A Structure of BZ-Algebras and its Properties

Dr. Ahmed Hamzah Abed
Department of Mathematics, Faculty of Basic Education, University of Kufa, Najaf, Iraq.
E-mail: ahmedh.abed@uokufa.edu.iq

Abstract

In this paper, we define the notions of BZ-algebras, quotient BZ-algebras and investigate its properties. Moreover we show the relation between ideals and congruences on BZ-algebras.

Keywords- BZ-algebra, ideal, quotient BZ-algebra, congruences.

1. Introduction

In [2,3], W.A. Dudek and X. Zhang were introduced an algebraic model of BCC-algebras, i.e., implicational logic. Many authors have tried to construct some generalizations of this and similar algebras. One such an algebraic system have the same partial order as BCC-algebras and BCK-algebras but has no minimal element. Such obtained system is called a BZ-algebra [6,7] or a weak BCC-algebra [8]. From the mathematical point of view the last name is more corrected but more popular is the first ($[1,4]$). All these algebras have one distinguished element and satisfy some common identities playing a crucial role in these algebras and, in fact, are generalization or a special case of weak BCC-algebras. So, results obtained for weak BCC-algebras are in some sense fundamental for these algebras, especially for $\mathrm{BCC} / \mathrm{BCH} / \mathrm{BCI} / \mathrm{BCK}$-algebras. In this paper is introduction to the general theory of BZ-algebra. We give the notion of BZ-algebra, quotient BZ-algebra and investigate elementary and fundamental properties.

2. BZ-algebras

In this section, we do define some familiar concepts as BZ-algebras, both for illustration and for review of the concept. First, we give a few definitions and some notation.
Definition 2.1. An algebra ($\mathrm{X} ; *, 0$) with a binary operation $*$ and a nullary operation 0 . Then X is called $\mathbf{B Z}$-algebra if it satisfies for all $x, y, z \in X$:
$(\mathrm{BZ}-1)((x * z) *(y * z)) *(x * y)=0$;
(BZ-2) $x * 0=x$;
(BZ-3) $x * y=0$ and $y * x=0$ implies that $x=y$.
First, give example of BZ-algebra.
Examples 2.2. Let $*$ be defined on an abelian group G by letting $x * y=x^{-1} \cdot y$, where x, y in G, with e is unity element of G. Then (G; \cdot, e) is a BZ-algebra.
Examples 2.3. Let $X=\{0,1\}$ and let $*$ be defined by:

$*$	0	1
0	0	1
1	1	0

Then $(\mathrm{G} ; *, 0)$ is a BZ-algebra.

Theorem 2.3. Let $(\mathrm{X} ; *, 0)$ be a BZ-algebra if and only if it satisfies the following conditions: for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$,
(1) $((x * y) *(y * z)) *(x * z)=0$;
(2) $(x *(x * y)) * y=0$;
(3) $x * x=0$;
(4) $x * y=0$ and $y * x=0$ implies that $x=y$.

Proof. Assume that $(\mathrm{X} ; *, 0)$ is a BZ-algebra. From definition of BZ-algebra, (1) and (4) holds. Then we see that $(x *(x * y)) * y=((x * 0) *(x * y)) *(y * 0)=0$, and
$x * x=(x * x) * 0=((x * 0) *(x * 0)) *(0 * 0)=0$, so (2) and (3) holds.

Vol. 4, Issue 8, August - 2020, Pages: 110-115
Conversely, we need to show BZ-2. By (1), (2) and (3), we see that

$$
\begin{aligned}
((x * 0) * x) * 0 & =((x * 0) * x) *(0 *((0 * x) * x)) \\
& =((x * 0) * x) *((x * x) *((x * 0) * x))=0 . \text { And since }
\end{aligned}
$$

$((x * 0) * x) * 0=0$. From (4), it follows that $(x * 0) * x=0$ and
$x *(0 * x)=x *((x * x) * x)=0$. Therefore $x * 0=x$, proving our theorem.
Definition 2.4. Define a binary relation \leq on BZ-algebra X by letting $x \leq y$ if and only if $x * y=0$.
Proposition 2.5. If $(\mathrm{X} ; *, 0)$ is a BZ-algebra, then $(\mathrm{X} ; \leq)$ is a partially order set. Proposition 2.6. If ($\mathrm{X} ; *, 0$) be a BZ-algebra and $0 \leq x$, then $x=0$, for any $\mathrm{x} \in \mathrm{X}$. Moreover, 0 is called a minimal element in X .
Proof. Let $\mathrm{x} \leq 0$, then $0 * \mathrm{x}=0$. By BZ-2, $\mathrm{x} * 0=\mathrm{x}$, and thus $\mathrm{x}=0$.
It is easy to show that the following properties are true for a BZ-algebra.
Theorem 2.7. Let $(\mathrm{X} ; *, 0)$ be a BZ-algebra if and only if it satisfies the following conditions: for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$,
(1) $((x * y) *(y * z)) \leq(x * z)$;
(2) $((x * y) * y) \leq x$;
(3) $x \leq y$ if and only if $x * y=0$.

