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1. Introduction  

      In [2,3], W.A. Dudek and X. Zhang were introduced an algebraic model of BCC-algebras, i.e., implicational logic. Many 
authors have tried to construct some generalizations of this and similar algebras. One such an algebraic system have the same 

partial order as BCC-algebras and BCK-algebras but has no minimal element. Such obtained system is called a BZ-algebra [6,7] or 

a weak          BCC-algebra [8]. From the mathematical point of view the last name is more corrected but more popular is the first 

([1,4]). All these algebras have one distinguished element and satisfy some common identities playing a crucial role in these 

algebras and, in fact, are generalization or a special case of weak BCC-algebras. So, results obtained for weak BCC-algebras are in 

some sense fundamental for these algebras, especially for BCC/BCH/BCI/BCK-algebras. In this paper is introduction to the 

general theory of BZ-algebra. We give the notion of BZ-algebra, quotient BZ-algebra and investigate elementary and fundamental 

properties. 

2. BZ-algebras  

     In this section, we do define some familiar concepts as BZ-algebras, both for illustration and for review of the concept. First, we 

give a few definitions and some notation.  

Definition 2.1. An algebra (X; ∗, 0) with a binary operation ∗ and a nullary operation 0. Then X is called BZ-algebra if it satisfies 

for all x, y, z ∈ X :  

(BZ-1)     ∗     ∗    ∗      ∗     ∗        ;  

(BZ-2)   ∗       ;  

(BZ-3)   ∗              ∗        implies that      .  

      First, give example of BZ-algebra.  

Examples 2.2. Let ∗ be defined on an abelian group G by letting x∗y = x−1·y, where x, y in G, with e is unity element of G. Then 

(G; ·, e) is a BZ-algebra.  

Examples 2.3. Let X = {0, 1} and let ∗ be defined by: 

 

* 0 1 

0 0 1 

1 1 0 

      Then (G; ∗, 0) is a BZ-algebra.  

 

 

Theorem 2.3. Let (X; ∗, 0) be a BZ-algebra if and only if it satisfies the following conditions: for all x, y, z ∈ X,  

(1)     ∗     ∗     ∗      ∗    ∗          ;  

(2)       ∗     ∗      ∗       ;  

(3)      ∗       ;  

(4)      ∗              ∗        implies that      .  

Proof. Assume that (X; ∗, 0) is a BZ-algebra. From definition of BZ-algebra, (1) and (4) holds. Then we see that 

    ∗    ∗      ∗          ∗     ∗     ∗      ∗    ∗        , and  

  ∗          ∗     ∗         ∗     ∗    ∗      ∗    ∗        , so (2) and (3) holds.  
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      Conversely, we need to show BZ-2. By (1), (2) and (3), we see that  

(   ∗    ∗  ) ∗     (  ∗   ∗  ) ∗ ( ∗ (  ∗   ∗  )) 

                                    ∗   ∗   ∗    ∗   ∗    ∗   ∗        . And since  

    ∗     ∗     ∗      From (4), it follows that    ∗     ∗        and  

  ∗     ∗         ∗      ∗     ∗      . Therefore   ∗       , proving our theorem.    

Definition 2.4. Define a binary relation ≤ on BZ-algebra X by letting       if and only if   ∗       . 

Proposition 2.5. If (X; ∗, 0) is a BZ-algebra, then (X; ≤) is a partially order set. Proposition 2.6. If (X; ∗, 0) be a BZ-algebra and 

    , then      , for any x ∈ X. Moreover, 0 is called a minimal element in X.  

Proof. Let x ≤ 0, then 0 ∗ x = 0. By BZ-2, x ∗ 0 = x, and thus x = 0.  

     It is easy to show that the following properties are true for a BZ-algebra.  

Theorem 2.7. Let (X; ∗, 0) be a BZ-algebra if and only if it satisfies the following conditions: for all x, y, z ∈ X,  

(1)     ∗     ∗     ∗           ∗      ;  
(2)     ∗     ∗        ;  

(3)       if and only if   ∗       .  

