A Structure of BZ-Algebras and its Properties

Dr. Ahmed Hamzah Abed

Department of Mathematics, Faculty of Basic Education, University of Kufa, Najaf, Iraq.

E-mail: ahmedh.abed@uokufa.edu.iq

Abstract - In this paper, we define the notions of BZ-algebras, quotient BZ-algebras and investigate its properties. Moreover we show the relation between ideals and congruences on BZ-algebras.

Keywords— BZ-algebra, ideal, quotient BZ-algebra, congruences.

1. Introduction

In [2,3], W.A. Dudek and X. Zhang were introduced an algebraic model of BCC-algebras, i.e., implicational logic. Many authors have tried to construct some generalizations of this and similar algebras. One such an algebraic system have the same partial order as BCC-algebras and BCK-algebras but has no minimal element. Such obtained system is called a BZ-algebra [6,7] or a weak BCC-algebra [8]. From the mathematical point of view the last name is more corrected but more popular is the first ([1,4]). All these algebras have one distinguished element and satisfy some common identities playing a crucial role in these algebras and, in fact, are generalization or a special case of weak BCC-algebras. So, results obtained for weak BCC-algebras are in some sense fundamental for these algebras, especially for BCC/BCH/BCI/BCK-algebras. In this paper is introduction to the general theory of BZ-algebra. We give the notion of BZ-algebra, quotient BZ-algebra and investigate elementary and fundamental properties.

2. BZ-algebras

In this section, we do define some familiar concepts as BZ-algebras, both for illustration and for review of the concept. First, we give a few definitions and some notation.

Definition 2.1. An algebra (X; *, 0) with a binary operation * and a nullary operation 0. Then X is called **BZ-algebra** if it satisfies for all x, y, z \in X :

(BZ-1) ((x * z) * (y * z)) * (x * y) = 0;

(BZ-2) x * 0 = x;

(BZ-3) x * y = 0 and y * x = 0 implies that x = y.

First, give example of BZ-algebra.

Examples 2.2. Let * be defined on an abelian group G by letting $x * y = x^{-1} \cdot y$, where x, y in G, with e is unity element of G. Then (G; \cdot , e) is a BZ-algebra.

Examples 2.3. Let $X = \{0, 1\}$ and let * be defined by:

*	0	1
0	0	1
1	1	0

Then (G; *, 0) is a BZ-algebra.

Theorem 2.3. Let (X; *, 0) be a BZ-algebra if and only if it satisfies the following conditions: for all x, y, $z \in X$, (1) ((x * y) * (y * z)) * (x * z) = 0; (2) (x * (x * y)) * y = 0;

(2) (x + (x + y))(3) x + x = 0;

(4) x * y = 0 and y * x = 0 implies that x = y.

Proof. Assume that (X; *, 0) is a BZ-algebra. From definition of BZ-algebra, (1) and (4) holds. Then we see that (x * (x * y)) * y = ((x * 0) * (x * y)) * (y * 0) = 0, and

x * x = (x * x) * 0 = ((x * 0) * (x * 0)) * (0 * 0) = 0, so (2) and (3) holds.