Proposition 2.8. Let $\mathrm{x}, \mathrm{y}, \mathrm{z}$ be any element in a BZ-algebra X . Then
(1) $x \leq y$ implies $z * x \leq z * y$.
(2) $x \leq y$ implies $y * z \leq x * z$.

Proposition 2.9. Let x, y, z be any element in a BZ-algebra X. Then
$\mathrm{x} *(\mathrm{y} * \mathrm{z})=\mathrm{y} *(\mathrm{x} * \mathrm{z})$.
Proof. Since Theorem (2.7(2)), $(\mathrm{x} * \mathrm{z}) * \mathrm{z} \leq \mathrm{x}$, and by Proposition (2.8(2)), we get that $\mathrm{x} *(\mathrm{y} * \mathrm{z}) \leq((\mathrm{x} * \mathrm{z}) * \mathrm{z}) *(\mathrm{y} * \mathrm{z})$. Putting $\mathrm{x}=\mathrm{y}$ and $\mathrm{y}=\mathrm{x} * \mathrm{z}$ in Theorem (2.7(1)), it follows that $((\mathrm{x} * \mathrm{z}) * \mathrm{z}) *(\mathrm{y} * \mathrm{z}) \leq \mathrm{y} *(\mathrm{x} * \mathrm{z})$. By the transitivity of \leq gives $\mathrm{x} *(\mathrm{y} * \mathrm{z}) \leq \mathrm{y} *(\mathrm{x} * \mathrm{z})$. And we replacing x by y and y by x , we obtain $\mathrm{y} *(\mathrm{x} * \mathrm{z}) \leq \mathrm{x} *(\mathrm{y} * \mathrm{z})$. By the anti-symmetry of \leq, thus
$\mathrm{x} *(\mathrm{y} * \mathrm{z})=\mathrm{y} *(\mathrm{x} * \mathrm{z})$ and finishing the proof.
Corollary 2.10. Let $\mathrm{x}, \mathrm{y}, \mathrm{z}$ be any element in a BZ-algebra X. Then
(1) $y * z \leq x$ if and only if $x * z \leq y$.
(2) $(\mathrm{z} * \mathrm{x}) *(\mathrm{z} * \mathrm{y}) \leq \mathrm{x} * \mathrm{y}$.

Proposition 2.11. Let $\mathrm{x}, \mathrm{y}, \mathrm{z}$ be any element in a BZ-algebra X . Then
(1) $((\mathrm{x} * \mathrm{y}) * \mathrm{y}) * \mathrm{y}=\mathrm{x} * \mathrm{y}$.
(2) $(x * y) * 0=(x * 0) *(y * 0)$.

Proof.

(1) From Theorem (2.3(2)) and Theorem (2.7(1)),
$(((\mathrm{x} * \mathrm{y}) * \mathrm{y}) * \mathrm{y}) *(\mathrm{x} * \mathrm{y}) \leq \mathrm{x} *((\mathrm{x} * \mathrm{y}) * \mathrm{y})=0$. Thus
$(((x * y) * y) * y) *(x * y)=0$. Since $(x * y) *(((x * y) * y) * y)=((x * y) * y) *((x * y) * y)=0$. So, by
BZ-3, $(\mathrm{x} * \mathrm{y}) * \mathrm{y}=\mathrm{x} * \mathrm{y}$.
(2) Since

$$
\begin{aligned}
(\mathrm{x} * 0) *(\mathrm{y} * 0) & =(\mathrm{x} * 0) *(\mathrm{y} *((\mathrm{x} * \mathrm{y}) *(\mathrm{x} * \mathrm{y}))) \\
& =(\mathrm{x} * 0) *((\mathrm{x} * \mathrm{y}) *(\mathrm{y} *(\mathrm{x} * \mathrm{y}))) \\
& =(\mathrm{x} * 0) *((\mathrm{x} * \mathrm{y}) *(\mathrm{x} *(\mathrm{y} * \mathrm{y}))) \\
& =(\mathrm{x} * \mathrm{y}) *((\mathrm{x} * 0) *(\mathrm{x} * 0)) \\
& =(\mathrm{x} * \mathrm{y}) * 0 . \text { The proof is complete. }
\end{aligned}
$$

In this paper we will denote N for the set of all nonnegative integers, i.e., $0,1,2, \ldots$, and N^{*} for the set of all natural numbers, i.e., $1,2,3, \ldots$, and we will also use the following notation in brevity: $y^{0} * x=x, y^{n} * x=\frac{y *(\ldots *(y *(y * x)))}{n \text {-times }}$, where x, y are any elements in a BZ-algebra and $n \in N^{*}$.

Proposition 2.12. Let x, y be any element in a BZ-algebra X. Then
(1) $((y * x) * x)^{n} * x=y^{n} * x$, for any $n \in N$.
(2) $\left(x^{n} * 0\right) * 0=(x * 0)^{n} * 0$, for any $\mathrm{n} \in \mathrm{N}$.

Proof. Let X be a BZ-algebra and $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ and $\mathrm{n}, \mathrm{m} \in \mathrm{N}$.
(1) Proceed by induction on n and defined the statement $\mathrm{P}(\mathrm{n})$,
$((y * x) * x)^{n} * x=y^{n} * x$.