Proposition 2.8. Let x, y, z be any element in a BZ-algebra X. Then  

(1)       implies    ∗        ∗   .  

(2)       implies    ∗        ∗   .  

Proposition 2.9. Let x, y, z be any element in a BZ-algebra X. Then 

  ∗     ∗         ∗     ∗    .  
Proof. Since Theorem (2.7(2)), (x ∗ z) ∗ z ≤ x, and by Proposition (2.8(2)), we get that   ∗     ∗           ∗     ∗     ∗     ∗    . 
Putting       and       ∗    in Theorem (2.7(1)), it follows that     ∗     ∗     ∗     ∗         ∗     ∗    . By the transitivity 

of   ≤   gives   ∗     ∗         ∗     ∗    . And we replacing x by y and y by x, we obtain   ∗     ∗         ∗    ∗    . By the 

anti-symmetry of   ≤, thus  

  ∗    ∗         ∗    ∗     and finishing the proof.  

Corollary 2.10. Let x, y, z be any element in a BZ-algebra X. Then  

(1)   ∗        if and only if   ∗       .  

(2) (  ∗     ∗    ∗         ∗   .  

Proposition 2.11. Let x, y, z be any element in a BZ-algebra X. Then  

(1)     ∗     ∗     ∗        ∗   .  

(2)    ∗     ∗       ∗     ∗     ∗    .  
Proof.  
(1)   From Theorem (2.3(2)) and Theorem (2.7(1)), 

      ∗     ∗     ∗     ∗    ∗         ∗      ∗     ∗      . Thus 

      ∗     ∗     ∗     ∗     ∗      . Since    ∗     ∗       ∗     ∗     ∗           ∗     ∗     ∗      ∗     ∗      . So, by 

BZ-3,    ∗     ∗        ∗   .  

(2)    Since 

   ∗   ∗   ∗       ∗   ∗ ( ∗ (  ∗   ∗   ∗   )) 

                                ∗   ∗ (  ∗   ∗ ( ∗    ∗   )) 

                               ∗   ∗ (  ∗   ∗ ( ∗    ∗   )) 

                               ∗   ∗ (  ∗   ∗   ∗   )                            

                               ∗   ∗  . The proof is complete.  

 

      In this paper we will denote N for the set of all nonnegative integers, i.e., 

0, 1, 2, ..., and N∗ for the set of all natural numbers, i.e., 1, 2, 3, ..., and we will also use the following notation in brevity:  

y0 ∗ x = x,    ∗     
   ∗     ∗    ∗    ∗     
↔                    

       
 , where x, y are any elements in a BZ-algebra and n ∈ N∗.  

 

Proposition 2.12. Let x, y be any element in a BZ-algebra X. Then  

(1)     ∗     ∗      ∗         ∗    ,  for any n ∈ N.  

(2)     ∗     ∗       ∗      ∗    ,   for any n ∈ N.  

Proof. Let X be a BZ-algebra and x, y ∈ X and n, m ∈ N.  

(1) Proceed by induction on n and defined the statement P(n), 

    ∗     ∗      ∗        ∗  .  
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     We see that P(0) is true,     ∗   ∗     ∗            ∗  . Assume that P(k) is true for some arbitrary k ≥ 0, that is     ∗
    ∗      ∗         ∗   . Since  

(  ∗   ∗  )
   

 ∗     (  ∗   ∗  ) ∗ ((  ∗   ∗  )
 
 ∗  ) 

                                      (  ∗   ∗  ) ∗     ∗    

                                        ∗  ((   ∗    ∗   ) ∗   ) 

                                         ∗     ∗     

                                           ∗   .  

This show that P(k + 1) is true and by the principle of mathematical induction, P(n) is true for each n ∈ N∗.  