Conversely, we need to show BZ-2. By (1), (2) and (3), we see that ((x * 0) * x) * 0 = ((x * 0) * x) * (0 * ((0 * x) * x))= ((x * 0) * x) * ((x * x) * ((x * 0) * x)) = 0. And since ((x * 0) * x) * 0 = 0. From (4), it follows that (x * 0) * x = 0 and x * (0 * x) = x * ((x * x) * x) = 0. Therefore x * 0 = x, proving our theorem. **Definition 2.4.** Define a binary relation \leq on BZ-algebra X by letting $x \leq y$ if and only if x * y = 0. **Proposition 2.5.** If (X; *, 0) is a BZ-algebra, then $(X; \leq)$ is a partially order set. **Proposition 2.6.** If (X; *, 0) be a BZ-algebra and $0 \le x$, then x = 0, for any $x \in X$. Moreover, 0 is called a minimal element in X. **Proof.** Let $x \le 0$, then 0 * x = 0. By BZ-2, x * 0 = x, and thus x = 0. It is easy to show that the following properties are true for a BZ-algebra. **Theorem 2.7.** Let (X; *, 0) be a BZ-algebra if and only if it satisfies the following conditions: for all x, y, $z \in X$, $(1)((x * y) * (y * z)) \le (x * z);$ (2) $((x * y) * y) \le x;$ (3) $x \leq y$ if and only if x * y = 0. Proposition 2.8. Let x, y, z be any element in a BZ-algebra X. Then (1) $x \leq y$ implies $z * x \leq z * y$. (2) $x \leq y$ implies $y * z \leq x * z$. Proposition 2.9. Let x, y, z be any element in a BZ-algebra X. Then x * (y * z) = y * (x * z).**Proof.** Since Theorem (2.7(2)), $(x * z) * z \le x$, and by Proposition (2.8(2)), we get that $x * (y * z) \le ((x * z) * z) * (y * z)$. Putting x = y and y = x * z in Theorem (2.7(1)), it follows that $((x * z) * z) * (y * z) \le y * (x * z)$. By the transitivity of \leq gives $x * (y * z) \leq y * (x * z)$. And we replacing x by y and y by x, we obtain $y * (x * z) \leq x * (y * z)$. By the anti-symmetry of \leq , thus x * (y * z) = y * (x * z) and finishing the proof. Corollary 2.10. Let x, y, z be any element in a BZ-algebra X. Then (1) $y * z \le x$ if and only if $x * z \le y$. (2) $(z * x) * (z * y) \le x * y$. Proposition 2.11. Let x, y, z be any element in a BZ-algebra X. Then (1) ((x * y) * y) * y = x * y.(2) (x * y) * 0 = (x * 0) * (y * 0). Proof. (1) From Theorem (2.3(2)) and Theorem (2.7(1)), $(((x * y) * y) * y) * (x * y) \le x * ((x * y) * y) = 0$. Thus (((x * y) * y) * y) * (x * y) = 0. Since (x * y) * (((x * y) * y) * y) = ((x * y) * y) * ((x * y) * y) = 0. So, by BZ-3, (x * y) * y = x * y. (2) Since (x * 0) * (y * 0) = (x * 0) * (y * ((x * y) * (x * y)))= (x * 0) * ((x * y) * (y * (x * y)))= (x * 0) * ((x * y) * (x * (y * y)))= (x * y) * ((x * 0) * (x * 0))= (x * y) * 0. The proof is complete. In this paper we will denote N for the set of all nonnegative integers, i.e., 0, 1, 2, ..., and N* for the set of all natural numbers, i.e., 1, 2, 3, ..., and we will also use the following notation in brevity: $y^0 * x = x, y^n * x = \frac{y * (...*(y * (y * x)))}{n-times}$, where x, y are any elements in a BZ-algebra and $n \in N^*$.

Proposition 2.12. Let x, y be any element in a BZ-algebra X. Then (1) $((y * x) * x)^n * x = y^n * x$, for any $n \in N$. (2) $(x^n * 0) * 0 = (x * 0)^n * 0$, for any $n \in N$.

Proof. Let X be a BZ-algebra and x, $y \in X$ and n, $m \in N$. (1) Proceed by induction on n and defined the statement P(n), $((y * x) * x)^n * x = y^n * x.$

We see that P(0) is true, $((y * x) * x)^0 * x = x = y^0 * x$. Assume that P(k) is true for some arbitrary $k \ge 0$, that is $((y * x) * x)^k * x = y^k * x$. Since $((y * x) * x)^{k+1} * x = ((y * x) * x) * (((y * x) * x)^k * x))$ $= ((y * x) * x) * (y^k * x)$ $= y^k * (((y * x) * x) * x) * x)$ $= y^k * (y * x)$ $= y^{k+1} * x$.

This show that P(k + 1) is true and by the principle of mathematical induction, P(n) is true for each $n \in N^*$. (2) Since $(x^n * 0) * 0 = (x * (x^n - 1 * 0)) * 0$

$$\begin{aligned} &(x + 0) + 0 &= (x + (x + 1 + 0)) + 0 \\ &= (x + 0) * ((x^{n} - 1 + 0) * 0) \\ &= (x + 0) * ((x + (x^{n-2} + 0)) * 0) \\ &= (x + 0) * ((x + 0) * ((x^{n-2} + 0) * 0)) \\ &= (x + 0)^{2} * ((x^{n-2} + 0) * 0) \\ &= \dots = (x + 0)^{n} * 0 \bigstar$$

Given $x \in X$ if it satisfies 0 * x = 0, that is $x \le 0$, the element x is called a positive element of X. By definition, the zero element 0 of X is positive.

