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1. Introduction

In [2,3], W.A. Dudek and X. Zhang were introduced an algebraic model of BCC-algebras, i.e., implicational logic. Many
authors have tried to construct some generalizations of this and similar algebras. One such an algebraic system have the same
partial order as BCC-algebras and BCK-algebras but has no minimal element. Such obtained system is called a BZ-algebra [6,7] or
a weak BCC-algebra [8]. From the mathematical point of view the last name is more corrected but more popular is the first
([1,4]). All these algebras have one distinguished element and satisfy some common identities playing a crucial role in these
algebras and, in fact, are generalization or a special case of weak BCC-algebras. So, results obtained for weak BCC-algebras are in
some sense fundamental for these algebras, especially for BCC/BCH/BCI/BCK-algebras. In this paper is introduction to the
general theory of BZ-algebra. We give the notion of BZ-algebra, quotient BZ-algebra and investigate elementary and fundamental
properties.

2. BZ-algebras

In this section, we do define some familiar concepts as BZ-algebras, both for illustration and for review of the concept. First, we
give a few definitions and some notation.
Definition 2.1. An algebra (X; %, 0) with a binary operation = and a nullary operation 0. Then X is called BZ-algebra if it satisfies
forallx,y,z€ X:
(BZ-1) ((x * 2) * (y * 2)) * (x x ¥) = 0;
(BZ-2) x = 0

(BZ-3)x x y = 0andy = x = Oimpliesthatx = y.

x,

First, give example of BZ-algebra.
Examples 2.2. Let = be defined on an abelian group G by letting x+y = X"y, where x, y in G, with e is unity element of G. Then
(G; -, e) is a BZ-algebra.
Examples 2.3. Let X = {0, 1} and let = be defined by:

* 0 1
0 0 1
1 1 0

Then (G; *, 0) is a BZ-algebra.

Theorem 2.3. Let (X; *, 0) be a BZ-algebra if and only if it satisfies the following conditions: for all x, y, z € X,
WM@x*xy)*@*2)*@xx*z)=0;

(@ (x*x@xxy)*xy=0;

(3 x *xx =0;

4 xxy=0andy * x = 0impliesthatx = y.

Proof. Assume that (X; =, 0) is a BZ-algebra. From definition of BZ-algebra, (1) and (4) holds. Then we see that
(x*x@xy)*y=(x*0)*(x*y)**0) =0and

x*x = (x*x)*x0 = ((x*0)* (x*x0)) *(0=*0) = 0,s0(2)and (3) holds.
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Conversely, we need to show BZ-2. By (1), (2) and (3), we see that

((x * 0)*xx)*0 = ((x*O)*x)*(O*((O*x)*x))
= ((x*0)*x)* ((x*x)* ((x*0)*x)) = 0. And since

((x * 0) *x x) *0 = 0. From (4), it follows that (x * 0) * x = 0and
x* (0 xx) =x % ((x *xx) » x)=0.Therefore x * 0 = x, proving our theorem. m
Definition 2.4. Define a binary relation < on BZ-algebra X by lettingx < y ifandonlyifx » y = 0.
Proposition 2.5. If (X; %, 0) is a BZ-algebra, then (X; <) is a partially order set. Proposition 2.6. If (X; *, 0) be a BZ-algebra and
0 <x,thenx = 0, for any x € X. Moreover, 0 is called a minimal element in X.
Proof. Let x <0, then 0 * x = 0. By BZ-2, x * 0 = X, and thus x = 0.

It is easy to show that the following properties are true for a BZ-algebra.
Theorem 2.7. Let (X; *, 0) be a BZ-algebra if and only if it satisfies the following conditions: for all x, y, z € X,
D x*xy)*x @ *2) < (x=*2);
Q) ((x xy) *y) < x;
(3)x < yifandonlyifx * y = 0.
Proposition 2.8. Let X, y, z be any element in a BZ-algebra X. Then
1) x < yimplies z x x < z * y.
2Q)x < yimplies y x z < x * z.

