Hyper SA-algebra

Dr. Areej Tawfeeq Hameed* and Narjis Jalil Raheem

Department of Mathematics, Faculty of Education for Girls, University of Kufa, Iraq. E-mail: *areej.tawfeeq@uokufa.edu.iq or areej238@gmail.com

Abstractⁱ In this paper is to introduce the concept of hyper SA-algebras is a generalization of SA-algebras and study a hyper structure SA-algebra and investigate some of its properties. Also, hyper some types of hyper SA-algebras and hyper SA-ideal of hyper SA-algebras are studied. We study on the fuzzy theory of hyper SA-ideal of hyper SA-algebras hyper SA-algebra. We study homomorphism of hyper SA-algebras which are a common generalization of SA-algebras

Key words: SA-algebra, hyper SA-algebra, hyper SA-ideal, some types of hyper SA-algebras, homomorphism.

1. Introduction

Areej Tawfeeq Hameed and et al ([1]) introduced a new algebraic structure, called SA-algebra, They have studied a few properties of these algebras, the notion of SA-ideals on SA-algebras was formulated and some of its properties are investigated. The concept of a fuzzy set, was introduced by L.A. Zadeh [4]. In [6], S.M. Mostafa and A.T. Hameed made an extension of the concept of fuzzy set by an interval-valued fuzzy set (i.e., a fuzzy set with an interval-valued membership function). This interval-valued fuzzy KUS-ideals on KUS-algebras is referred to as an i-v fuzzy KUS-ideals on KUS-algebras. they constructed a method of approximate inference using his i-v fuzzy KUS-ideals on KUS-algebras. In this paper, using the notion of interval-valued fuzzy set , we introduce the concept of an interval-valued fuzzy SA-ideals (briefly, i-v fuzzy SA-ideals) of a SA-algebra, and study some of their properties. Using an i-v level set of an i-v fuzzy set, we state a characterization of an i-v fuzzy SA-ideals. We prove that every SA-ideals of a SA-algebra X can be realized as an i-v level SA-ideals of an i-v fuzzy SA-ideals of X. In connection with the notion of homomorphism, we study how the images and inverse images of i-v fuzzy SA-ideals become i-v fuzzy SA-ideals.

2. Hyper of The SA-algebra

In this section, some properties of hyper SA-algebra are discussed and preliminaries lemmas of SA-ideals and fuzzy SA-ideals of SA-algebra .

Remark 2.1 [10].

Let *H* be a nonempty set and $p^*(H) = p(H) \setminus \{\emptyset\}$ the family of the nonempty subsets of *H*. A multi valued operation (said also hyper operation) " \circ " on *H* is a function, which associates with every pair $(x, y) \in H \times H = H^2$ a nonempty subset of *H* denoted $x \circ y$. An algebraic hyper structure or simply a hyper structure is a nonempty set *H* endowed with one or more hyper operations. **Remark 2.2**.

In this work, let *H* be a nonempty set and $p^*(H) = p(H) \setminus \{\emptyset\}$ the family of the nonempty subsets of *H*. A hyper operations \circ and * on *H* is a function which a ssociates every pair $(x, y) \in H \times H = H^2$ a nonempty subset of *H* denoted $x \circ y$ and x * y. An *H* endowed with two hyper operations.

Definition 2.3.

Let *H* be a nonempty set and \circ and * be two hyper operations on *H* such that $\circ, *: H \times H \rightarrow p^*(H)$. Then *H* is called **hyper** *SA*-algebra if it contains a constant 0 and satisfies the following axioms: for all $x, y, z \in H$, $(HSA_1) \ x * x = \{0\} = x \circ x$, $(HSA_2) \ x * 0 = \{x\} = x \circ 0$, $(HSA_3) \ (x * y) * z \ll x * (z \circ y)$, $(HSA_4) \ (x \circ y) * (x \circ z) \ll y * z$.

Remark 2.4.

(1) Where $x \ll y$ is defined by $0 \in x \circ y \land 0 \in x \ast y$, for every $I, J \subseteq H, I \ll J$ is defined by

 $\forall a \in I, \exists b \in J$ such that $a \ll b$. In such case, we call \ll the hyper order in *H*.

(2) We shall use the $x \circ y$ in stead of $x \circ \{y\}$ or $\{x\} \circ \{y\}$ and we shall use the x * y in stead of

 $x * \{y\}$ or $\{x\} * \{y\}$.