Vol. 4, Issue 8, August - 2020, Pages: 110-115
We see that $\mathrm{P}(0)$ is true, $((y * x) * x)^{0} * x=x=y^{0} * x$. Assume that $\mathrm{P}(\mathrm{k})$ is true for some arbitrary $\mathrm{k} \geq 0$, that is $((y *$ $x) * x)^{k} * x=y^{k} * x$. Since

$$
\begin{aligned}
((y * x) * x)^{k+1} * x & =((y * x) * x) *\left(((y * x) * x)^{k} * x\right) \\
& =((y * x) * x) *\left(y^{k} * x\right) \\
& =y^{k} *(((y * x) * x) * x) \\
& =y^{k} *(y * x) \\
& =y^{k+1} * x .
\end{aligned}
$$

This show that $\mathrm{P}(\mathrm{k}+1)$ is true and by the principle of mathematical induction, $\mathrm{P}(\mathrm{n})$ is true for each $\mathrm{n} \in \mathrm{N}^{*}$.
(2) Since $\left(x^{n} * 0\right) * 0=\left(x *\left(x^{n}-1 * 0\right)\right) * 0$

$$
\begin{aligned}
& =(x * 0) *\left(\left(x^{n}-1 * 0\right) * 0\right) \\
& =(x * 0) *\left(\left(x *\left(x^{n-2} * 0\right)\right) * 0\right) \\
& =(x * 0) *\left((x * 0) *\left(\left(x^{n-2} * 0\right) * 0\right)\right) \\
& =(x * 0)^{2} *\left(\left(x^{n-2} * 0\right) * 0\right) \\
& =\ldots=(x * 0)^{n} * 0 *
\end{aligned}
$$

Given $\mathrm{x} \in \mathrm{X}$ if it satisfies $0 * x=0$, that is $\mathrm{x} \leq 0$, the element x is called a positive element of X . By definition, the zero element 0 of X is positive.
Proposition 2.12. Let x be any element in a BZ-algebra X . Then $x *(0 *(0 * x))$ is a positive element of X , for every $\mathrm{x} \in \mathrm{X}$.
Proof. Since $0 *(x *(0 *(0 * x))=(0 * x) *(0 *(0 *(0 * x)))$
$=(0 * x) *(0 * 0 x)=0$. Therefore $x *(0 *(0 * x)$ is a positive element of X .

3. Ideals of BZ-algebra

Definition 3.1. A non-empty subset S of a BZ-algebra X is called a subalgebra of \mathbf{X} on condition that $x * y \in S$, whenever $x, y \in S$.
Definition 3.2. A non-empty subset I of a BZ-algebra X is called an ideal of \mathbf{X} if it satisfies the following conditions:
(I-1) $0 \in I$,
(I-2) for any $\mathrm{x}, \mathrm{y} \in \mathrm{X}, x * y \in I$ and $x \in I$ imply $y \in I$.
Examples 3.3. Let $\mathrm{X}=\{0,1,2,3\}$ and let $*$ be defined by the table:

$*$	0	1	2	3
0	0	0	3	3
1	1	0	3	2
2	2	3	0	1
3	3	3	0	0

Thus, it can be easily shown that X is a BZ- algebra. And we see that $I=\{0,1\}$ and $J=\{0,3\}$ are subalgebras and ideals of X.
Lemma 3.4. If I is an ideal of BZ-algebra X, then I is an subalgebra. The convers is not true in general.
Lemma 3.5. Let I be a subalgebra of BZ-algebra X . Then A is an ideal of X if and only if $\mathrm{x} \in I$ and $\mathrm{z} * \mathrm{y} \in I$ imply $\mathrm{z} *(\mathrm{x} * \mathrm{y}) \in I$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$.
Proof. Let I be an ideal of X and let $\mathrm{x} \in I$ whereas $\mathrm{z} * \mathrm{y} \in I$. Suppose that $\mathrm{z} *(x * y) \in I$. By Proposition (2.9), we see that $x *(z * y) \in I$. Since I is an ideal of X and $x \in I, z * y \in I$, a contradiction. So $z *(x * y) \in I$.

Conversely, assume that if $x \in I$ and $z * y \in I$ imply $z *(x * y) \in I$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$. Since I is a subalgebra of X , then there is $x \in I$ which $0=x * x \in I$ That is, $0 \in I$.

Now, let $x * y \in I$ and $x \in I$. Assume that $y \in I$. We have that $0 * y=y \in I$. It follows that $(x * y) * 0 \in I$. Hence $x * y \in I$, contradiction. Therefore I is an ideal of X . This completes the proof.
Corollary 3.6. Let I be a subalgebra of BZ-algebra X . Then I is an ideal of X if and only if $x \in I$ and $y \in I$ imply $x * y \in I$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$.

Lemma 3.7. Let I be a subalgebra of BZ-algebra X. Then I is an ideal of X if and only if $x *(y * z) \in I$ and $x * z \in I$ imply $y \in I$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$.
Proof. Let I be an ideal of X and let $x *(y * z) \in I, x * z \in I$. Suppose that
$y \in I$. By Proposition (2.9), we have $y *(x * z) \in I$. Since I is an ideal of X, thus $x * z \in I$, contradiction, this shows that $y \in I$.