Proposition 2.9. Let X, y, z be any element in a BZ-algebra X. Then

xx (y*z) =y* (x*2).

Proof. Since Theorem (2.7(2)), (X * z) * z < x, and by Proposition (2.8(2)), we getthatx * (y * z) < ((x * z) * z) * (y * z).
Puttingx = yandy = x * z in Theorem (2.7(1)), it follows that ((x * z) * z) * (y * z) < y * (x * z). By the transitivity
of < givesx * (y *x z) <y * (x * z). And we replacing x by yand y by x, we obtainy * (x * z) < x * (y * z). Bythe
anti-symmetry of <, thus

X * (y *x z) = y * (x * z) and finishing the proof.

Corollary 2.10. Let x, y, z be any element in a BZ-algebra X. Then

Uy *z < xifandonlyifx *x z < y.

(A z+*x)* (z*xy) Sxx*y.

Proposition 2.11. Let X, y, z be any element in a BZ-algebra X. Then

Dx*y)xy) xy =x=*y.

Q& *y)* 0=(x*0)* (y * 0).

Proof.

(1) From Theorem (2.3(2)) and Theorem (2.7(1)),

(x*y) *y) *y) » (x*y) < x* ((x*y)*y)=0.Thus

(x*y)*y) *y) * x*y)=0.Since(x xy) * (x*y) *y) *y) = (x*y) *y) * (x*y) *y)=0.S0, by
BZ-3,x xy) *y = X xy.

(2) Since

(x*0)*(y*0)

G 0) + (y * (e xy) * (x*y)))
(e 0) + (Gery) * (y+ (x*y)))
G+ 0) * (e y) = (x+ (v +)))

(x*y) * ((x*0) * (x+0))
= (x*y) = 0. The proof is complete.

In this paper we will denote N for the set of all nonnegative integers, i.e.,

0,1, 2, ..., and N~ for the set of all natural numbers, i.e., 1, 2, 3, ..., and we will also use the following notation in brevity:
Y * (x (y * (¥ *X)))

YrXx=Xy" * x = , Where X, y are any elements in a BZ-algebra and n € N+,

n-times
Proposition 2.12. Let x, y be any element in a BZ-algebra X. Then
D) ((y * x) *» x)" * x = y* = x, foranyn € N.

2)(x™ x0) * 0=(x = 0)" » 0, foranyn € N.

Proof. Let X be a BZ-algebraand x, y € Xandn, m € N.

(1) Proceed by induction on n and defined the statement P(n),

(v * x) x )" +x = y" *x.
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We see that P(0) istrue, ((y *x) *x)? *x = x = y° * x. Assume that P(k) is true for some arbitrary k > 0, that is ((y *

x) * x)k x x = y* x x. Since
((y*x)*x)k+1 *x = ((y*x)*x)*(((y*x)*x)k *x)

= (*x) xx) * (* *x)
yk * (((y * X) * x)* x)

= Y% (y * )

= yk+l i
This show that P(k + 1) is true and by the principle of mathematical induction, P(n) is true for each n € N+,
(2) Since (x™ * 0) * 0=(x * (x"—1 * 0))* 0

=@ *0)* ((x" =1 % 0)* 0)

= (x * 0)=* ((x x (x"72 % 0)) 0)

= (x * 0) % ((x x 0)* ((x"2 = 0) 0))
= (x * 0)% % ((x"_2 x 0) 0)
=...= (x *0)" = 0%
Given x € X if it satisfies 0 = x = 0, that is x < 0, the element x is called a positive element of X. By definition, the zero
element O of X is positive.
Proposition 2.12. Let x be any element in a BZ-algebra X. Then x * (0 * (0 * x)) is a positive element of X, for every x € X.
Proof. Since 0 x (x *x (0 * (0 * x)) = (0*x)*(0*(0 * (0 * x)))
= (0*x)*(0*0x) = 0. Thereforex = (0 *x (0 * x) is a positive element of X.

