On The Special Ideals in BZ-algebras

Dr. Ahmed Hamzah Abed
Department of Mathematics, Faculty of Basic Education, University of Kufa, Najaf, Iraq. E-mail: ahmedh.abed@uokufa.edu.iq

Abstract

In this paper, we define the notions of BZ-ideal, a-ideal and p-ideal in BZ-algebras. We give several characterizations and the extensive theorems for the BZ-ideal, a-ideal and p-ideal.

Keywords: ideal, BZ-ideal, a-ideal, p-ideal, BZ-algebras

1. Introduction

In [5], R. F. Ye introduced a new algebraic structure which is called BZ-algebras. And we described the relation between ideals and congruences. Furthermore, we defined quotient BZ-algebra and studied its properties [5,6]. In addition, they introduced the notion of BZ-ideals and a-ideals in BCI-algebras. They gave several characterizations and the extensive theorems about q-ideals and a-ideals. In this paper, we define the notion of BZ-ideals, p-ideals and a-ideals in BZ-algebras and investigated some related properties. The purpose of this paper is to derive some straightforward consequences of the relations between BZ-ideals, a-ideals and p-ideal. We also investigate some of its properties.

2. Preliminaries

In this section we introduced an algebraic structure called a BZ-algebra which is an algebra $(\mathrm{X}, *, 0)$ with a binary operation $*$ and a nullary operation 0 such that for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$, satisfies the following properties:
$(\mathrm{BZ}-1)((x * z) *(y * z)) *(x * y)=0$;
(BZ-2) $x * 0=x$;
(BZ-3) $x * y=0$ and $y * x=0$ implies that $x=y$.
On BZ-algebra $(X, *, 0)$, we defined a binary relation \leq on X by putting $x \leq y$ if and only if $x * y=0$. Then (X, \leq) is a partially ordered set. It is easy to show that the following properties are true for a BZ-algebra. For any $\mathrm{x}, \mathrm{y}, \mathrm{z}$ in X :

```
(P-1)x*((x*y)*y) = 0;
(P-2) x * x = 0;
(P-3) x* (y*z) = y*(x*z);
(P-4) ((x*y)*y)*y=x*y;
(P-5) (x*y)*0 = (x*0)*(y*0);
(P-6) (x*y)*((z*x)*(z*y))=0;
(P-7) }x\leqy\mathrm{ implies }y*z\leqx*z
(P-8) x \leq y implies z*x\leqz*y.
```

A subset S of a BZ-algebra X is called subalgebra of \mathbf{X} if $x * y \in S$ whenever $x, y \in S$. A non-empty subset I of a BZ-algebra X is called ideal of \mathbf{X} if it satisfies the following conditions:
(I-1) $0 \in I$
(I-2) For any $\mathrm{x}, \mathrm{y} \in \mathrm{X}, x * y \in I$ and $x \in I$ imply $y \in I$.
Let I be an ideal of BZ-algebra X . Define the relation $\sim \mathrm{on} \mathbf{X}$ by $\mathrm{x} \sim \mathrm{y}$ if and only if $\mathrm{x} * \mathrm{y} \in I$ and $\mathrm{y} * \mathrm{x} \in I$. Then the relation \sim is an equivalence relation on X and
$[0]_{I}=\{x \in X \mid x \sim 0\}$ is an ideal of X.

Vol. 4, Issue 8, August - 2020, Pages: 121-126
Let \sim be an equivalence relation on a BZ-algebra X and I be an ideal of X. Define $[x]_{I}$ by $[x]_{I}=\{y \in X \mid x \sim y\}=\{y \in X \mid x *$ $\mathrm{y} \in I, \mathrm{y} * \mathrm{x} \in I\}$. Then the family $\left\{[\mathrm{x}]_{I} \mid \mathrm{x} \in \mathrm{X}\right\}$ gives a partition of X which is denoted by X / I. For any $\mathrm{x}, \mathrm{y} \in \mathrm{X}$, we defined $[\mathrm{x}]_{\mathrm{I}} 。$ $[y]_{I}=[\mathrm{x} * y]_{I}$, then the binary operation \circ is a mapping from $X / I \times X / I$ to X / I. It is easily checked that $\left(X / I, 0,[0]_{I}\right)$ is a BZalgebra. Moreover, the set X / I is called the quotient BZ-algebra. And if I is a closed ideal of BZ-algebra X, then it is clear that $[a]_{I}=I$ for all a in I.