Conversely, assume that $x *(y * z) \in I$ and $x * z \in I$ imply $y \in I$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$. Since I is a subalgebra of X, then there is $y \in I$ which $0=y * y \in I$. Then $0 \in I$. Let $y * z \in I, y \in I$ and suppose that $z \in I$.
By BZ-2, $(y * z) * 0 \in I$ and $z * 0 \in I$. By assumption, so $y \in I$, a contradiction. This proves that I is an ideal of X.
Corollary 3.8. Let I be a subalgebra of BZ-algebra X. Then I is an ideal of X if and only if $x * y \in I$ and $y \in I$ imply $x \in I$ for all $x, y, z \in X$. This Lemma gives some properties of ideal of BZ-algebra.
Lemma 3.9. If I is an ideal of BZ-algebra X and J is an ideal of I, then J is an ideal of X.
Proof. Since J is an ideal of I, then $0 \in J$. Let $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ such that $x * y \in J$ and
$x \in J$. It follows that that $x * y \in I$ and $x \in I$. By assumption, I is an ideal of X , so $y \in I$ and $x \in J$ From J is an ideal of I, so $y \in J$. Therefore, J is an ideal of X .
Theorem 3.10. Let $\left\{I_{j}: j \in J\right\}$ be a family of subalgebras of a BZ-algebra X. Then $\cap_{j \in J} I_{j}$ is a subalgebra of X.
Proof. Let $\left\{I_{j}: j \in J\right\}$ be a family of subalgebras of X. It is obvious that $\cap_{j \in J} I_{j} \subseteq X$. Since $0 \in I_{j}$ for all $j \in J$, it follows that $0 \in$ $\cap_{j \in J} \mathrm{I}_{j}$. Let $\mathrm{x} * \mathrm{y} \in \cap_{j \in J} \mathrm{I}_{j}$ and $\mathrm{x} \in \cap_{j \in J} \mathrm{I}_{j}$.
We will show that $\cap_{j \in J} I_{j}$ is a subalgebra of X. Let $x, y \in \cap_{j \in J} I_{j}$. It follows that
$x, y \in I_{j}$ for all $j \in J$. Since I_{j} is a subalgebra of X and $x * y \in I_{j}$, for all $j \in J$, then
$\mathrm{x} * \mathrm{y} \in \cap_{j \in J} \mathrm{I}_{j}$. This show that $\cap_{j \in J} \mathrm{I}_{j}$ is a subalgebra
Theorem 3.11. Let $\left\{I_{j}: j \in J\right\}$ be a family of ideals of a BZ-algebra X. Then $\cap_{j \in J} I_{j}$ is an ideal of X.
Proof. Let $\left\{I_{j}: j \in J\right\}$ be a family of ideals of X. It is obvious that $\cap_{j \in J} I_{j} \subseteq X$. Since $0 \in I_{j}$ for all $j \in J$, it follows that $0 \in \cap_{j \in J} I_{j}$. Let $x * y \in \cap_{j \in J} I_{j}$ and $x \in \cap_{j \in J} I_{j}$. We get that $x * y \in I_{j}$ and $x \in I_{j}$ for all $j \in J$, then $y \in I_{j}$ for all $j \in J$. Because I_{j} is an ideal of X. So $y \in \cap_{j \in J} I_{j}$, proving our theorem.
Theorem 3.12. Let $\left\{J_{i}: i \in N\right\}$ be a family of subalgebras of a BZ-algebra X where $J_{n} \subseteq J_{n+1}$ for all $n \in N$. Then $\cup_{n=1}^{\infty} J_{n}$ is a subalgebra of X.
Proof. Let $\left\{J_{i}: i \in N\right\}$ be a family of subalgebras of X. We will show that $\cup_{n=1}^{\infty} J_{n}$ is a subalgebra of X. Let $x, y \in \cup_{n=1}^{\infty} J_{n}$. It follows that $x \in J_{j}$ for some $j \in N$ and $y \in J_{k}$ for some $k \in N$. Furthermore, we assume that $j \leq k$, we obtain $J_{j} \subseteq J_{k}$. That is, $x \in J_{k}$ and $x \in J_{k}$. Since J_{k} is a subalgebra of X, we get $x * y \in J_{k} \subseteq \bigcup_{n=1}^{\infty} J_{n}$. This proves that $\cup_{n=1}^{\infty} J_{n}$ is a subalgebra of X, proving our theorem.
Theorem 3.13. Let $\left\{J_{i}: i \in N\right\}$ be a family of ideals of a BZ-algebra X where
$J_{n} \subseteq J_{n+1}$, for all $n \in N$. Then $\cup_{n=1}^{\infty} J_{n}$ is an ideal of X.
Proof. Let $\left\{J_{i}: i \in N\right\}$ be a family of ideals of X. It can be proved easily that
$\cup_{n=1}^{\infty} J_{n} \subseteq X$. Since J_{i} is an ideal of X for all i, so $0 \in \bigcup_{n=1}^{\infty} J_{n}$.
Let $x * y \in \bigcup_{n=1}^{\infty} J_{n}$ and $x \in \bigcup_{n=1}^{\infty} J_{n}$. It follows that $x * y \in J_{j}$ for some $j \in N$ and
$x \in J_{k}$ for some $k \in N$. Furthermore, let $J_{j} \subseteq J_{k}$. Hence $x * y \in J_{k}$ and $x \in J_{k}$. By assumption, J_{k} is an ideal of X, it follows that $y \in$ J_{k}. Therefore, $y \in \cup_{n=1}^{\infty} J_{n}$, proving that $\bigcup_{n=1}^{\infty} J_{n}$ is an ideal of X, proving our theorem.