Proposition 2.12. Let x be any element in a BZ-algebra X. Then x * (0 * (0 * x)) is a positive element of X, for every $x \in X$. **Proof.** Since 0 * (x * (0 * (0 * x))) = (0 * x) * (0 * (0 * (0 * x)))

= (0 * x) * (0 * 0x) = 0. Therefore x * (0 * (0 * x)) is a positive element of X.

3. Ideals of BZ-algebra

Definition 3.1. A non-empty subset S of a BZ-algebra X is called **a subalgebra of X** on condition that $x * y \in S$, whenever $x, y \in S$.

Definition 3.2. A non-empty subset *I* of a BZ-algebra X is called **an ideal of X** if it satisfies the following conditions: (I-1) $0 \in I$,

(I-2) for any x, $y \in X$, $x * y \in I$ and $x \in I$ imply $y \in I$.

Examples 3.3. Let $X = \{0, 1, 2, 3\}$ and let * be defined by the table:

0 0 0 3 3	
1 1 0 3 2	
2 2 3 0 1	
3 3 3 0 0	

Thus, it can be easily shown that X is a BZ- algebra. And we see that $I = \{0, 1\}$ and $J = \{0, 3\}$ are subalgebras and ideals of X.

Lemma 3.4. If I is an ideal of BZ-algebra X, then I is an subalgebra. The convers is not true in general.

Lemma 3.5. Let *I* be a subalgebra of BZ-algebra X. Then A is an ideal of X if and only if $x \in I$ and $z * y \in I$ imply $z * (x * y) \in I$ for all x, y, $z \in X$.

Proof. Let *I* be an ideal of X and let $x \in I$ whereas $z * y \in I$. Suppose that $z * (x * y) \in I$. By Proposition (2.9), we see that $x * (z * y) \in I$. Since *I* is an ideal of X and $x \in I, z * y \in I$, a contradiction. So $z * (x * y) \in I$.

Conversely, assume that if $x \in I$ and $z * y \in I$ imply $z * (x * y) \in I$ for all x, y, $z \in X$. Since I is a subalgebra of X, then there is $x \in I$ which $0 = x * x \in I$ That is, $0 \in I$.

Now, let $x * y \in I$ and $x \in I$. Assume that $y \in I$. We have that $0 * y = y \in I$. It follows that $(x * y) * 0 \in I$. Hence $x * y \in I$, contradiction. Therefore *I* is an ideal of X. This completes the proof.

Corollary 3.6. Let *I* be a subalgebra of BZ-algebra X. Then *I* is an ideal of X if and only if $x \in I$ and $y \in I$ imply $x * y \in I$ for all x, $y \in X$.

Lemma 3.7. Let *I* be a subalgebra of BZ-algebra X. Then *I* is an ideal of X if and only if $x * (y * z) \in I$ and $x * z \in I$ imply $y \in I$ for all x, y, $z \in X$.

Proof. Let *I* be an ideal of X and let $x * (y * z) \in I, x * z \in I$. Suppose that

 $y \in I$. By Proposition (2.9), we have $y * (x * z) \in I$. Since I is an ideal of X, thus $x * z \in I$, contradiction, this shows that $y \in I$.

Conversely, assume that $x * (y * z) \in I$ and $x * z \in I$ imply $y \in I$ for all x, y, $z \in X$. Since I is a subalgebra of X, then there is $y \in I$ which $0 = y * y \in I$. Then $0 \in I$. Let $y * z \in I$, $y \in I$ and suppose that $z \in I$.

By BZ-2, $(y * z) * 0 \in I$ and $z * 0 \in I$. By assumption, so $y \in I$, a contradiction. This proves that I is an ideal of X.

Corollary 3.8. Let *I* be a subalgebra of BZ-algebra X. Then *I* is an ideal of X if and only if $x * y \in I$ and $y \in I$ imply $x \in I$ for all x, y, $z \in X$. This Lemma gives some properties of ideal of BZ-algebra.

Lemma 3.9. If *I* is an ideal of BZ-algebra X and *J* is an ideal of *I*, then *J* is an ideal of X.

Proof. Since *J* is an ideal of *I*, then $0 \in J$. Let x, $y \in X$ such that $x * y \in J$ and

 $x \in J$. It follows that that $x * y \in I$ and $x \in I$. By assumption, *I* is an ideal of X, so $y \in I$ and $x \in J$ From *J* is an ideal of *I*, so $y \in J$. Therefore, *J* is an ideal of X.