3. BZ-ideals and Its Properties

In this section, we describe properties of BZ-ideals.
Definition 3.1. A non-empty subset I of BZ-algebras X is said to be a BZ-ideal of \mathbf{X} if it satisfies the following conditions (I-1) and
(I-3) for any $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X},(x * y) * z \in I$ and $y \in I$ imply $x * z \in I$.
First, give example shows that the BZ-ideal of X exists.
Example 3.2. Let $X=\{0,1,2\}$. Define an operation $*$ on X with the Cayley table given by:

$*$	0	1	2
0	0	0	2
1	1	0	2
2	2	2	0

Then the Cayley table clearly $(\mathrm{X}, *, 0)$ is a BZ-algebras and it is easily checked that $I=\{0,1\}$ is a BZ-ideal.
Next, we give the relations between BZ-ideal and ideal and subalgebra are considered as the following theorem.
Theorem 3.3. An ideal of BZ-algebras ($\mathrm{X}, *, 0$) is a BZ-ideal.
Proof. Suppose that I is an ideal of BZ-algebra and let $(\mathrm{x} * \mathrm{y}) * \mathrm{z} \in I$ and $\mathrm{y} \in I$. It follows that $(\mathrm{x} * 0) * \mathrm{z} \in I$ imply $\mathrm{x} * \mathrm{z} \in I$. Thus (I-2) holds. Combining (I-1), we conclude that I is a BZ-ideal of X.

Next, I will show example the converse of Theorem 3.3 is not true.
Example 3.4. Let $X=\{0,1,2,3\}$. Define an operation $*$ on X with the Cayley table given by:

$*$	0	1	2	3
0	0	3	2	1
1	1	0	3	2
2	2	1	0	3
3	3	3	1	0

Then it is easily checked that $(\mathrm{X}, *, 0)$ is a BZ-algebra and $I=\{0,2\}$ is an ideal of X , but not a BZ-ideal of X . Since $(3 * 2) * 1=1 * 1=0 \in I$ and $2 \in I$, but $3 * 1=3 \notin I$.

Now, we investigate the characterization of BZ-ideal.
Theorem 3.5. If I is an ideal of BZ-algebras X, then the following are equivalent:

Vol. 4, Issue 8, August - 2020, Pages: 121-126
(1) I is an BZ-ideal of X;
(2) For any $\mathrm{x}, \mathrm{y} \in \mathrm{X},((x * 0) * y) \in I \operatorname{implies} x * y \in I$;
(3) For any $x, y, z \in X,(x * y) * z \in I$ implies $x *(y * z) \in I$.

Proof. Assume that I is an ideal of BZ-algebra X and $x, y, z \in X$.
$(1) \Rightarrow(2)$ Let I be an BZ-ideal of X and $(x * 0) * y \in I$. Since $0 \in I$, by $(\mathrm{I}-3), x * y \in I$.
$(2) \Rightarrow(3)$ Suppose that (2) holds and $(x * y) * z \in I$. We see that $(x * y) * z) *((x * 0) *(y * z)) \leq(x * 0) *(y *(x * y))$

$$
=(x * 0) *(x *(y * y))=(x * 0) *(x * 0)=0 \in I . \text { Since } I \text { is an ideal of } X, \text { so }((x * 0) *(y * z)) \in I . \text { By (2), }
$$