4. Quotient BZ-Algebras

In this section, we describe congruence on BZ-algebras.
Definition 4.1. Let I be an ideal of a BZ-algebra X. Define a relation \sim on X by:
$\mathrm{x} \sim \mathrm{y}$ if and only if $x * y \in I$ and $y * x \in I$.
Theorem 4.2. If I is an ideal of BZ-algebra X, then the relation \sim is an equivalence relation on X.
Proof. Let I be an ideal of X and $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$. By Theorem (2.3), $x * x=0$ and assumption, $x * x \in I$. That is, $\mathrm{x} \sim \mathrm{x}$. Hence \sim is reflexive.

Next, suppose that $\mathrm{x} \sim \mathrm{y}$. It follows that $x * y \in I$ and $y * x \in I$. Then $\mathrm{y} \sim \mathrm{x}$, so \sim is symmetric.
Finally, let $\mathrm{x} \sim \mathrm{y}$ and $\mathrm{y} \sim \mathrm{z}$. Then $x * y, y * x, y * z, z * y \in I$ and
$((x * z) *(y * z)) *(x * y)=0 \in I$. It follows that $(x * z) *(y * z) \in I$, and since $z * y \in I$, so $z * x \in I$.
Similarly, $x * z \in I$. Thus \sim is transitive.
Therefore, \sim is an equivalence relation.
Lemma 4.3. Let I be an ideal of BZ-algebra X. For any $x, y, u, v \in X$, if $u \sim v$ and
$\mathrm{x} \sim \mathrm{y}$, then $\mathrm{u} * \mathrm{x} \sim \mathrm{v} * \mathrm{y}$.
Proof. Assume that $\mathrm{u} \sim \mathrm{v}$ and $\mathrm{x} \sim \mathrm{y}$, for any $\mathrm{x}, \mathrm{y}, \mathrm{u}, \mathrm{v} \in \mathrm{X}$, then $u * v, v * u$,

Vol. 4, Issue 8, August - 2020, Pages: 110-115
$x * y, y * x \in I$ and by BZ-1, we see that $((u * x) *(v * x)) *(u * v)=0$ and $((v * x) *(u * x)) *(v * u)=0$. From assumption and I is an ideal of X , these imply that $(v * x) *(u * x) \in I$ and $(u * x) *(v * x) \in I$. This shows that v * $\mathrm{x} \sim \mathrm{u} * \mathrm{x}$.