3. Ideals of BZ-algebra

Definition 3.1. A non-empty subset S of a BZ-algebra X is called a subalgebra of X on condition that x = y € S, whenever
X, YES.

Definition 3.2. A non-empty subset | of a BZ-algebra X is called an ideal of X if it satisfies the following conditions:
(1-k1)o0 €1,

(1-2) foranyx,ye X,x = y € Tandx € I implyy € I.

Examples 3.3. Let X = {0, 1, 2, 3} and let = be defined by the table:

*

w N B O O
O O W w DN
o P N W W

1
0 0
1 0
2 3
3 3

Thus, it can be easily shown that X is a BZ- algebra. And we see that | = {0, 1} and J = {0, 3} are subalgebras and ideals of X.

Lemma 3.4. If I is an ideal of BZ-algebra X, then I is an subalgebra. The convers is not true in general.

Lemma 3.5. Let I be a subalgebra of BZ-algebra X. Then A is an ideal of X ifand onlyifx e landz«y el implyz = (X *y) €1
forall x,y,z € X.

Proof. Let I be an ideal of X and let x € I whereas z =y € I. Suppose that z * (x * y) € I. By Proposition (2.9), we see that

x *x (z*y) € I.Sincelisanideal of Xand x € I,z * y € I, acontradiction. Soz * (x * y) € I.

Conversely, assume thatif x € Tandz = y € Iimplyz = (x = y) € [forallx,y, z € X. Since I is a subalgebra of X, then
thereisx € I'which0 = x » x € [ Thatis,0 € I.

Now, letx * y € Tandx € I. Assumethaty € I. Wehavethat0+xy = y € [I. It follows that (x * y) * 0 € I. Hence
x =y € I, contradiction. Therefore I is an ideal of X. This completes the proof.
Corollary 3.6. Let I be a subalgebra of BZ-algebra X. Then I is an ideal of X ifand onlyifx € ITandy € Iimplyx = y € [ for
all x, y € X.
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Lemma 3.7. Let I be a subalgebra of BZ-algebra X. Then [ isan ideal of X ifandonlyif x x (y * z) € Iandx * z € [ imply
y € Iforallx,y,zeX
Proof. Let I be an ideal of X and letx * (y * z) € I,x * z € I. Suppose that
y € I. By Proposition (2.9), we have y = (x * z) € [. Since[ isan ideal of X, thusx * z € [, contradiction, this shows that
y € I.

Conversely, assume thatx * (y * z) € landx * z € I implyy € I forall x,y, z € X. Since [ is a subalgebra of X, then
thereisy € Iwhich0 = y xy € [.Then0 € [.Lety * z € I,y € I and supposethatz € I.
ByBZ-2,(y = z) *0 € Iand z* 0 € [. Byassumption, soy € I, a contradiction. This proves that I is an ideal of X.
Corollary 3.8. Let I be a subalgebra of BZ-algebra X. Then [ is an ideal of X ifand onlyifx = y € Iandy € Iimplyx € [ for
all x, y, z € X. This Lemma gives some properties of ideal of BZ-algebra.
Lemma 3.9. If [ is an ideal of BZ-algebra X and J is an ideal of I, then J is an ideal of X.
Proof. Since J isan ideal of I, then 0 € J. Let X,y € X suchthatx* y € Jand
x € J.Itfollowsthatthat x = y € Iandx € I. Byassumption, I isanideal of X,soy € I'andx € J From ] isan ideal of I, so
y € J. Therefore, J is an ideal of X.
Theorem 3.10. Let {l; : j € J} be a family of subalgebras of a BZ-algebra X. Then n;¢; I; is a subalgebra of X.
Proof. Let {l; : j € J} be a family of subalgebras of X. It is obvious that Nj¢; I; < X. Since 0 € I; for all j € J, it follows that 0 €
Njes Ij. Let xxy € Nj; Liand X € Nje; ;.
We will show that Nse; I; is a subalgebra of X. Let X, y € Nj¢; I;. It follows that
X,y € ljfor all j € J. Since I; is a subalgebra of X and x = y € I;, for all j € J, then
X *Y € Njg; 1;. This show that Nj¢; I; is a subalgebra
Theorem 3.11. Let {l;: j € J} be a family of ideals of a BZ-algebra X. Then N¢; I; is an ideal of X.
Proof. Let {l; : j € J} be a family of ideals of X. It is obvious that N;¢; I; € X. Since 0 € |; for all j € J, it follows that 0 € Nj¢; I;.