(3) If $I, J \subseteq H$, then by $I \circ J$, we mean the subset $\bigcup_{a \in I} a \circ b$ of H and I * J, we mean the subset $\bigcup_{a \in I} a * b$ of H.

Example 2.5.

(1) Let $H = \{0, a\}$ and hyper operation \circ and * as the following table:

٥,	0	a	*	0	а
0	{0}	{0}	0	{0}	{0,a}
a	{a}	{0}	a	{a}	{0}

Then $(H; \circ, *, 0)$ is a hyper *SA*-algebra.

(2) Let $H = \{0,1,2\}$ and hyper operation \circ and * as the following table:

0	0	1	2	*	0	1	2
0	{0}	{0,2}	{0,1,2}	0	{0}	{0,1}	{0,2}
1	{1}	{0}	{0}	1	{1}	{0}	{0}
2	{2}	{0,2}	{0}	2	{2}	{0}	{0}

Then $(H;\circ,*,0)$ is a hyper *SA*-algebra.

(3) Let (H; +, -, 0) be a SA-algebra and define a hyper operation \circ and * on H

 $x \circ y = \{x + y\} \land x \ast y = \{x - y\}$, for all $x, y \in H$, then $(H; \circ, \ast, 0)$ is a hyper SA-algebra.

(4) If $H = \{0, 1, 2, ...\}$ and hyper operations \circ and * on H is defind as follows:

$$x * y = x \circ y = \begin{cases} \{0, x\} & \text{ if } x \le y \\ \{x\} & \text{ if } x > y \end{cases}, \text{ for all } x, y \in H$$

Then $(H; \circ, *, 0)$ is a hyper SA-algebra.

Proposition 2.6.

Let $(H; \circ, *, 0)$ be a hyper *SA*-algebra. Then for all x, y, z \in H and for all nonempty subset *I*, *J* of H the following statements hold: (p_1) $I \subseteq J$ implies $I \ll J$;

- $(p_1) = 0 = 0 = \{0\} = 0 = 0;$
- $(\boldsymbol{p}_3) \ x \ll x;$

$$(p_4) I \circ 0 = I = I * 0;$$

 $(\boldsymbol{p}_5) \ x \circ y \ll y \ast x;$

$$(\mathbf{p}_6) \ x \circ (0 \circ 0) = \{x\} = x * (0 * 0);$$

 $(\boldsymbol{p}_7) \ x * (x \circ z) \ll z;$

 $(\mathbf{p_8}) \ 0 \circ 0 = \{0\} = 0 * 0;$

Proof:

 (p_1) By Definition of \ll .

- (p_2) By (HSA_2) , put x=0, then $0 \circ 0 = 0 * 0 = 0$.
- (p_3) By (HSA_3) , let y = z = 0. Then by (p_2) and (HSA_2) then $x \ll x$.
- (p_4) The proof follows by (HSA₂).

 (\mathbf{p}_5) By (HSA_4) and (HSA_1) , put z = x, then, $x \circ y \ll y \ast x$.

- (p_6) The proof follows by (HSA_1) , (HSA_2) .
- (\mathbf{p}_7) By (HSA_4) , put y = 0, then $, x * (x \circ z) \ll z$.
- (p_8) The proof follows by (HSA_1) .

<u>Lemma 2.7.</u>

In hyper *SA*-algebra (*H*; •, *, 0) the following hold: for all x, y, $z \in H$, $y \ll z \Leftrightarrow x \circ y \ll x \circ z$.

Proof:

Since $y \ll z$, it follows that $0 \in y \circ z \land 0 \in y * z$. By (HSA_4) , we obtain

 $(x \circ y) * (x \circ z) \ll (y * z)$. Then $0 \in (x \circ y) * (x \circ z) \circ (y * z)$, and $0 \in (x \circ y) * (x \circ z) * (y * z)$, but $0 \in y \circ z \land 0 \in y * z$. Hence, $0 \in (x \circ y) * (x \circ z)$, (i.e.), $x \circ y \ll x \circ z$.

Lemma 2.8.

In hyper SA-algebra (H; \circ , *, 0), the following statements hold: for all x, y, z \in H,

- (1) $x * y \ll z \Leftrightarrow x \ll z \circ y$,
- (2) $I \ll 0 \Leftrightarrow 0 \in I$,
- (3) $y \in (x \circ 0) \land y \in (x * 0) \Longrightarrow x \ll y$.