On the other hand, by Corollary (2.10), we have that $((y * v) *(x * v)) *(y * x)=0$ and
$((x * v) *(y * v)) *(x * y)=0$. From assumption and I is an ideal of X, these imply that $(y * v) *(x * v) \in I$ and $(x * v) *(y * v) \in I$. Thus $\mathrm{x} * \mathrm{v} \sim \mathrm{y} * \mathrm{v}$. Since \sim is symmetric and transitive, so $\mathrm{u} * \mathrm{x} \sim \mathrm{v} * \mathrm{y}$.
Corollary 4.4. If I is an ideal of BZ-algebra X, then the relation \sim is a congruence relation on X.
Proof. By Theorem (4.2) and Lemma (4.3).
Definition 4.5. Let I be an ideal of a BZ-algebra X. Given $x \in X$, the equivalence class $[x]_{I}$ of x is defined as the set of all element of X that are equivalent to x, that is, $[x]_{I}=\{y \in X: x \sim y\}$. We define the set $X / I=\left\{[x]_{I}: x \in X\right\}$ and a binary operation ${ }^{\circ}$ on X/I by $[x]_{I} \circ[y]_{I}=[x * y]_{I}$.
Theorem 4.6. If I is an ideal of BZ-algebra X with $X / I=\left\{[x]_{I}: x \in X\right\}$ where a binary operation ${ }^{\circ}$ on a set X / I is defined by $[x]_{I}{ }^{\circ}$ $[y]_{I}=[x * y]_{I}$, then the binary operation \circ is a mapping from $X / I \times X / I$ to X / I.
Proof. Let $\left[x_{1}\right]_{I},\left[x_{2}\right]_{I},\left[y_{1}\right]_{I},\left[y_{2}\right]_{I} \in X / I$ such that $\left[x_{1}\right]_{I}=\left[x_{2}\right]_{I}$ and $\left[y_{1}\right]_{I}=\left[y_{2}\right]_{I}$. It follows that $x_{1} \sim x_{2}$ and $y_{1} \sim y_{2}$. By Lemma (4.3), $\mathrm{x}_{1} * \mathrm{y}_{1} \sim \mathrm{x}_{2} * \mathrm{y}_{2}$, proving that $\left[\mathrm{x}_{1} * \mathrm{y}_{1}\right]_{\mathrm{I}}=\left[\mathrm{x}_{2} * \mathrm{y}_{2}\right]_{\mathrm{I}}$.
Theorem 4.7. If I is an ideal of $B Z$-algebra X, then $\left(X / I ;{ }^{\circ},[0]_{I}\right)$ is a BZ-algebra. Moreover, the set X / I is called the quotient BZ-algebra.
Proof. Let $[\mathrm{x}]_{\mathrm{I}},[\mathrm{y}]_{\mathrm{I}},[\mathrm{z}]_{\mathrm{I}} \in \mathrm{X} / \mathrm{I}$. Then
$\left(\left([x]_{\mathrm{I}} \circ[\mathrm{z}]_{\mathrm{I}}\right) \circ\left([\mathrm{y}]_{\mathrm{I}} \circ[\mathrm{z}]_{\mathrm{I}}\right)\right) \circ\left([\mathrm{x}]_{\mathrm{I}} \circ[\mathrm{y}]_{\mathrm{I}}\right)=\left([\mathrm{x} * \mathrm{z}]_{\mathrm{I}} \circ[\mathrm{y} * \mathrm{z}]_{\mathrm{I}}\right) \circ[\mathrm{x} * \mathrm{y}]_{\mathrm{I}}$
$=[(\mathrm{x} * \mathrm{z}) *(\mathrm{y} * \mathrm{z})]_{\mathrm{I}} \circ[\mathrm{x} * \mathrm{y}]_{\mathrm{I}}=[((\mathrm{x} * \mathrm{z}) *(\mathrm{y} * \mathrm{z})) *(\mathrm{x} * \mathrm{y})]_{\mathrm{I}}=[0]_{\mathrm{I}}$. It is clear that $[\mathrm{x}]_{\mathrm{I}} \circ[0]_{\mathrm{I}}=[\mathrm{x} * 0]_{\mathrm{I}}=[\mathrm{x}]_{\mathrm{I}} . \operatorname{Now}$, let $[\mathrm{x}]_{\mathrm{I}} \circ[\mathrm{y}]_{\mathrm{I}}$ $=[0]_{\mathrm{I}}$ and $[\mathrm{y}]_{\mathrm{I}} \circ[\mathrm{x}]_{\mathrm{I}}=[0]_{\mathrm{I}}$. It follows that $\mathrm{x} * \mathrm{y} \sim 0$ and $\mathrm{y} * \mathrm{x} \sim 0$, that is $(\mathrm{x} * \mathrm{y}) * 0,(\mathrm{y} * \mathrm{x}) * 0 \in I$. Since I is an ideal of X and $0 \in I$, we get that $\mathrm{x} * \mathrm{y}, \mathrm{y} * \mathrm{x} \in I$. Consequently, $\mathrm{x} \sim \mathrm{y}$, proving that $[\mathrm{x}]_{\mathrm{I}}=[\mathrm{y}]_{\mathrm{I}}$. Therefore, $\left(\mathrm{X} / \mathrm{I} ;{ }^{\circ},[0]_{\mathrm{I}}\right)$ is a BZ-algebra.
Example 4.8. According to Example (3.3), we can get that $X / I=\left\{[0]_{I},[2]_{I}\right\}$, where $[0]_{I}=[1]_{I}=\{0,1\}$ and $[2]_{I}=[3]_{I}=\{2,3\}$. Let ${ }^{\circ}$ be defined on X / I by:

\circ	$[0]_{I}$	$[2]_{I}$
$[0]_{I}$	$[0]_{I}$	$[2]_{I}$
$[2]_{I}$	$[2]_{I}$	$[0]_{I}$

Then (X/I; $\left.{ }^{\circ},[0]_{\mathrm{I}}\right)$ is a BZ-algebra.
Proposition 4.9. Let X be a BZ-algebra and I, J be any sets such that $I \subseteq J \subseteq X$. Suppose that I is a subalgebra of X. Then J is a subalgebra of X if and only if J / I is a subalgebra of X / I.
Proof. Let I be a subalgebra of X with $I \subseteq J \subseteq X$. Suppose firstly that J is a subalgebra of X, then $J / I=\left\{[\mathrm{x}]_{I}: \mathrm{x} \in J\right\}$, where $[\mathrm{x}]_{I}$ $=\{y \in J: x \sim y\}$, and $X / I=\left\{[x]_{I}: x \in X\right\}$, where $[x]_{I}=\{y \in X: x \sim y\}$.