Let xxy € Nje; [;and X € Nje; I;. We getthat x * y € l;and x € I for all j € J, then y € [; for all j € J. Because |; is an ideal of X.
Soy € Nje; I;, proving our theorem.
Theorem 3.12. Let {J; : i € N} be a family of subalgebras of a BZ-algebra X where J, S J,.; for all n € N. Then U ],isa
subalgebra of X.
Proof. Let {J; : i € N} be a family of subalgebras of X. We will show that Uy, J,is a subalgebra of X. Letx,y € UL, ],. It
follows that x € J; for some j € N and y € J, for some k € N. Furthermore, we assume that j <k, we obtain J; € Ji. That is, x € Ji
and x € Ji. Since Ji is a subalgebra of X, we get X * y € Jx © Up~;],. This proves that Up_, ], is a subalgebra of X, proving our
theorem.
Theorem 3.13. Let {J; : i € N} be a family of ideals of a BZ-algebra X where
Jn € Jnag, foralln € N. Then Up, ], is an ideal of X.
Proof. Let {J; : i € N} be a family of ideals of X. It can be proved easily that

Usz,Jn € X. Since J;is an ideal of X for all i,s00 € Uy, J,.

Letx*y€ Up,J,and x € UpZ,J,. It follows that x = y € J; for some j € N and

X € Ji for some k € N. Furthermore, let J; € Jx. Hence x * y € Ji and X € Ji. By assumption, J is an ideal of X, it follows that y €
Jx. Therefore, y € UpL, ]y, proving that U, J,is an ideal of X, proving our theorem.

4. Quotient BZ-Algebras

In this section, we describe congruence on BZ-algebras.

Definition 4.1. Let I be an ideal of a BZ-algebra X. Define a relation ~ on X by:
x~yifandonlyifx « y € Tandy * x € I.
Theorem 4.2. If I is an ideal of BZ-algebra X, then the relation ~ is an equivalence relation on X.
Proof. Let I be an ideal of X and X, y, z € X. By Theorem (2.3), x * x = 0 and assumption, x * x € I. Thatis, X ~ x. Hence ~
is reflexive.

Next, suppose that x ~ y. It follows thatx * y € ITandy * x € I. Theny ~ X, S0 ~ is symmetric.

Finally, letx ~yandy ~z. Thenx = y,y * x,y * z,z = y € [ and
((x * 2)= (y * 2)) = (x * y)= 0€ L Itfollowsthat (x = z) * (y = z) € I,andsincez * y € I,s0z * x € I.
Similarly, x * z € I. Thus ~ is transitive.

Therefore, ~ is an equivalence relation.
Lemma 4.3. Let | be an ideal of BZ-algebra X. For any x, y, u, v € X, ifu ~ vand
X~y thenuxX~v=*y.
Proof. Assume thatu ~vandx ~y, forany x, y, u, ve X, thenu * v,v * u,
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x*y,y*xx € landbyBZ-1,weseethat (u * x) * (v * x)) * (u *x v) = 0and ((v * x) * (u * x)) * (v * u) = 0.
From assumption and | is an ideal of X, these imply that (v * x) * (u * x) € I'and (u * x) * (v * x) € [I. This shows thatv
* X ~ U *X.
On the other hand, by Corollary (2.10), we have that ((y * v) * (x * v)) * (y *x) = 0and