(2) Since     ∗    ∗    (  ∗        ∗    ) ∗    

                                           ∗    ∗  (      ∗    ∗   ) 

                                            ∗    ∗  ((  ∗        ∗    ) ∗   ) 

                                            ∗    ∗  (   ∗    ∗  (      ∗    ∗   )) 

                                            ∗      ∗  (     ∗    ∗   ) 

                                                 ∗      ∗    ✷  

       Given x ∈ X if it satisfies   ∗     , that is x ≤ 0, the element x is called a positive element of X. By definition, the zero 

element 0 of X is positive.  

Proposition 2.12. Let x be any element in a BZ-algebra X. Then    ∗     ∗     ∗      is a positive element of X,  for every x ∈ X.  

Proof. Since  ∗    ∗     ∗    ∗          ∗   ∗   ∗    ∗     ∗        
    ∗   ∗   ∗        . Therefore   ∗     ∗     ∗     is a positive element of X.  

3. Ideals of BZ-algebra  

Definition 3.1. A non-empty subset S of a BZ-algebra X is called a subalgebra of X on condition that x ∗ y ∈ S, whenever 

 x, y ∈ S.  

Definition 3.2. A non-empty subset I of a BZ-algebra X is called an ideal of X if it satisfies the following conditions:  

(I-1)   ∈    , 

(I-2) for any x, y ∈ X,   ∗    ∈    and   ∈    imply   ∈   .  

Examples 3.3. Let X = {0, 1, 2, 3} and let ∗ be defined by the table: 

 

* 0 1 2 3 

0 0 0 3 3 

1 1 0 3 2 

2 2 3 0 1 

3 3 3 0 0 

 
      Thus, it can be easily shown that X is a BZ- algebra. And we see that I = {0, 1} and J = {0, 3} are subalgebras and ideals of X.  

 

Lemma 3.4. If   is an ideal of BZ-algebra X, then   is an subalgebra. The convers is not true in general. 

Lemma 3.5. Let   be a subalgebra of BZ-algebra X. Then A is an ideal of X if and only if x ∈   and z ∗ y ∈   imply z ∗ (x ∗ y) ∈   
for all x, y, z ∈ X.  

Proof. Let   be an ideal of X and let x ∈   whereas z ∗ y ∈  . Suppose that   ∗     ∗     ∈   . By Proposition (2.9), we see that 

  ∗     ∗     ∈   . Since   is an ideal of X and   ∈      ∗    ∈  , a contradiction. So   ∗     ∗     ∈   .  

      Conversely, assume that if   ∈    and   ∗    ∈    imply   ∗    ∗     ∈    for all x, y, z ∈ X. Since   is a subalgebra of X, then 

there is   ∈    which       ∗    ∈    That is,   ∈   .  

    Now, let   ∗    ∈    and   ∈   . Assume that   ∈   . We have that  ∗       ∈   . It follows that   ∗   ∗   ∈   . Hence 

 ∗   ∈   , contradiction. Therefore   is an ideal of X. This completes the proof.  

Corollary 3.6. Let   be a subalgebra of BZ-algebra X. Then   is an ideal of X if and only if   ∈    and   ∈    imply   ∗    ∈    for 

all x, y ∈ X.  
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Lemma 3.7. Let   be a subalgebra of BZ-algebra X. Then   is an ideal of X if and only if   ∗     ∗     ∈    and   ∗    ∈    imply 

  ∈    for all x, y, z ∈ X.  

Proof. Let   be an ideal of X and let   ∗     ∗     ∈      ∗    ∈   . Suppose that  

  ∈   . By Proposition (2.9), we have   ∗     ∗     ∈   . Since   is an ideal of X, thus   ∗    ∈   , contradiction, this shows that 

  ∈   .  

      Conversely, assume that   ∗     ∗     ∈    and   ∗    ∈    imply   ∈    for all x, y, z ∈ X. Since   is a subalgebra of X, then 

there is   ∈    which       ∗    ∈   . Then   ∈   . Let   ∗    ∈      ∈    and suppose that   ∈   .  
By BZ-2,    ∗     ∗   ∈    and   ∗    ∈   . By assumption, so   ∈   , a contradiction. This proves that   is an ideal of X.  