So $x *(y * z) \in I$.
$(3) \Rightarrow(1) \operatorname{Let}(x * y) * z \in I$ and $y \in I$. From (3), we obtain that $x *(y * z) \in I$. Thus $y *(x * z) \in I$ by (P-3). Since $y \in I$ and I is an ideal, hence $x * z \in I$, proving that I is a BZ-ideal of X.
Theorem 3.6. Let J and I be ideals of a BZ-algebra X with $I \subseteq J$. If I is a BZ-deal of X , then so is J.
Proof. Let I is a BZ-deal of a BZ-algebra X and set $s=(x * 0) * y \in J$. Since
$(x * 0) *(s * y)=s *((x * 0) * y)=0 \in I$. By Theorem (3.5(2)), we get that $x *(s * y) \in I$. And since I is a BZ-ideal, then $s *(x * y) \in I$. Thus $s *(x * y) \in J$ and J is an ideal, so $x * y \in J$. Therefore J is a BZ-ideal.
Corollary 3.7. If zero ideal $\{0\}$ of BZ-algebra X is a BZ-ideal, then every ideal of X is a BZ-ideal.
Theorem 3.8. Let I be an ideal of BZ-algebra X . If for any $x \in I$ and $\mathrm{y} \in \mathrm{X}$ imply $x * y \in I$, then I is BZ-ideal of X .
Proof. Assume that $(x * y) * z \in I$ and $y \in I$. By hypothesis, we obtain $x *((x * z) * z) \in I$ and $x * y \in I$. Then $(x * y) *(x * z) \in I$, since I is an ideal of X , so $x * z \in I$, proving that I is BZ-ideal of X.

Lemma 3.9. If I is a BZ-ideal of BZ-algebra X, then $x *(x * 0) \in I$ for all $\mathrm{x} \in \mathrm{X}$.
Proof. Assume that I is a BZ-ideal of BZ-algebra X.
Since $(x * 0) *(x * 0)=0 \in I$, then it follows that $x *(x * 0) \in I$ because Theorem (3.5(2).

4. a-Ideals and Its Properties

Definition 4.1. A non-empty subset I of BZ-algebra X is called an a-ideal of \mathbf{X} if it satisfies the following conditions (I-1) and (I-4) for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X},(x * 0) *(z * y) \in I$ and $z \in I$ imply $y * x \in I$.
Example 4.2. Let $\mathrm{X}=\{0,1,2,3\}$. Define an operation $*$ on X with the Cayley table given by:

$*$	0	1	2	3
0	0	1	2	3
1	1	0	3	2
2	2	3	0	1
3	3	2	1	0

Then it is easily checked that $(\mathrm{X}, *, 0)$ is a BZ-algebras and $I=\{0,1\}$ an a-ideal of X . The following theorem show the relations between a-ideals and ideals and between a-ideals and subalgebra.
Theorem 4.3. If I is an a-ideal of BZ-algebra X, then I is an ideal.
Proof. Let I be an a-deal of X. First, we will show that I is an ideal of X . Assume that $x * y \in I$ and $x \in I$. It follows that

Vol. 4, Issue 8, August - 2020, Pages: 121-126
$(0 * 0) *(x * y) \in I$ and $x \in I$, by (I-4), we obtain $y * 0 \in I$. Substituting $\mathrm{x}=0=\mathrm{z}$ in (I-4), we get that $y \in I$ and $0 \in I$, then $y * 0 \in I$. So, it follows that $(y * 0) * 0 \in I$. Putting $\mathrm{y}=\mathrm{z}=0$ in (I-4), it follows that if $(x * 0) *(0 * 0) \in I$ and $0 \in I$, then $0 * x \in I$.

Now, $(x * 0) * 0 \in I$, implies that $x \in I$. Since $(y * 0) * 0 \in I$, so $y \in I$. Proving that I is an ideal of X. Finally, to show that I is a subalgebra. Now, assume that $x \in I$ and $y \in I$. We see that $x * 0 \in I$ and $y * 0 \in I$.

Since $x *(y * x)=y * 0 \in I$ and $x \in I$, then $y * x \in I$. Similarly, $x * y \in I$. Therefore I is a subalgebra, proving our theorem.

The following theorem gives us some equivalences of a-ideals.
Theorem 4.4. Let I be an ideal of BZ-algebra X. The following conditions are equivalent:
(1) I is an a-ideal of X;
(2) $(x * 0) *(z * y) \in I$ implies $(z * y) * x \in I$, for any $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$;
(3) $(x * 0) * y \in I$ implies $y * x \in I$, for any $\mathrm{x}, \mathrm{y} \in \mathrm{X}$.