Proof:

- (1) Let x, y, z \in H such that $x * y \ll z$, then there exists $t \in x * y$ such that $t \ll z \Leftrightarrow 0 \in t \circ z \land 0 \in t * z \Rightarrow 0 \in t * z \subseteq (x * y) * z \ll x * (z \circ y)$ by $(HSA_3) \Leftrightarrow 0 \in x * (z \circ y) \Leftrightarrow x \ll (z \circ y)$.
- (2) Let $I \ll 0$. It means that there $a \in I$ such that $a \ll 0$. By (HSA₂) a =0, and so $0 \in I$.
- (3) Let $y \in (x \circ 0) \land y \in (x * 0)$, then by (2), $(x \circ 0) \ll y \land (x * 0) \ll y$, then

 $0 \in (x \circ 0) \circ y = x \circ y \land 0 \in (x \circ 0) * y = x \circ y (i.e.), 0 \in x \circ y \land 0 \in x \circ y$. Hence $x \ll y$.

Definition 2.9.

Let S be a nonempty subset of a hyper SA-algebra H. Then S is said to be a hyper SA-subalgebra of H if $x \circ y \subseteq S \land x \ast y \subseteq S, \forall x, y \in S$.

Proposition 2.10.

Let *S* be a nonempty subset of a hyper *SA*-algebra (*H*,*,°,0), if *S* is hyper *SA*-subalgebra of *H*, then $0 \in S$.

Proof:

Since if *S* is hyper *SA*-subalgebra of *H*, then $x \circ y \in S \land x * y \in S$. Let $a \in S$, since $a \ll a$, we have $0 \in a \circ a \subseteq S$ and $0 \in a * a \subseteq S$, then $0 \in S$.

3. Some Types of Hyper SA-algebras.

In this section, the notion of some types of hyper SA-algebras is introduced. Several theorems and properties are stated and proved.

Definition 3.1.

A hyper SA-algebra $(H;\circ,*,0)$ is said

(1) Column hyper SA-algebra (briefly, C-hyper SA-algebra),

if $x * 0 = \{x\} = x \circ 0$, for all $x \in H$;

- (2) **Diagonal hyper** *SA***-algebra** (briefly, D-hyper *SA*-algebra), if $x \circ x = \{0\} = x * x$, for all $x \in H$;
- (3) **Very thin hyper** *SA***-algebra** (briefly, V-hyper *SA*-algebra), if it is a CD-hyper *SA*-algebra.

Example 3.2.

(1) Let $H = \{0, a, b\}$ be a set. Define a hyper operations $\circ, *$ on H as following table :

(2)

° 0	0	а	b
0	{0}	{0}	{0}
а	{a}	{0}	{0}
h	{b}	{0,a}	{0}

**	0	а	b
0	{0}	{0}	{0}
а	{a}	{0}	{0}
h	{b}	{0,b}	{0}

Then, $(H; \circ, *, 0)$ is an V-hyper *SA*-algebra.

- (3) Let $H = \{0, a\}$ be a set. Define a hyper operations $\circ, *$ on H
- (4) as follows table:

° 0	0	а	**	0	а
0	{0}	{0}	0	{0}	{0}
а	{a}	{0,a}	а	{a}	{0}

Then, $(H; \circ, *, 0)$ is an C-hyper *SA*-algebra.

(5) Let $H = \{0, a\}$ be a set. Define a hyper operations $\circ, *$ on H as follows table:

0 ⁰	0	а	**	0	a
0	{0}	{a}	0	{0}	{0}
а	{a}	{0}	а	{0,a}	{0}

Then, $(H;\circ,*,0)$ is an D-hyper SA-algebra.

Theorem 3.3.

Let $(H; \circ, *, 0)$ be a D-hyper SA-algebra. Then, for all x, y, z \in H

(1) $a \in 0 * x$ implies $a * x \ll \{0\}$,

(2) $(x * y) * y \ll x * \{0\}.$

Proof:

By Definition (3.1(1,3)) and (*HSA*₃), (0 * x) * x ≪ 0 * (x ∘ x) = 0 * 0 = {0}. It follows that, for all a ∈ 0 * x, a * x ≪ {0}.
 By (*HSA*₃) and Definition (3.1(3)), (x * y) * y ≪ x * (y ∘ y) = x * 0, then

 $(x * y) * y \ll x * \{0\}. \blacksquare$

Theorem 3.4.