Corollary 3.8. Let   be a subalgebra of BZ-algebra X. Then   is an ideal of X if and only if   ∗    ∈    and   ∈    imply   ∈    for 

all x, y, z ∈ X. This Lemma gives some properties of ideal of BZ-algebra.  

Lemma 3.9. If   is an ideal of BZ-algebra X and   is an ideal of  , then   is an ideal of X.  

Proof. Since   is an ideal of  , then   ∈   . Let x, y ∈ X such that  ∗    ∈    and  

  ∈   . It follows that that  ∗    ∈    and   ∈   . By assumption,   is an ideal of X, so   ∈    and   ∈    From   is an ideal of  , so 

  ∈   . Therefore,   is an ideal of X.  

Theorem 3.10. Let {Ij : j ∈ J} be a family of subalgebras of a BZ-algebra X. Then   ∈    is a subalgebra of X.  

Proof. Let {Ij : j ∈ J} be a family of subalgebras of X. It is obvious that    ∈    ⊆ X. Since 0 ∈ Ij for all j ∈ J, it follows that 0 ∈  

  ∈   . Let x∗y ∈    ∈   and x ∈    ∈   .  

We will show that   ∈    is a subalgebra of X. Let x, y ∈    ∈   . It follows that 

 x, y ∈ Ij for all j ∈ J. Since Ij is a subalgebra of X and x ∗ y ∈ Ij, for all j ∈ J, then 

 x ∗ y ∈    ∈   . This show that    ∈    is a subalgebra 

Theorem 3.11. Let {Ij : j ∈ J} be a family of ideals of a BZ-algebra X. Then   ∈    is an ideal of X.  

Proof. Let {Ij : j ∈ J} be a family of ideals of X. It is obvious that    ∈    ⊆ X. Since 0 ∈ Ij for all j ∈ J, it follows that 0 ∈    ∈   . 

Let x∗y ∈    ∈   and x ∈    ∈   . We get that x ∗ y ∈ Ij and x ∈ Ij for all j ∈ J, then y ∈ Ij for all j ∈ J. Because Ij is an ideal of X. 

So y ∈    ∈   , proving our theorem.  

Theorem 3.12. Let {Ji : i ∈ N} be a family of subalgebras of a BZ-algebra X where Jn ⊆ Jn+1 for all n ∈ N. Then  ⋃   
 
   is a 

subalgebra of X.  

Proof. Let {Ji : i ∈ N} be a family of subalgebras of X. We will show that  ⋃   
 
   is a subalgebra of X. Let x, y ∈  ⋃   

 
   . It 

follows that x ∈ Jj for some j ∈ N and y ∈ Jk for some k ∈ N. Furthermore, we assume that j ≤ k, we obtain Jj ⊆ Jk. That is, x ∈ Jk 

and x ∈ Jk. Since Jk is a subalgebra of X, we get x ∗ y ∈ Jk ⊆  ⋃   
 
   . This proves that  ⋃   

 
    is a subalgebra of X, proving our 

theorem.   
Theorem 3.13. Let {Ji : i ∈ N} be a family of ideals of a BZ-algebra X where  

Jn ⊆ Jn+1 ,  for all n ∈ N. Then  ⋃   
 
    is an ideal of X.  

Proof. Let {Ji : i ∈ N} be a family of ideals of X. It can be proved easily that 

  ⋃   
 
    ⊆ X. Since Ji is an ideal of X for all i, so 0 ∈  ⋃   

 
   .  

     Let x ∗ y ∈  ⋃   
 
   and x ∈  ⋃   

 
   . It follows that x ∗ y ∈ Jj for some j ∈ N and  

x ∈ Jk for some k ∈ N. Furthermore, let Jj ⊆ Jk. Hence x ∗ y ∈ Jk and x ∈ Jk. By assumption, Jk is an ideal of X, it follows that y ∈ 

Jk. Therefore, y ∈  ⋃   
 
   , proving that  ⋃   

 
   is an ideal of X, proving our theorem.   