Proof. Let I be an ideal of BZ-algebra X.
$(1) \Rightarrow(2)$, Assume that I is an a-ideal of X and set $s=(x * 0) *(z * y) \in I$. We can write
$(x * 0) *(s *(z * y))=s *((x * 0) *(z * y))=0 \in I$. By (I-4) and $s \in I$, thus $(z * y) * x \in I$. Proving that (2) holds.
(2) \Rightarrow (3), Putting $z=0$ in (2), we obtain (3).
(3) $\Rightarrow(1)$, Let $(x * 0) *(z * y) \in I$ and $z \in I$. We see that $((x * 0) *(z * y)) *((x * 0) * y) \leq(z * y) * y$
$\leq z \in I$. Since I is an ideal of X, thus $((x * 0) *(z * y)) *((x * 0) * y) \in I$, and imply that $(x * 0) * y \in I$. By (3), $y * x \in I$, and so I is an a-ideal of X .
Definition 4.5. An ideal I of BZ-algebra X is called a p-ideal of \mathbf{X} if it satisfies $(x * 0) * 0 \in I$ implies $x \in I$.
Next, we give the relations between a-ideal and p-ideal are considered as the following theorem.
Theorem 4.6. Any a-ideal of BZ-algebra is a p-ideal.
Proof. Suppose that I is an a-ideal of BZ-algebras. By Theorem (4.3), it follows that I is an ideal. Putting $\mathrm{y}=\mathrm{z}=0$ in Theorem (4.2(2)), so $(x * 0) *(0 * 0) \in I$ implies $(x * 0) * 0 \in I$. By Theorem (4.4(2)), we get that $(x * 0) * 0 \in I$ implies $x \in I$.

Therefore I is an BZ-ideal.
Next, I will show example the converse of Theorem (4.6) is not true.
Example 4.7. Let $\mathrm{X}=\{0,1,2\}$. Define an operation $*$ on X with the Cayley table given by:

$*$	0	1	2
0	0	2	2
1	1	0	1
2	2	1	0

Then it is easily checked that $(X, *, 0)$ is a BZ-algebras and $I=\{0\}$ is a p-ideal of X, but it is not a-ideal of X. Since $(2 * 0) *(0 * 1)=1 * 1=0 \in\{0\}$ and $0 \in\{0\}$, but $1 * 2=1 \notin\{0\}$. The proof is complete.
Theorem 4.8. Any a-ideal of BZ-algebra is a BZ-ideal.
Proof. Suppose that I is an a-ideal of BZ-algebras. It follows that I is an ideal. Now, let $(x * 0) * y \in I$. We obtain that

$$
\begin{aligned}
((x * 0) & * y) *((((y * 0) * x) * 0) * 0) \\
& =((x * 0) * y) *((((y * 0) * 0) *(x * 0)) * 0) \\
& =((x * 0) * y) *((((y * 0) * 0) * 0) *((x * 0) * 0)) \\
& =((x * 0) * y) *((y * 0) *((x * 0) * 0)) \\
& \leq((x * 0) * y) *((x * 0) * y)=0 \in I .
\end{aligned}
$$

Since I is an ideal, so $(((y * 0) * x) * 0) * 0 \in I$. It follows that I is a p-ideal as Theorem (4.6). Then $(y * 0) * x \in I$ and by Theorem (4.4(3)), we get $x * y \in I$. The proof is complete.

The converse of Theorem (4.8) is not true. From Example (3.2) we can show that $I=\{0\}$ is not a-ideal of X. And it easy to show $I=\{0\}$ is a BZ-ideal.