Let $(H; \circ, *, 0)$ be a V-hyper SA-algebra. Then, for all $x, y, z \in H$

(1)
$$\{y\} \ll x * (y \circ x).$$

(2) If $z \in x \circ y$, then $\{x\} \ll y * z$.

Proof:

(1) By (HSA_3) and (p_2) and Definition $(3.1(1,3)), \{y\} = y * 0 = y * (x * x) \ll x * (y \circ x)$, then $\{y\} \ll x * (y \circ x)$.

(2) Let $z \in x \circ y$, then by (1), $\{x\} \ll y \ast (x \circ y)$. Hence $\{x\} \ll y \ast z$.

4. Hyper SA-ideal of SA-algebra.

In this section, the notion of hyper SA-ideal of SA-algebra is introduced. Several definitions and theorems and properties are stated and proved.

Definition 4.1.

Let *I* be a nonempty subset of hyper *SA*-algebra (*H*; •, *, 0). *I* is called **a hyper** *SA***-ideal of** *H* if $\forall x, y, z \in H$, (*U*: *AL*) $\cap \subseteq I$

 $(HSAI_1) \ 0 \in I,$

 $(HASI_2) \ x \circ z \ll I \ and \ y * z \ll I \ implies \ x \circ y \ll I.$

Example 4.2.

Let $H = \{0,1,2\}$ is a hyper SA-algebra. Define a hyper operations $\circ,*$ on H as follows table:

00	0	1	2	*	0	1	2
0	{0}	{1}	{2}	0	{0}	{0,1}	{0,2}
1	{0}	{0}	{0}	1	{0}	{0}	{0}
2	{0}	{0,2}	{0}	2	{0}	{0,2}	{0}

Then, $I_1 = \{0,1\}$ and $I_2 = \{0,2\}$ are the only hyper *SA*-ideals of *H*.

Example 4.3.

Let $H = \{0, 1, 2, ...\}$ and hyper operations \circ and * on H is defined as follows:

 $x * y = x \circ y = \begin{cases} \{0, x\} & \text{if } x \le y \\ \{0\} & \text{if } x > y \end{cases} \text{ for all } x, y \in H, \text{ is a hyper} \\ SA-algebra. Then, I_1 = \{0,1\}, I_2 = \{0,1,2\}, I_3 = \{0,1,2,3\}, \dots, I_n = \{0,1,2,3,\dots,n\} \text{ are hyper } SA-ideals \text{ of } H. \\ \textbf{Definition 4.4.} \end{cases}$

Let *I* be a nonempty subset of hyper *SA*-algebra (*H*; •, *, 0). Then *I* is said to be **a hyper ideal of H** if: $\forall x, y \in H$, (*HI*₁) $0 \in I$,

(HI_2) $x \circ y \ll I$ and $x \in I$ imply $y \in I$, (HI_3) $x * y \ll I$ and $x \in I$ imply $y \in I$.

Example 4.5.

Concider a hyper *SA*-algebra $H = \{0,1,2\}$ with the following table,

ం	0	1	2	*	0	1	2
0	{0}	{1}	{2}	0	{0}	{0,1}	{0,2}
1	{0}	{0}	{0}	1	{0}	{0}	{0}
2	{0}	{0,2}	{0}	2	{0}	{0,1}	{0,2}

Then $I = \{0,2\}$ is hyper ideal of *H*.

Definition 4.6.

Let *I* be a nonempty subset of a hyper *SA*-algebra (*H*; •, *, 0) and $0 \in I$. *I* is called **a weak hyper ideal of** *H*, if $\forall x, y \in H$,

1) $x \circ y \subseteq I$ and $x \in I$ imply that $y \in I$,

2) $x * y \subseteq I$ and if $x \in I$ imply that $y \in I$.

Definition 4.7.

Let *I* be a nonempty subset of a hyper *SA*-algebra (*H*; \circ , *, 0) and $0 \in I$. *I* is called **a strong hyper ideal of** *H*, if $\forall x, y \in H$,

1) $(x \circ y) \cap I \neq \emptyset$ and $x \in I$ imply that $y \in I$,

2) $(x * y) \cap I \neq \emptyset$ and if $x \in I$ imply that $y \in I$.

Theorem 4.8.

Every weak hyper ideal is strong hyper ideal.

Proof:

Let I be a weak hyper ideal, then $x \circ y \subseteq I$ and $x \in I$ implies $y \in I$. Thus $(x \circ y) \cap I \neq \emptyset$ and $x \in I$ implies $y \in I$. And $x * y \subseteq I$ and $x \in I$ implies $y \in I$. Thus $(x * y) \cap I \neq \emptyset$ and $x \in I$ implies $y \in I$. Hence I is a strong hyper ideal.