4. Quotient BZ-Algebras  

      In this section, we describe congruence on BZ-algebras.  

Definition 4.1. Let   be an ideal of a BZ-algebra X. Define a relation ∼ on X by: 

 x ∼ y if and only if   ∗    ∈    and   ∗    ∈   .  
Theorem 4.2. If   is an ideal of BZ-algebra X, then the relation ∼ is an equivalence relation on X.  

Proof. Let   be an ideal of X and x, y, z ∈ X. By Theorem (2.3),   ∗        and assumption,  ∗    ∈   . That is, x ∼ x. Hence ∼ 

is reflexive.  

    Next, suppose that x ∼ y. It follows that   ∗    ∈    and   ∗    ∈   . Then y ∼ x, so ∼ is symmetric.  

     Finally, let x ∼ y and y ∼ z. Then   ∗      ∗      ∗      ∗    ∈    and  

(   ∗    ∗     ∗    ) ∗     ∗       ∈   .  It follows that    ∗     ∗     ∗     ∈   , and since   ∗    ∈     so   ∗    ∈   . 

Similarly,   ∗    ∈   . Thus ∼ is transitive.      

    Therefore,   ∼ is an equivalence relation.  
Lemma 4.3. Let I be an ideal of BZ-algebra X. For any x, y, u, v ∈ X, if u ∼ v and   

x ∼ y, then u ∗ x ∼ v ∗ y.  

Proof. Assume that u ∼ v and x ∼ y, for any x, y, u, v ∈ X, then   ∗      ∗     

http://www.ijeais.org/


International Journal of Engineering and Information Systems (IJEAIS) 

ISSN: 2643-640X  

Vol. 4, Issue 8, August – 2020, Pages: 110-115 
  

 

www.ijeais.org 

114 

   ∗      ∗    ∈    and by BZ-1, we see that     ∗     ∗     ∗      ∗     ∗         and     ∗     ∗    ∗      ∗     ∗        . 

From assumption and I is an ideal of X, these imply that (  ∗     ∗    ∗     ∈    and    ∗     ∗     ∗     ∈   . This shows that v 

∗ x ∼ u ∗ x.  

      On the other hand, by Corollary (2.10), we have that    ∗   ∗   ∗    ∗   ∗        and 

    ∗    ∗     ∗      ∗     ∗        . From assumption and I is an ideal of X, these imply that    ∗     ∗    ∗     ∈    and 

    ∗     ∗    ∗     ∈   . Thus x ∗ v ∼ y ∗ v. Since ∼ is symmetric and transitive, so u ∗ x ∼ v ∗ y.  

Corollary 4.4. If I is an ideal of BZ-algebra X, then the relation ∼ is a congruence relation on X.  

Proof. By Theorem (4.2) and Lemma (4.3).  

Definition 4.5. Let I be an ideal of a BZ-algebra X. Given x ∈ X, the equivalence class [x]I of x is defined as the set of all element 

of X that are equivalent to x, that is, [x]I = {y ∈ X : x ∼ y}. We define the set X/I = {[x]I : x ∈ X} and a binary operation  

◦ on X/I by [x]I ◦ [y]I = [x ∗ y]I .  

Theorem 4.6. If I is an ideal of BZ-algebra X with X/I = {[x]I : x ∈ X} where a binary operation ◦ on a set X/I is defined by [x]I ◦ 

[y]I = [x∗ y]I , then the binary operation ◦ is a mapping from X/I × X/I to X/I.  

Proof. Let [x1]I , [x2]I , [y1]I , [y2]I ∈ X/I such that [x1]I = [x2]I and [y1]I = [y2]I . It follows that x1 ∼ x2 and y1 ∼ y2. By Lemma (4.3), 

x1 ∗ y1 ∼ x2 ∗ y2, proving that   [x1 ∗ y1]I = [x2 ∗ y2]I .  

Theorem 4.7. If   is an ideal of BZ-algebra X, then (X/I; ◦, [0]I) is a BZ-algebra. Moreover, the set X/I is called the quotient        

BZ-algebra.  