Theorem 3.10. Let $\{I_j : j \in J\}$ be a family of subalgebras of a BZ-algebra X. Then $\bigcap_{i \in I} I_i$ is a subalgebra of X.

Proof. Let $\{I_j : j \in J\}$ be a family of subalgebras of X. It is obvious that $\bigcap_{j \in J} I_j \subseteq X$. Since $0 \in I_j$ for all $j \in J$, it follows that $0 \in \bigcap_{i \in J} I_i$. Let $x * y \in \bigcap_{i \in J} I_i$ and $x \in \bigcap_{j \in J} I_j$.

We will show that $\bigcap_{i \in I} I_i$ is a subalgebra of X. Let x, $y \in \bigcap_{i \in I} I_i$. It follows that

x, $y \in I_i$ for all $j \in J$. Since I_i is a subalgebra of X and $x * y \in I_i$, for all $j \in J$, then

 $x * y \in \bigcap_{i \in I} I_i$. This show that $\bigcap_{i \in I} I_i$ is a subalgebra

Theorem 3.11. Let $\{I_i : j \in J\}$ be a family of ideals of a BZ-algebra X. Then $\bigcap_{i \in I} I_i$ is an ideal of X.

Proof. Let $\{I_j : j \in J\}$ be a family of ideals of X. It is obvious that $\bigcap_{j \in J} I_j \subseteq X$. Since $0 \in I_j$ for all $j \in J$, it follows that $0 \in \bigcap_{j \in J} I_j$. Let $x * y \in \bigcap_{j \in J} I_j$ and $x \in \bigcap_{j \in J} I_j$. We get that $x * y \in I_j$ and $x \in I_j$ for all $j \in J$, then $y \in I_j$ for all $j \in J$. Because I_j is an ideal of X. So $y \in \bigcap_{i \in J} I_i$, proving our theorem.

Theorem 3.12. Let $\{J_i : i \in N\}$ be a family of subalgebras of a BZ-algebra X where $J_n \subseteq J_{n+1}$ for all $n \in N$. Then $\bigcup_{n=1}^{\infty} J_n$ is a subalgebra of X.

Proof. Let $\{J_i : i \in N\}$ be a family of subalgebras of X. We will show that $\bigcup_{n=1}^{\infty} J_n$ is a subalgebra of X. Let $x, y \in \bigcup_{n=1}^{\infty} J_n$. It follows that $x \in J_j$ for some $j \in N$ and $y \in J_k$ for some $k \in N$. Furthermore, we assume that $j \leq k$, we obtain $J_j \subseteq J_k$. That is, $x \in J_k$ and $x \in J_k$. Since J_k is a subalgebra of X, we get $x * y \in J_k \subseteq \bigcup_{n=1}^{\infty} J_n$. This proves that $\bigcup_{n=1}^{\infty} J_n$ is a subalgebra of X, proving our theorem.

Theorem 3.13. Let $\{J_i : i \in N\}$ be a family of ideals of a BZ-algebra X where

 $J_n \subseteq J_{n+1}$, for all $n \in N$. Then $\bigcup_{n=1}^{\infty} J_n$ is an ideal of X.

Proof. Let $\{J_i : i \in N\}$ be a family of ideals of X. It can be proved easily that

 $\bigcup_{n=1}^{\infty} J_n \subseteq X$. Since J_i is an ideal of X for all i, so $0 \in \bigcup_{n=1}^{\infty} J_n$.

Let $x * y \in \bigcup_{n=1}^{\infty} J_n$ and $x \in \bigcup_{n=1}^{\infty} J_n$. It follows that $x * y \in J_j$ for some $j \in N$ and

 $x \in J_k$ for some $k \in N$. Furthermore, let $J_j \subseteq J_k$. Hence $x * y \in J_k$ and $x \in J_k$. By assumption, J_k is an ideal of X, it follows that $y \in J_k$. Therefore, $y \in \bigcup_{n=1}^{\infty} J_n$, proving that $\bigcup_{n=1}^{\infty} J_n$ is an ideal of X, proving our theorem.

4. Quotient BZ-Algebras

In this section, we describe congruence on BZ-algebras.

Definition 4.1. Let *I* be an ideal of a BZ-algebra X. Define a relation \sim on X by:

 $x \sim y$ if and only if $x * y \in I$ and $y * x \in I$.

Theorem 4.2. If *I* is an ideal of BZ-algebra X, then the relation \sim is an equivalence relation on X.