Remark 4.9:

Every strong hyper ideal is not a weak hyper ideal, as the following example:

Example 4.10:

Let $H = \{0, a\}$ be a set. Define a hyper operations $\circ, *$ on H as following table:

ం	0	а	b	*	0	а	b
0	{0}	{a}	{0,a}	0	{0}	{a}	{0,a}
а	{0}	{0,a}	{b}	а	{0}	{0,a}	{b}
b	{0}	{b}	{0,b}	b	{0}	{b}	{0,b}

 $I=\{0, b\}$ is strong hyper ideal but is not weak hyper ideal.

 $(0 \circ b) \cap I \neq \emptyset \implies \{(0 \circ b) \cap I \neq \emptyset \& 0 \in I \implies b \in I \text{, but } 0 \circ b = \{0, a\} \not\subseteq I.$

Definition 4.11.

For a hyper *SA*-algebra (H; \circ , *, 0). A nonempty subset $I \subseteq H$, containing 0 is said **a weak hyper** *SA*-ideal of *H*, if $\forall a, b, c \in H$,

1) $((a \circ b) \circ c) \subseteq I$ and $b \in I$ imply $a \circ c \subseteq I$,

2)
$$((a * b) * c) \subseteq I$$
 and $b \in I$ imply that $a * c \subseteq I$.

Definition 4.12.

For a hyper SA-algebra $(H; \circ, *, 0)$. A nonempty subset $I \subseteq H$, containing 0 is said a strong hyper SA-ideal of H, if $\forall a, b, c \in H$,

1) $((a \circ b) \circ c) \cap I \neq \emptyset)$ and $b \in I$ imply that $a \circ c \subseteq I$,

Vol. 4, Issue 8, August – 2020, Pages: 127-136

2) $((a * b) * c) \cap I \neq \emptyset$ and $b \in I$ imply that $a * c \subseteq I$.

<u>Theorem 4.13.</u>

Every weak hyper SA-ideal of a hyper SA-algebra $(H;\circ,*,0)$ is strong hyper SA-ideal.

<u>Proof</u>:

Since *I* is weak hyper *SA*-ideal, then $((x \circ y) \circ z) \subseteq I$ and $y \in I$ imply $x \circ z \subseteq I$. Thus $((x \circ y) \circ z) \cap I \neq \emptyset$ and $y \in I$ imply $x \circ z \in I$. And $((x * y) * z) \subseteq I$ and $y \in I$ imply $x * z \subseteq I$. Thus $((x * y) * z) \cap I \neq \emptyset$ and $y \in I$ imply $x \circ z \in I$.

Hence *I* is strong hyper *SA*-ideal. \blacksquare

Remark 4.14:

Every strong hyper SA-ideal is not a weak hyper SA-ideal, as the following example:

Example 4.15:

Let $H = \{0, a, b\}$ be a set. Define a hyper operations $\circ, *$ on H as following table:

°	0	1	2	*	0	1	2
0	{0}	{0,1}	{1,2}	0	{0}	{0,1}	{1,2}
1	{0}	{0,1}	{2}	1	{0}	{0,1}	{2}
2	{0}	{1,2}	{0,2}	2	{0}	{1,2}	{0,2}

 $I=\{0,2\}$ is a strong hyper SA-ideal, but is not weak hyper SA-ideal.

 $((1 \circ 0) \circ 2) \cap I \neq \emptyset \& 0 \in I \Longrightarrow 1 \circ 2 = \{2\} \subseteq I, \text{ but } ((1 \circ 0) \circ 2) = \{0,1,2\} \not\subseteq I.$

Theorem 4.16.

Every weak hyper SA-ideal of a hyper SA-algebra $(H; \circ, *, 0)$ is a weak hyper ideal.

<u>Proof</u>:

Let *I* be a weak hyper *SA*-ideal of $H, \forall a, b, c \in H$, then $((a \circ b) \circ c) \ll I$ and $b \in I$ imply

 $a \circ c \subseteq I$. Putting a = 0, we get $((0 \circ b) \circ c) \ll I$ and $b \in I$ imply $0 \circ c = c \in I$.

Hence $(b \circ c) \ll I$ and $b \in I$ imply $c \in I$. And $((a * b) * c) \ll I$ and $b \in I$ imply $a * c \subseteq I$. Putting a = 0, we get $((0 * b) * c) \ll I$ and $b \in I$ imply $0 * c = c \in I$.