Proof. Let [x]I , [y]I , [z]I ∈ X/I. Then  

(([x]I ◦ [z]I ) ◦ ([y]I ◦ [z]I )) ◦ ([x]I ◦ [y]I ) = ([x ∗ z]I ◦ [y ∗ z]I )◦ [x ∗ y]I  

   = [(x ∗ z) ∗ (y ∗ z)]I ◦ [x ∗ y]I  = [ ((x ∗ z) ∗ (y ∗ z)) ∗ (x ∗ y)]I = [0]I . It is clear that [x]I ◦ [0]I  = [x ∗ 0]I = [x]I . Now, let [x]I ◦ [y]I 

= [0]I and [y]I ◦ [x]I = [0]I . It follows that x ∗ y ∼ 0 and y ∗ x ∼ 0, that is  (x ∗ y) ∗0, (y ∗ x) ∗0 ∈ I. Since I is an ideal of X and         

0 ∈ I, we get that x ∗ y, y ∗ x ∈ I. Consequently, x ∼ y, proving that [x]I = [y]I . Therefore, (X/I; ◦, [0]I ) is a BZ-algebra.  

Example 4.8. According to Example (3.3), we can get that X/I = {[0]I , [2]I}, where [0]I = [1]I = {0, 1} and [2]I = [3]I = {2, 3}.  

Let ◦ be defined on X/I by: 

 
 

 

 

 

 

     Then (X/I; ◦, [0]I) is a BZ-algebra.  

Proposition 4.9. Let X be a BZ-algebra and     be any sets such that   ⊆    ⊆ X. Suppose that   is a subalgebra of X. Then   is a 

subalgebra of X if and only if     is a subalgebra of X/I.  

Proof. Let   be a subalgebra of X with   ⊆    ⊆ X. Suppose firstly that   is a subalgebra of X, then     = {[x]I : x ∈   }, where [x]I 

= {y ∈   : x ∼ y}, and X/I = {[x]I : x ∈ X}, where [x]I = {y ∈ X : x ∼ y}.  

     Obviously,     ⊆      and [0]I ∈    .  
     Now, let [x]I ∈     and [x]I ∈    , it follows that    ∈    and   ∈   . By assumption,   ∗    ∈   . Accordingly, [x ∗ y]I = [x]I ◦ 

[y]I ∈     , this shows that     is a subalgebra of X/I.  

Proposition 4.10. Let X be a BZ-algebra and     be any sets such that   ⊆    ⊆ X. Suppose that   is an ideal of X, then   is an 

ideal of X if and only if     is an ideal of X/I.  

Proof. Let   be an ideal of X with   ⊆    ⊆ X. Suppose firstly that   is an ideal of X, then     = {[x]I : x ∈   }, where [x]I = {y ∈   
: x ∼ y}, and X/I = {[x]I : x ∈ X}, where [x]I = {y ∈ X : x ∼ y}. Obviously,     ⊆      and [0]I ∈    .  
     Now, let [x]I ◦ [y]I ∈     and [y]I ∈    . Then [x ∗ y]I = [x]I ◦ [y]I ∈    , it follows that   ∗    ∈    and   ∈   . By assumption, 

  ∈   . Accordingly, [y]I ∈    , this shows that     is an ideal of X/I.  

      On the other hand, suppose that     is an ideal of X/I and   is an ideal of X with   ⊆    ⊆ X. Thus,   ∈   . Let   ∗    ∈    and 

  ∈   .  
    It follows that [x∗y]I , [x]I ∈    . Since [x∗y]I = [x]I ◦[y]I , so [x]I ◦[y]I ∈    . By hypothesis, [y]I ∈     implies   ∈   , proving 

our Lemma.  

Corollary 4.11. Let     be ideals of a BZ-algebra X with   ⊆   , then I is an ideal of X.  

Proof. Obvious.  

     Next, the basic properties of equivalence classes are considered are as the following Theorem.  