((x *v) * (y * v)) * (x *» y) = 0. From assumption and I is an ideal of X, these imply that (y * v) * (x* v) € I and
(x * v) * (y*x v) € I.Thus X * Vv ~ Yy = V. Since ~ is symmetric and transitive, SO U * X ~ V * Y.
Corollary 4.4. If 1 is an ideal of BZ-algebra X, then the relation ~ is a congruence relation on X.
Proof. By Theorem (4.2) and Lemma (4.3).
Definition 4.5. Let | be an ideal of a BZ-algebra X. Given x € X, the equivalence class [x], of x is defined as the set of all element
of X that are equivalent to x, that is, [x], = {y € X : x ~ y}. We define the set X/l = {[x], : X € X} and a binary operation
oon X/Iby [X]y© [yl = [x * Y] .
Theorem 4.6. If I is an ideal of BZ-algebra X with X/I = {[x], : x € X} where a binary operation ° on a set X/I is defined by [x]; °
[V]i = [X* V], , then the binary operation ° is a mapping from X/I x X/I to X/I.
Proof. Let [x(]i, [X2li» [Vali s [Y2]i € X/1 such that [x.]; = [X2]) and [y.]i = [y2]: . It follows that x; ~ X, and y; ~ y,. By Lemma (4.3),
X1 * Y1 ~ Xo * Yo, proving that  [X; * y1]; = [X2 * ¥2], .
Theorem 4.7. If I is an ideal of BZ-algebra X, then (X/I; <, [0];) is a BZ-algebra. Moreover, the set X/I is called the quotient
BZ-algebra.
Proof. Let [X]i, [V]i, [z]i € X/I. Then
((IXI o [z) ° (Tydi e [2]1)) o ([x]i e [y] ) = ([x * 2] o [y * 2]i )° [x * Y]

=[(xxz)x (y*x2)]io [x *yli = [((x *2) * (y * 2)) * (x* )] = [0], . Itis clear that [x], > [0], =[x * O], = [X], . Now, let [X], ° [yl
=[0], and [y], e [x]; = [O]; . It follows that x * y ~ 0 and y * X ~ 0, that is (x = y) =0, (y * X) *0 € I. Since | is an ideal of X and
0 €1, wegetthatx xy, y = x € |. Consequently, X ~y, proving that [X], = [y], . Therefore, (X/I; <, [0],) is a BZ-algebra.
Example 4.8. According to Example (3.3), we can get that X/I = {[0],, [2]:}, where [0], = [1], = {0, 1} and [2], = [3], = {2, 3}.
Let  be defined on X/I by:

° [0l | [2]
[0 | [0l |I[2]
2l | [2 | [0l

Then (X/1; ¢, [0])) is a BZ-algebra.
Proposition 4.9. Let X be a BZ-algebra and I, ] be any sets such that I < J < X. Suppose that I is a subalgebra of X. Then J isa
subalgebra of X if and only if /I is a subalgebra of X/I.
Proof. Let I be a subalgebra of X with I < ] < X. Suppose firstly that J is a subalgebra of X, then J /I = {[X], : X €] }, where [X],
={yeJ:x~y}and X/l = {[x],: x € X}, where [X],={y € X : X ~ y}.

Obviously, J/I < X/I and [0],€]/I.

Now, let [x], € J/I and [x], € J/I, it follows that x € Jandy € J. Byassumption, x = y € J. Accordingly, [X * y], = [X], °
[v]) € J/I, this shows that ] /I is a subalgebra of X/I.
Proposition 4.10. Let X be a BZ-algebra and I,/ be any sets such that I < J < X. Suppose that I is an ideal of X, then J is an
ideal of X if and only if J /I is an ideal of X/I.
Proof. Let I be an ideal of X with I < ] < X. Suppose firstly that J is an ideal of X, then J/I ={[x],: x €] }, where [X]; ={y €]
i X ~ vy}, and X/ ={[x], : x € X}, where [X], ={y € X : x ~y}. Obviously, j/I € X/l and [0],€]/I.

