</td> <td>[x⁷⁵,r]</td> <td>[x²⁵,r]</td> <td>[x¹⁵,r]</td> <td>[x⁵,r]</td> <td>[x³,r]</td> <td>[x,r]</td> <td>[y,r]</td>	$[x^{15},r^2]$	$[x^5, r^2]$	$[x^3, r^2]$	[x,r ²]	[y,r ²]	[1,r]	[x ⁵⁰ ,r]	[x ³⁰ ,r]	[x ¹⁰ ,r]	[x ⁶ ,r]	[x ² ,r]	[x ⁷⁵ ,r]	[x ²⁵ ,r]	[x ¹⁵ ,r]	[x ⁵ ,r]	[x ³ ,r]	[x,r]	[y,r]
Image Image <th< td=""><td>2</td><td>2</td><td>2</td><td>2</td><td>150</td><td>3</td><td>3</td><td>3</td><td>3</td><td>3</td><td>3</td><td>3</td><td>3</td><td>3</td><td>3</td><td>3</td><td>3</td><td>150</td></th<>	2	2	2	2	150	3	3	3	3	3	3	3	3	3	3	3	3	150
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1200	1200	1200	1200	16	800	800	800	800	800	800	800	800	800	800	800	800	16
120 120 0 <td>0</td>	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	240	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	120	120	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	240	0	0	0	120	0	0	0	0	0	0	0	0	0	0	0	0	0
Image: Normal base of the second state of t	240	0	0	120	0	0	0	0	0	0	0	0	48	0	0	0	0	0
Image: Normal base of the second se	160	0	0	0	0	160	0	0	0	0	0	0	24	24	0	0	0	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	80	80	0	0	0	80	0	0	0	0	0	0	12	12	12	0	0	0
48 48 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0 16 24 24 24 0 0 0 0 0 0 0 16 0 0 0 16 24 24 24 0 0 0 0 0 0 0 8 0 0 0 8 48 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 8 48 0	80	0	0	40	0	0	0	0	0	0	0	0	24	0	0	0	12	0
24 24 24 24 0 <td>96</td> <td>0</td> <td>24</td> <td>0</td> <td>0</td> <td>12</td> <td>0</td> <td>0</td>	96	0	0	0	0	0	0	0	0	0	0	0	24	0	0	12	0	0
48 0 0 0 24 0 0 0 0 0 0 4 0 0 0 4 32 0 0 0 32 0 0 32 0 0 0 0 0 8 0 <td>48</td> <td>48</td> <td>0</td> <td>16</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>16</td>	48	48	0	0	0	0	0	0	0	0	0	0	16	0	0	0	0	16
32 0 0 0 32 0	24	24	24	0	0	0	0	0	0	0	0	0	8	0	0	0	0	8
16 16 0	48	0	0	0	24	0	0	0	0	0	0	0	4	0	0	0	0	4
	32	0	0	0	0	32	0	0	0	0	0	0	8	0	0	0	0	0
8 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	16	16	0	0	0	0	0	0	0	0	0	0	8	0	0	0	0	0
	8	8	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

		16	16	0		0	0	0	0	0		0	0	0	C)	0	0	0	0	0		0		
	L																								
[1,s]	[x ⁵⁰ ,s]	[x ³⁰ ,s]	[x ¹⁰ ,s]	[x ⁶ ,s]	[x ² ,s]	[x ⁷⁵ ,s]	[x ²⁵ ,s	[x ¹⁵ ,s]	[x ⁵ ,s]	[x ³ ,s]	[x,s]	[y,s]	[1,s]	[x ⁵⁰ ,s]	[x ³⁰ ,s]	[x ¹⁰ ,s]	[x ⁶ ,s]	[x ² ,s]	[x ⁷⁵ ,s]	[x ²⁵ ,s]	[x ¹⁵ ,s]	[x ⁵ ,s]	[x ³ ,s]	[x,s]	[y,s]
3	3	3	3	3	3	3	3	3	3	3	3	15 0	3	3	3	3	3	3	3	3	3	3	3	3	15 0
80 0	800	800	800	800	800	800	800	800	800	800	80 0	16	80 0	800	800	800	800	800	800	800	800	800	800	80 0	16
240	0	0	0	0	0	0	0	240	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
120	120	0	0	0	0	0	0	120	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
24 0	0	0	0	120	0	0	0	240	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
24 0	0	0	120	0	0	0	0	240	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16 0	0	0	0	0	160	0	0	160	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
80	80	0	0	0	80	0	0	80	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
80	0	0	40	0	0	0	0	80	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
96	0	0	0	0	0	0	0	96	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
48	48	0	0	0	0	0	0	48	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
24	24	24	0	0	0	0	0	24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
48	0	0	0	24	0	0	0	48	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
32	0	0	0	0	32	0	0	32	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16	16	0	0	0	0	0	0	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Φ _(1,1)	240	0	0	0	120	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Φ _(2,2)	240	0	0	120	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Φ _(3,2)	160	0	0	0	0	160	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Φ _(4,2)	80	80	0	0	80	80	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Φ _(5,2)	40	40	40	0	0	40	40	40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Φ _(6,2)	80	0	0	0	40	80	0	0	0	40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Φ _(7,2)	80	0	0	40	0	80	0	0	40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Φ _(8,2)	96	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Φ _(9,2)	48	48	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Φ _(10,2)	24	24	24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Φ _(11,2)	48	0	0	0	24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Φ _(12,2)	48	0	0	24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Φ _(13,2)	32	0	0	0	0	32	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