Theorem 4.12. Let   be a subalgebra (ideal) of a BZ-algebra X and a, b ∈ X. Then  

(1) [a]I = I if and only if   ∈   .  

(2) [a]I = [b]I or [a]I ∩ [b]I = ∅.  

Proof. Let   be a subalgebra (ideal) of X and a, b ∈ X.  

◦ [0]I  [2]I  

[0]I [0]I  [2]I  

[2]I  [2]I  [0]I  
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(1) It is clear due to the fact that a ∼ a for all a ∈ X and a ∗ a = 0 ∈ I, so we get that      a ∈ [a]I = I.  

     Conversely, let x ∈ [a]I . Then x ∼ a, it follows that x ∗ a, a ∗ x ∈ I. By hypothesis, x ∈ I. Hence, [a]I ⊆ I. To show that I ⊆ [a]I , 

choose x ∈ I. Since I is a subalgebra (ideal) of X, we have x ∗ a, a ∗ x ∈ I. Thus, x ∼ a, this means that x ∈ [a]I and shows that 

   ⊆ [a]I . Consequently, [a]I = I.  

(2) Assume that [a]I ∩ [b]I = ∅. Then there is x ∈ [a]I ∩ [b]I such that x ∈ [a]I and x ∈ [b]I . It follows that x ∼ a and x ∼ b, so a ∼ b 

by the symmetric and transitive properties. Thus [a]I = [b]I .  

Theorem 4.13. If I is a subalgebra of a BZ-algebra X and y ∈ I, then [y]I is subalgebra of X.  

Proof. Let I be a subalgebra of X and y ∈ I. It is clear that 0 ∈ [y]I . Now, suppose that a ∈ [y]I and b ∈ [y]I . We will show that 

  ∗    ∈ [y]I . Then a ∼ y and b ∼ y, it follows that y ∗ a ∈ I and y ∗ b ∈ I. By assumption, y ∈ I  and I is a subalgebra of X and 

  ∗    ∈ I, therefore, y ∗ (  ∗   ) ∈ I .  Then (  ∗   ) ∼ y,  this means   ∗    ∈ [y]I .  

     Finally, let a, b ∈ [y]I . Then a ∼ y and b ∼ y, by Lemma (4.3), a ∗ b ∼ y ∗ y. By Theorem (2.3), it follows that a ∗ b ∼ 0. Thus a 

∗ b ∈ [0]I . Now, we have 0, y ∈ I and I is a subalgebra , so 0 ∗ y ∈ I and y ∗ 0 ∈ I. That is, 0 ∼ y. Hence, [0]I = [y]I . By transitive, 

a ∗ b ∈ [y]I , proving our theorem.  

Theorem 4.14. If I is an ideal of a BZ-algebra X and y ∈ I, then [y]I is an ideal of X.  

Proof. Let I be an ideal of X and y ∈ I. It is clear that 0 ∈ [y]I . Now, suppose that  

a ∗ b ∈ [y]I and a ∈ [y]I . We will show that b ∈ [y]I . Then a ∗ b ∼ y and a ∼ y, it follows that y ∗ (a ∗ b) ∈ I and y ∗ a ∈ I. By 

assumption, a ∈ I. From Proposition (2.9), a ∗ (y ∗ b) = y ∗ (a ∗ b) ∈ I, and I is an ideal of X and a ∈ I, therefore, y ∗ b ∈ I.      

     By properties of X, we get that  

   ∗    ∗  ((   ∗    ∗   ) ∗     ∗    )   (  ∗    ∗    ) ∗ ((   ∗    ∗   ) ∗     ∗    )      

                   ∗   ∗    ∗     ∗   ∗   ∗   ∗        . By hypothesis,   ∗   ∗     ∗   ∗   ∗   ∗     ∈   , and I is an ideal  

and a ∈ I, then   ∗    ∈   . Hence, b ∼ y, this means a ∈ [y]I . Accordingly, [y]I is an ideal of X, proving our theorem.  
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