Now, let [X]; e [yli € J/1 and [y], € J/1. Then [x * y], = [X], ° [yl € J/I, it follows that x * y € Jandx € J. By assumption,
y € J. Accordingly, [y], € J/I, this shows that J/I is an ideal of X/I.

On the other hand, suppose that J/I is an ideal of X/l and I isan ideal of X with/ € J € X. Thus,0 € J. Letx x y € Jand
x € ].

It follows that [xxy], , [X]; € J/I. Since [xxy], = [X], °[y]i, so [X]i °[y]: € J/1. By hypothesis, [y], € J/I impliesy € ], proving
our Lemma.
Corollary 4.11. Let I,] be ideals of a BZ-algebra X with I < ], then | is an ideal of X.
Proof. Obvious.

Next, the basic properties of equivalence classes are considered are as the following Theorem.
Theorem 4.12. Let I be a subalgebra (ideal) of a BZ-algebra X and a, b € X. Then
(1) [ay=Tlifandonlyifa € I.
(2) [a]i = [b], or [a]; N [b], = @.
Proof. Let I be a subalgebra (ideal) of X and a, b € X.
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(1) Itis clear due to the fact thata ~a foralla€ Xandaxa=0€l,sowegetthat ae€l[a],=1.

Conversely, let x € [a],. Then x ~ a, it follows that x * a, a * x € I. By hypothesis, x € I. Hence, [a], < I. To show that | < [a],,
choose x € 1. Since | is a subalgebra (ideal) of X, we have x * a, a * X € I. Thus, X ~ a, this means that x € [a], and shows that
I < [a],. Consequently, [a], = I.
(2) Assume that [a], N [b], = @. Then there is x € [a]; N [b], such that x € [a]; and x € [b], . It follows that x ~aand x ~b,soa~ b
by the symmetric and transitive properties. Thus [a], = [b], .
Theorem 4.13. If 1 is a subalgebra of a BZ-algebra X and y € 1, then [y], is subalgebra of X.
Proof. Let | be a subalgebra of X andy € I. It is clear that 0 € [y], . Now, suppose that a € [y], and b € [y], . We will show that
a*bely],.Thena~yandb ~ vy, itfollowsthaty *a € landy = b € I. By assumption, y € | and | is a subalgebra of X and
a = b €|, therefore,y * (a * b) €l. Then(a * b) ~y, thismeansa = b € [y],.

Finally, leta,b € [y],;. Thena~yand b ~y, by Lemma (4.3),a * b ~ y x y. By Theorem (2.3), it follows thata = b ~ 0. Thus a
* b € [0],. Now, we have O, y € l and | is a subalgebra,so0xy e landy = 0 € I. That is, 0 ~ y. Hence, [0], = [y], . By transitive,
a b € [y],, proving our theorem.
Theorem 4.14. If 1 is an ideal of a BZ-algebra X and y € I, then [y], is an ideal of X.
Proof. Let | be an ideal of X and y € I. It is clear that O € [y], . Now, suppose that
axbe[ylanda € [y], . We will show thatb € [y],. Thena * b ~yanda ~y, it follows thaty * (a xb) € land y *x a € I. By
assumption, a € I. From Proposition (2.9), a* (y *b) =y * (a* b) € I, and | is an ideal of X and a € I, therefore, y x b € I.

By properties of X, we get that

(@+0)x (((@axb)sy)s b *y)=(ax®xb)«(((axb)sy)s b +y)
= (bx(a*b))*(((axb)*y)*(bx*y)) = 0.Byhypothesis, (a * 0) * (((axb) xy) = (b*y)) € I,and | isan ideal
anda€el, thenb = y € I. Hence, b ~y, this means a € [y], . Accordingly, [y], is an ideal of X, proving our theorem.
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