Obviously, $J / I \subseteq X / I$ and $[0]_{I} \in J / I$.
Now, let $[\mathrm{x}]_{\mathrm{I}} \in J / I$ and $[\mathrm{x}]_{\mathrm{I}} \in J / I$, it follows that $x \in J$ and $y \in J$. By assumption, $x * y \in J$. Accordingly, $[\mathrm{x} * \mathrm{y}]_{\mathrm{I}}=[\mathrm{x}]_{\mathrm{I}}$ 。 $[y]_{I} \in J / I$, this shows that J / I is a subalgebra of X/I.
Proposition 4.10. Let X be a BZ-algebra and I, J be any sets such that $I \subseteq J \subseteq X$. Suppose that I is an ideal of X, then J is an ideal of X if and only if J / I is an ideal of X / I.
Proof. Let I be an ideal of X with $I \subseteq J \subseteq X$. Suppose firstly that J is an ideal of X , then $J / I=\left\{[\mathrm{x}]_{I}: \mathrm{x} \in J\right\}$, where $[\mathrm{x}]_{\mathrm{I}}=\{\mathrm{y} \in J$ $: x \sim y\}$, and $X / I=\left\{[x]_{I}: x \in X\right\}$, where $[x]_{I}=\{y \in X: x \sim y\}$. Obviously, $J / I \subseteq X / I$ and $[0]_{I} \in J / I$.

Now, let $[\mathrm{x}]_{\mathrm{I}} \circ[\mathrm{y}]_{I} \in J / I$ and $[\mathrm{y}]_{I} \in J / I$. Then $[\mathrm{x} * \mathrm{y}]_{\mathrm{I}}=[\mathrm{x}]_{I} \circ[\mathrm{y}]_{I} \in J / I$, it follows that $x * y \in J$ and $x \in J$. By assumption, $y \in J$. Accordingly, $[y]_{I} \in J / I$, this shows that J / I is an ideal of X/I.

On the other hand, suppose that J / I is an ideal of X / I and I is an ideal of X with $I \subseteq J \subseteq \mathrm{X}$. Thus, $0 \in J$. Let $x * y \in J$ and $x \in J$.

It follows that $[x * y]_{I},[x]_{I} \in J / I$. Since $[x * y]_{I}=[x]_{I} \circ[y]_{I}$, so $[x]_{I} \circ[y]_{I} \in J / I$. By hypothesis, $[y]_{I} \in J / I$ implies $y \in J$, proving our Lemma.
Corollary 4.11. Let I, J be ideals of a BZ-algebra X with $I \subseteq J$, then I is an ideal of X.
Proof. Obvious.
Next, the basic properties of equivalence classes are considered are as the following Theorem.
Theorem 4.12. Let I be a subalgebra (ideal) of a BZ-algebra X and $a, b \in X$. Then
(1) $[a]_{I}=I$ if and only if $a \in I$.
(2) $[\mathrm{a}]_{\mathrm{I}}=[\mathrm{b}]_{\mathrm{I}}$ or $[\mathrm{a}]_{\mathrm{I}} \cap[\mathrm{b}]_{\mathrm{I}}=\emptyset$.

Proof. Let I be a subalgebra (ideal) of X and $\mathrm{a}, \mathrm{b} \in \mathrm{X}$.

Vol. 4, Issue 8, August - 2020, Pages: 110-115
(1) It is clear due to the fact that $\mathrm{a} \sim \mathrm{a}$ for all $\mathrm{a} \in \mathrm{X}$ and $\mathrm{a} * \mathrm{a}=0 \in I$, so we get that $\mathrm{a} \in[\mathrm{a}]_{\mathrm{I}}=I$.

Conversely, let $\mathrm{x} \in[\mathrm{a}]_{\mathrm{I}}$. Then $\mathrm{x} \sim \mathrm{a}$, it follows that $\mathrm{x} * \mathrm{a}, \mathrm{a} * \mathrm{x} \in I$. By hypothesis, $\mathrm{x} \in I$. Hence, $[\mathrm{a}]_{\mathrm{I}} \subseteq I$. To show that $I \subseteq[\mathrm{a}]_{\mathrm{I}}$, choose $\mathrm{x} \in I$. Since I is a subalgebra (ideal) of X, we have $\mathrm{x} * \mathrm{a}, \mathrm{a} * \mathrm{x} \in I$. Thus, $\mathrm{x} \sim \mathrm{a}$, this means that $\mathrm{x} \in[\mathrm{a}]_{I}$ and shows that $I \subseteq[\mathrm{a}]_{\mathrm{I}}$. Consequently, $[\mathrm{a}]_{\mathrm{I}}=I$.
(2) Assume that $[a]_{I} \cap[b]_{I}=\emptyset$. Then there is $x \in[a]_{I} \cap[b]_{I}$ such that $x \in[a]_{I}$ and $x \in[b]_{I}$. It follows that $x \sim a$ and $x \sim b$, so $a \sim b$ by the symmetric and transitive properties. Thus $[a]_{I}=[b]_{I}$.
Theorem 4.13. If I is a subalgebra of a BZ-algebra X and $y \in I$, then $[y]_{I}$ is subalgebra of X.
Proof. Let I be a subalgebra of X and $y \in I$. It is clear that $0 \in[y]_{I}$. Now, suppose that $a \in[y]_{I}$ and $b \in[y]_{I}$. We will show that $a * b \in[\mathrm{y}]_{\mathrm{I}}$. Then $\mathrm{a} \sim \mathrm{y}$ and $\mathrm{b} \sim \mathrm{y}$, it follows that $\mathrm{y} * \mathrm{a} \in I$ and $\mathrm{y} * \mathrm{~b} \in I$. By assumption, $\mathrm{y} \in I$ and I is a subalgebra of X and $a * b \in I$, therefore, $\mathrm{y} *(a * b) \in I$. Then $(a * b) \sim \mathrm{y}$, this means $a * b \in[\mathrm{y}]_{\mathrm{I}}$.