1200	0	0	0	0	0	0	0	0	0	0	0	0
600	600	0	0	0	0	0	0	0	0	0	0	0
300	300	300	0	0	0	0	0	0	0	0	0	0
600	0	0	0	300	0	0	0	0	0	0	0	0
600	0	0	300	0	0	0	0	0	0	0	0	0
400	0	0	0	0	400	0	0	0	0	0	0	0
200	200	0	0	0	200	200	0	0	0	0	0	0
100	100	100	0	0	100	100	100	0	0	0	0	0
200	0	0	0	100	200	0	0	0	100	0	0	0
1200	0	0	0	0	0	0	0	0	0	0	0	0
600	600	0	0	0	0	0	0	0	0	0	0	0
300	300	300	0	0	0	0	0	0	0	0	0	0
600	0	0	0	300	0	0	0	0	0	0	0	0

Ф _(1,3)	16	16	0	0	0	16	16	0	0	0	0	0	0
$\Phi_{(2,3)}$	8	8	8	0	0	8	8	8	0	0	0	0	0
Φ _(3,3)	16	0	0	8	16	0	0	8	0	0	0	0	0
Φ _(4,3)	16	0	0	8	0	16	0	0	16	0	0	0	0
Φ _(5,3)	1200	0	0	0	0	0	0	0	0	0	0	0	0
Ф _(6,3)	600	600	0	0	0	0	0	0	0	0	0	0	0
Φ _(7,3)	300	300	300	0	0	0	0	0	0	0	0	0	0
Φ _(8,3)	600	0	0	0	300	0	0	0	0	0	0	0	0
Ф _(9,3)	600	0	0	300	0	0	0	0	0	0	0	0	0
Φ(10,3)	400	0	0	0	0	400	0	0	0	0	0	0	0
Φ _(11,3)	200	200	0	0	0	200	200	0	0	0	0	0	0
Ф _(12,3)	100	100	100	0	0	100	100	100	0	0	0	0	0
Ф _(13,3)	200	0	0	0	100	200	0	0	0	100	0	0	0

0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0

Φ _(1,4)	200	0	0	100	0	200	0	0	100	0	0	0	0
Φ _(2,4)	240	0	0	0	0	0	0	0	0	0	0	0	0
Φ _(3,4)	120	120	0	0	0	0	0	0	0	0	0	0	0
Φ _(4,4)	60	60	60	0	0	0	0	0	0	0	0	0	0
Φ _(5,4)	120	0	0	0	60	0	0	0	0	0	0	0	0
Φ _(6,4)	120	0	0	60	0	0	0	0	0	0	0	0	0
Φ _(7,4)	80	0	0	0	0	80	0	0	0	0	0	0	0
Φ _(8,4)	40	40	0	0	0	40	40	0	0	0	0	0	0
Φ _(9,4)	20	20	20	0	0	20	20	20	0	0	0	0	0
Φ _(10,4)	40	0	0	0	20	40	0	0	0	0	0	0	0
Φ _(11,4)	40	0	0	20	0	40	0	0	20	0	0	0	0
Φ _(12,4)	48	0	0	0	0	0	0	0	0	0	0	0	0
Φ _(13,4)	24	24	0	0	0	0	0	0	0	0	0	0	

0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0

Φ _(1,5)	12	12	12	0	0	0	0	0	0	0	0	0	0
Φ _(2,5)	24	0	0	0	12	0	0	0	0	0	0	0	0
Φ _(3,5)	24	0	0	12	0	0	0	0	0	0	0	0	0
Φ _(4,5)	16	0	0	0	0	16	0	0	0	0	0	0	0
Φ _(5,5)	8	8	0	0	0	8	8	0	0	0	0	0	0
Φ _(6,5)	4	4	4	0	0	4	4	4	0	0	0	0	0
Φ _(7,5)	8	0	0	0	4	8	0	0	4	0	0	0	0
Φ _(8,5)	8	0	0	4	0	8	0	0	0	0	0	0	0
Φ _(9,5)	600	0	0	0	0	0	0	0	0	0	0	0	0
Φ _(10,5)	300	300	0	0	0	0	0	0	0	0	0	0	0
Φ _(11,5)	150	150	150	0	0	0	0	0	0	0	0	0	0
Φ _(12,5)	300	0	0	0	150	0	0	0	0	0	0	0	0
Φ _(13,5)	300	0	0	150	0	0	0	0	0	0	0	0	0

0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0

References

[1] C. Curits & I. Reiner, "Methods Of Representation Theory with Application to Finite Groups And Order", John Wily & Sons, Newyork, 1981.

[2] G. D. James & M. Liebeck, "Representations and groups", 2nd edition, Cambridge University Press, 2001.

[3] W. Lederman, "Introduction to Group Characters", Cambridge University, 1977.

[4] M. J. Hall, "The Theory of Group", Macmillan, Newyork, 1959.

[5] A. S. Abid, "Artin's Characters Table Of Dihedral Group for Odd Number", M.Sc. thesis, University of Kufa, 2006.

[6] A. H. Abdul-Munem, "On Artin Cokernel Of The Quaternion group Q_{2m} when m is an odd number", M. Sc. thesis, University of Kufa, 2008.