Proof. Let *I* be an ideal of X and x, y, $z \in X$. By Theorem (2.3), x * x = 0 and assumption, $x * x \in I$. That is, $x \sim x$. Hence \sim is reflexive.

Next, suppose that $x \sim y$. It follows that $x * y \in I$ and $y * x \in I$. Then $y \sim x$, so \sim is symmetric.

Finally, let $x \sim y$ and $y \sim z$. Then $x * y, y * x, y * z, z * y \in I$ and

 $((x * z) * (y * z)) * (x * y) = 0 \in I$. It follows that $(x * z) * (y * z) \in I$, and since $z * y \in I$, so $z * x \in I$. Similarly, $x * z \in I$. Thus ~ is transitive.

Therefore, \sim is an equivalence relation.

Lemma 4.3. Let *I* be an ideal of BZ-algebra X. For any x, y, u, $v \in X$, if $u \sim v$ and

 $x \sim y$, then $u * x \sim v * y$.

Proof. Assume that $u \sim v$ and $x \sim y$, for any x, y, u, $v \in X$, then u * v, v * u,

 $x * y, y * x \in I$ and by BZ-1, we see that ((u * x) * (v * x)) * (u * v) = 0 and ((v * x) * (u * x)) * (v * u) = 0. From assumption and *I* is an ideal of X, these imply that $(v * x) * (u * x) \in I$ and $(u * x) * (v * x) \in I$. This shows that $v * x \sim u * x$.

On the other hand, by Corollary (2.10), we have that ((y * v) * (x * v)) * (y * x) = 0 and

((x * v) * (y * v)) * (x * y) = 0. From assumption and *I* is an ideal of X, these imply that $(y * v) * (x * v) \in I$ and

 $(x * v) * (y * v) \in I$. Thus $x * v \sim y * v$. Since \sim is symmetric and transitive, so $u * x \sim v * y$.

Corollary 4.4. If *I* is an ideal of BZ-algebra X, then the relation \sim is a congruence relation on X.

Proof. By Theorem (4.2) and Lemma (4.3).

Definition 4.5. Let *I* be an ideal of a BZ-algebra X. Given $x \in X$, the equivalence class $[x]_I$ of x is defined as the set of all element of X that are equivalent to x, that is, $[x]_I = \{y \in X : x \sim y\}$. We define the set $X/I = \{[x]_I : x \in X\}$ and a binary operation \circ on X/I by $[x]_I \circ [y]_I = [x * y]_I$.

Theorem 4.6. If *I* is an ideal of BZ-algebra X with $X/I = \{[x]_I : x \in X\}$ where a binary operation \circ on a set X/I is defined by $[x]_I \circ [y]_I = [x * y]_I$, then the binary operation \circ is a mapping from X/I \times X/I to X/I.

Proof. Let $[x_1]_I$, $[x_2]_I$, $[y_1]_I$, $[y_2]_I \in X/I$ such that $[x_1]_I = [x_2]_I$ and $[y_1]_I = [y_2]_I$. It follows that $x_1 \sim x_2$ and $y_1 \sim y_2$. By Lemma (4.3), $x_1 * y_1 \sim x_2 * y_2$, proving that $[x_1 * y_1]_I = [x_2 * y_2]_I$.

Theorem 4.7. If *I* is an ideal of BZ-algebra X, then $(X/I; \circ, [0]_I)$ is a BZ-algebra. Moreover, the set X/I is called the quotient BZ-algebra.

Proof. Let $[x]_I$, $[y]_I$, $[z]_I \in X/I$. Then

 $(([x]_I \circ [z]_I) \circ ([y]_I \circ [z]_I)) \circ ([x]_I \circ [y]_I) = ([x \ast z]_I \circ [y \ast z]_I) \circ [x \ast y]_I$

 $= [(x * z) * (y * z)]_{I} \circ [x * y]_{I} = [((x * z) * (y * z)) * (x * y)]_{I} = [0]_{I}.$ It is clear that $[x]_{I} \circ [0]_{I} = [x * 0]_{I} = [x]_{I}.$ Now, let $[x]_{I} \circ [y]_{I} = [0]_{I}$ and $[y]_{I} \circ [x]_{I} = [0]_{I}.$ It follows that $x * y \sim 0$ and $y * x \sim 0$, that is $(x * y) * 0, (y * x) * 0 \in I$. Since *I* is an ideal of X and $0 \in I$, we get that $x * y, y * x \in I$. Consequently, $x \sim y$, proving that $[x]_{I} = [y]_{I}.$ Therefore, $(X/I; \circ, [0]_{I})$ is a BZ-algebra. **Example 4.8.** According to Example (3.3), we can get that $X/I = \{[0]_{I}, [2]_{I}\}$, where $[0]_{I} = [1]_{I} = \{0, 1\}$ and $[2]_{I} = [3]_{I} = \{2, 3\}.$