Finally, let $\mathrm{a}, \mathrm{b} \in[\mathrm{y}]_{\mathrm{I}}$. Then $\mathrm{a} \sim \mathrm{y}$ and $\mathrm{b} \sim \mathrm{y}$, by Lemma (4.3), $\mathrm{a} * \mathrm{~b} \sim \mathrm{y} * \mathrm{y}$. By Theorem (2.3), it follows that $\mathrm{a} * \mathrm{~b} \sim 0$. Thus a $* \mathrm{~b} \in[0]_{\mathrm{I}}$. Now, we have $0, \mathrm{y} \in I$ and I is a subalgebra, so $0 * \mathrm{y} \in I$ and $\mathrm{y} * 0 \in I$. That is, $0 \sim \mathrm{y}$. Hence, $[0]_{\mathrm{I}}=[\mathrm{y}]_{\mathrm{I}}$. By transitive, $\mathrm{a} * \mathrm{~b} \in[\mathrm{y}]_{\mathrm{I}}$, proving our theorem.
Theorem 4.14. If I is an ideal of a BZ-algebra X and $y \in I$, then $[y]_{I}$ is an ideal of X.
Proof. Let I be an ideal of X and $\mathrm{y} \in I$. It is clear that $0 \in[y]_{\mathrm{I}}$. Now, suppose that
$\mathrm{a} * \mathrm{~b} \in[\mathrm{y}]_{\mathrm{I}}$ and $\mathrm{a} \in[\mathrm{y}]_{\mathrm{I}}$. We will show that $\mathrm{b} \in[\mathrm{y}]_{\mathrm{I}}$. Then $\mathrm{a} * \mathrm{~b} \sim \mathrm{y}$ and $\mathrm{a} \sim \mathrm{y}$, it follows that $\mathrm{y} *(\mathrm{a} * \mathrm{~b}) \in I$ and $\mathrm{y} * \mathrm{a} \in I$. By assumption, $\mathrm{a} \in I$. From Proposition (2.9), $\mathrm{a} *(\mathrm{y} * \mathrm{~b})=\mathrm{y} *(\mathrm{a} * \mathrm{~b}) \in I$, and I is an ideal of X and $\mathrm{a} \in I$, therefore, $\mathrm{y} * \mathrm{~b} \in I$.

By properties of X, we get that

$$
\begin{aligned}
(a * 0) & *(((a * b) * y) *(b * y))=(a *(b * b)) *(((a * b) * y) *(b * y)) \\
& =(b *(a * b)) *(((a * b) * y) *(b * y))=0 \text {. By hypothesis, }(a * 0) *(((a * b) * y) *(b * y)) \in I, \text { and } I \text { is an ideal }
\end{aligned}
$$

and $\mathrm{a} \in I$, then $b * y \in I$. Hence, $\mathrm{b} \sim \mathrm{y}$, this means $\mathrm{a} \in[\mathrm{y}]_{\mathrm{I}}$. Accordingly, $[\mathrm{y}]_{\mathrm{I}}$ is an ideal of X , proving our theorem.

References

[1] S. Asawasamrit and U. Leerawat, (2010), On quotient binary algebras, Scientia Magna Journal, vol.6, no.1, pp:82-88.
[2] W.A. Dudek and X. Zhang, (1992), On proper BCC-algebras, Bull. Enst. Math. Academia Simica of Mathematics, vol.20, pp:137-150.
[3] W.A. Dudek and X. Zhang, (1998), On ideals and congruences in BCC-algebras, Czechoslovak Math. Journal, vol.48, no.123, pp:21-29.
[4] E.H. Roh, Y.K. Seon, B.J. Young and H.S. Wook, (2003), On difference algebras, Kyungpook Math. J, vol.43, pp:407-414.
[5] J. Soontharanon and U. Leerawat, (2009), AC-algebras, Scientia Magna Journal, vol.5, no.4, pp:86-94.
[6] J. M. Xu and X. H. Zhang, (1998), On anti-grouped ideals in BZ-algebras, Pure Appl. Math., vol.14, pp:101-102.
[7] R. F. Ye, 1991, On BZ-algebras. In: Selected papers on BCI/BCK-algebras and Computer Logic, Shanghai Jiaotong Univ., pp:21-24.
[8] R. F. Ye and X. H. Zhang, (1993), On ideals in BZ-algebras and its homomorphism theorems, J. East China Univ. Sci. Technology, vol.19, pp:775-778.
[9] H. Yisheng, (2006), BCC-Algebras, Science Press, Beijing, 356p.