The following from Theorem (4.8), that if I is an a-ideals, then it is a BZ-ideals.
For the converse part we need the condition that I is an p-ideals as follows.
Theorem 4.9. A non-empty subset I of BZ-algebra X is an a-ideal if and only if it is both a BZ-ideal and a p-ideal.
Proof. Let I be an a-deal of X. It is clear that I is both a BZ-ideal and a p-ideal because Theorem (4.6) and Theorem (4.8).
On the other hand, suppose that I is both a BZ-ideal and a p-ideal. It follows that I is a subalgebra.
Now, assume that $(x * 0) * y \in I$. By Theorem (3.5(2)), we have that $x *(0 * y) \in I$, and hence $x * y \in I$.
Consider the equation

$$
\begin{aligned}
&(x * y) *[(y * 0) *(x * 0)]=(y * 0) *[(x * y) *(x * 0)] \\
&=(y * 0) *[x *((x * y) * 0)] \\
&=(y * 0) *[x *((x * 0) *(y * 0) \\
&=x *[(y * 0) *((x * 0) *(y * 0)] \\
&=x *[(x * 0) *((y * 0) *(y * 0)] \\
&=x *[(x * 0) * 0]=0 \in I
\end{aligned}
$$

From I is an ideal and $x * y \in I$, implies $(y * x) * 0 \in I$. It follows that $((y * x) * 0) * 0 \in I$ because I is a closed. And since I is a p-ideal, then $y * x \in I$, and so I is an a-ideal.

The extensive theorem of a-ideal was given by the following theorem.
Theorem 4.10. Let J and I be two ideals of BZ-algebra X with $I \subseteq J$. If I is an a-ideal of X , then so is J.
Proof. Let I be an a-ideal of X, then I is both a BZ-ideal and a p-ideal. Now, we need to show J is a BZ-ideal and a p-ideal of X.
Assume that $s=(x * 0) * y \in J$, then we have $(x * 0) *(s * y)=s *((x * 0) * y)=0 \in I$. By Theorem (3.5(2)), $x *(s * y) \in I$, and it follows $s *(x * y) \in I$. Thus $s *(x * y) \in J$ and since J is an ideal, so $x * y \in J$. Therefore J is a BZ-ideal of X. Finally, to show that J is a p-ideal of X and let $t=(x * 0) * 0 \in J$.

Then $(x * 0) *(t * 0)=t *((x * 0) * 0)=0 \in I$, and we can write

$$
\begin{aligned}
& ((x * 0) *(t * 0)) *(((t * x) * 0) * 0) \\
& \quad=((x * 0) *(t * 0)) *(((t * 0) * 0) *((x * 0) * 0)) \\
& \quad \leq((x * 0) *(t * 0)) *((x * 0) *(t * 0))=0 \in I .
\end{aligned}
$$

Since I is an ideal, we get that $((t * x) * 0) * 0 \in I$. And since I is a p-ideal, thus $t * x \in I \subseteq J$, and so $x \in J$ as J is an ideal. Hence J is a p-ideal of X. The proof is complete.

International Journal of Engineering and Information Systems (IJEAIS)
ISSN: 2643-640X
Vol. 4, Issue 8, August - 2020, Pages: 121-126

References

[1] C.S. Hoo, (1990), Closed ideals and p-semisimple BCI-algebras, Math. Japon, vol. 35, pp:1103-1112.
[2] Q.P. Hu and K. Is'eki, (1980), On BCI-algebra satisfying ($\mathbf{x} * \mathbf{y}) * \mathbf{z}=\mathbf{x} *(\mathbf{y} * \mathbf{z})$, Math. Sem. Notes, vol. 8, pp:553-555.
[3] Y.L. Lin, M. Jie, H.Z. Xiao and C.Y. Zhang, (2000), q-ideals and a-ideal in BCI-algebras, Southeast Asian Bulletin of Mathematics, vol.24, pp:243-253.
[4] J. M. Xu and X. H. Zhang, (1998), On anti-grouped ideals in BZ-algebras, Pure Appl. Math. , vol.14, pp:101-102.
[5] R. F. Ye, 1991, On BZ-algebras. In: Selected papers on BCI/BCK-algebras and Computer Logic, Shanghai Jiaotong Univ., pp. 21-24.
[6] R. F. Ye and X. H. Zhang, (1993), On ideals in BZ-algebras and its homomorphism theorems, J. East China Univ. Sci. Technology, vol.19, pp:775-778.
[7] H. Yisheng, (2006), BCC-Algebras, Science Press, Beijing, 356p.