Let \circ be defined on X/I by:

0	[0] _I	[2] _I
[0] _I	[0] _I	[2] _I
[2] _I	[2] _I	[0] _I

Then $(X/I; \circ, [0]_I)$ is a BZ-algebra.

Proposition 4.9. Let X be a BZ-algebra and *I*, *J* be any sets such that $I \subseteq J \subseteq X$. Suppose that *I* is a subalgebra of X. Then *J* is a subalgebra of X if and only if J/I is a subalgebra of X/I.

Proof. Let *I* be a subalgebra of X with $I \subseteq J \subseteq X$. Suppose firstly that *J* is a subalgebra of X, then $J/I = \{[x]_I : x \in J\}$, where $[x]_I = \{y \in J : x \sim y\}$, and $X/I = \{[x]_I : x \in X\}$, where $[x]_I = \{y \in X : x \sim y\}$.

Obviously, $J/I \subseteq X/I$ and $[0]_I \in J/I$.

Now, let $[x]_I \in J/I$ and $[x]_I \in J/I$, it follows that $x \in J$ and $y \in J$. By assumption, $x * y \in J$. Accordingly, $[x * y]_I = [x]_I \circ [y]_I \in J/I$, this shows that J/I is a subalgebra of X/I.

Proposition 4.10. Let X be a BZ-algebra and *I*, *J* be any sets such that $I \subseteq J \subseteq X$. Suppose that *I* is an ideal of X, then *J* is an ideal of X if and only if J/I is an ideal of X/I.

Proof. Let *I* be an ideal of X with $I \subseteq J \subseteq X$. Suppose firstly that *J* is an ideal of X, then $J/I = \{[x]_I : x \in J\}$, where $[x]_I = \{y \in J : x \sim y\}$, and $X/I = \{[x]_I : x \in X\}$, where $[x]_I = \{y \in X : x \sim y\}$. Obviously, $J/I \subseteq X/I$ and $[0]_I \in J/I$.

Now, let $[x]_I \circ [y]_I \in J/I$ and $[y]_I \in J/I$. Then $[x * y]_I = [x]_I \circ [y]_I \in J/I$, it follows that $x * y \in J$ and $x \in J$. By assumption, $y \in J$. Accordingly, $[y]_I \in J/I$, this shows that J/I is an ideal of X/I.

On the other hand, suppose that J/I is an ideal of X/I and I is an ideal of X with $I \subseteq J \subseteq X$. Thus, $0 \in J$. Let $x * y \in J$ and $x \in J$.

It follows that $[x*y]_I$, $[x]_I \in J/I$. Since $[x*y]_I = [x]_I \circ [y]_I$, so $[x]_I \circ [y]_I \in J/I$. By hypothesis, $[y]_I \in J/I$ implies $y \in J$, proving our Lemma.

Corollary 4.11. Let *I*, *J* be ideals of a BZ-algebra X with $I \subseteq J$, then I is an ideal of X.

Proof. Obvious.

Next, the basic properties of equivalence classes are considered are as the following Theorem.

Theorem 4.12. Let *I* be a subalgebra (ideal) of a BZ-algebra X and a, $b \in X$. Then

(1) $[a]_{I} = I$ if and only if $a \in I$.

(2) $[a]_{I} = [b]_{I}$ or $[a]_{I} \cap [b]_{I} = \emptyset$.

Proof. Let *I* be a subalgebra (ideal) of X and a, $b \in X$.

(1) It is clear due to the fact that $a \sim a$ for all $a \in X$ and $a * a = 0 \in I$, so we get that $a \in [a]_I = I$.

Conversely, let $x \in [a]_I$. Then $x \sim a$, it follows that x * a, $a * x \in I$. By hypothesis, $x \in I$. Hence, $[a]_I \subseteq I$. To show that $I \subseteq [a]_I$, choose $x \in I$. Since *I* is a subalgebra (ideal) of X, we have x * a, $a * x \in I$. Thus, $x \sim a$, this means that $x \in [a]_I$ and shows that $I \subseteq [a]_I$. Consequently, $[a]_I = I$.

(2) Assume that $[a]_{I} \cap [b]_{I} = \emptyset$. Then there is $x \in [a]_{I} \cap [b]_{I}$ such that $x \in [a]_{I}$ and $x \in [b]_{I}$. It follows that $x \sim a$ and $x \sim b$, so $a \sim b$ by the symmetric and transitive properties. Thus $[a]_{I} = [b]_{I}$.

Theorem 4.13. If *I* is a subalgebra of a BZ-algebra X and $y \in I$, then $[y]_I$ is subalgebra of X.

Proof. Let *I* be a subalgebra of X and $y \in I$. It is clear that $0 \in [y]_I$. Now, suppose that $a \in [y]_I$ and $b \in [y]_I$. We will show that

 $a * b \in [y]_I$. Then $a \sim y$ and $b \sim y$, it follows that $y * a \in I$ and $y * b \in I$. By assumption, $y \in I$ and I is a subalgebra of X and $a * b \in I$, therefore, $y * (a * b) \in I$. Then $(a * b) \sim y$, this means $a * b \in [y]_I$.

Finally, let a, $b \in [y]_I$. Then a ~ y and b ~ y, by Lemma (4.3), a * b ~ y * y. By Theorem (2.3), it follows that a * b ~ 0. Thus a * b $\in [0]_I$. Now, we have 0, $y \in I$ and *I* is a subalgebra , so 0 * $y \in I$ and $y * 0 \in I$. That is, 0 ~ y. Hence, $[0]_I = [y]_I$. By transitive, a * b $\in [y]_I$, proving our theorem.

Theorem 4.14. If *I* is an ideal of a BZ-algebra X and $y \in I$, then $[y]_I$ is an ideal of X.

Proof. Let *I* be an ideal of X and $y \in I$. It is clear that $0 \in [y]_I$. Now, suppose that

 $a * b \in [y]_I$ and $a \in [y]_I$. We will show that $b \in [y]_I$. Then $a * b \sim y$ and $a \sim y$, it follows that $y * (a * b) \in I$ and $y * a \in I$. By assumption, $a \in I$. From Proposition (2.9), $a * (y * b) = y * (a * b) \in I$, and *I* is an ideal of X and $a \in I$, therefore, $y * b \in I$.

By properties of X, we get that

(a * 0) * (((a * b) * y) * (b * y)) = (a * (b * b)) * (((a * b) * y) * (b * y))

= (b * (a * b)) * (((a * b) * y) * (b * y)) = 0. By hypothesis, $(a * 0) * (((a * b) * y) * (b * y)) \in I$, and *I* is an ideal and $a \in I$, then $b * y \in I$. Hence, $b \sim y$, this means $a \in [y]_I$. Accordingly, $[y]_I$ is an ideal of X, proving our theorem.

References

[1] S. Asawasamrit and U. Leerawat, (2010), **On quotient binary algebras**, Scientia Magna Journal, vol.6, no.1, pp:82-88.

- [2] W.A. Dudek and X. Zhang, (1992), On proper BCC-algebras, Bull. Enst. Math. Academia Simica of Mathematics, vol.20, pp:137-150.
- [3] W.A. Dudek and X. Zhang, (1998), **On ideals and congruences in BCC-algebras**, Czechoslovak Math. Journal, vol.48, no.123, pp:21-29.
- [4] E.H. Roh, Y.K. Seon, B.J. Young and H.S. Wook, (2003), On difference algebras, Kyungpook Math. J, vol.43, pp:407-414.
- [5] J. Soontharanon and U. Leerawat, (2009), AC-algebras, Scientia Magna Journal, vol.5, no.4, pp:86-94.
- [6] J. M. Xu and X. H. Zhang, (1998), On anti-grouped ideals in BZ-algebras, Pure Appl. Math., vol.14, pp:101-102.
- [7] R. F. Ye, 1991, On BZ-algebras. In: Selected papers on BCI/BCK-algebras and Computer Logic, Shanghai Jiaotong Univ., pp:21–24.
- [8] R. F. Ye and X. H. Zhang, (1993), On ideals in BZ-algebras and its homomorphism theorems, J. East China Univ. Sci. Technology, vol.19, pp:775–778.
- [9] H. Yisheng, (2006), BCC-Algebras, Science Press, Beijing, 356p.