Hence $(b * c) \ll I$ and $b \in I$ imply $c \in I$. Hence *I* is weak hyper ideal.

<u>Remark 4.17.</u>

Generally, every weak hyper ideal is not a weak hyper *SA*-ideal. It can be observed with the help of examples given below: **Example 4.18**.

Let $H = \{0,1,2,3\}$ be a set with the following cayley table:

00	0	1	2	3	*	0	1	2	3
0	{0}	{0}	{0}	{0}	0	{0}	{0}	{0}	{0}
1	{1}	{0}	{0,2}	{2,3}	1	{1}	{0}	{0,2}	{2,3}
2	{2}	{0,1}	{0}	{1}	2	{2}	{0,1}	{0}	{1}
3	{3}	{0,2}	{0}	{0}	3	{3}	{0,2}	{0}	{0}

Then $(H, \circ, *, 0)$ is a hyper *SA*-algebra. Take $I = \{0, 1\}$, then *I* is a weak hyper ideal, however, *I* is not a weak hyper *SA*-ideal of *H* as $((3 \circ 1) \circ 1) \subseteq I, 1 \in I$, but $3 \circ 1 = 2 \notin I$.

Theorem 4.19.

Every strong hyper SA-ideal of a hyper SA-algebra $(H, \circ, *, 0)$ is a strong hyper ideal.

Proof:

Let *I* be a strong hyper *SA*-ideal of $H, \forall a, b, c \in H$, then $((a \circ b) \circ c) \cap I \neq \emptyset$ and $b \in I$ imply $a \circ c \subseteq I$. Putting a = 0, we get $((0 \circ b) \circ c) = (b \circ c)$ and $b \in I$ imply $0 \circ c = c \in I$.

Thus $(b \circ c) \cap I \neq \emptyset$ and $b \in I$ imply $c \in I$. And $((a * b) * c) \cap I \neq \emptyset)$ and $b \in I$ imply $a * c \subseteq I$. Putting a = 0, we get ((0 * b) * c) = (b * c) and $b \in I$ imply $0 * c = c \in I$. Thus $(b * c) \cap I \neq \emptyset$ and $b \in I$ imply $c \in I$. Hence *I* is strong hyper ideal.

Remark 4.20.

Generally, every strong hyper ideal is not a strong hyper *SA*-ideal. It can be observed with the help of examples given below: **Example 4.21.**

Let $H = \{0, a, b\}$ be a set with the following table:

ം	0	а	b	*	0	а	b
0	{0}	{a}	{0,a}	0	{0}	{a}	{0,a}
а	{0}	{0,a}	{b}	а	{0}	{0,a}	{b}
b	{0}	{b}	{0,b}	b	{0}	{b}	{0,b}

Then $(H, \circ, *, 0)$ is a hyper *SA*-algebra. Take $I = \{0, b\}$, Then *I* is a hyper ideal, but not a hyper *SA*-ideal of *H*, since $((0 \circ b) \circ a) \ll I, b \in I$, but $0 \circ a = a \notin I$.

Here $I = \{0, b\}$ is also a strong hyper ideal, but it is not a strong hyper SA-ideal of H,

since $((0 \circ b) \circ a) = \{b\} \cap I \neq \emptyset$ and $b \in I$, but $0 \circ a = a \notin I$.

Definition 4.22.

A subset *I* of a hyper *SA*-algebra (*H*; \circ , *, 0) such that $0 \in I$ is called the following: $\forall x, y, z \in H$

(1) A hyper SA-ideal of type 1, if $((x \circ y) \circ z) \ll I, y \in I$, then $x \circ z \subseteq I$,

and *if* $((x * y) * z) \ll I, y \in I$, then $x * z \subseteq I$.

(2) A hyper SA-ideal of type 2, if $((x \circ y) \circ z) \subseteq I, y \in I$, then $x \circ z \subseteq I$,

and if $((x * y) * z) \subseteq I, y \in I$, then $x * z \subseteq I$.

(3) A hyper SA-ideal of type 3, if $((x \circ y) \circ z) \ll I, y \in I$, then $x \circ z \ll I$,

and if $((x * y) * z) \ll I, y \in I$, then $x * z \ll I$.

(4) A hyper SA-ideal of type 4, if $((x \circ y) \circ z) \subseteq I, y \in I$, then $x \circ z \ll I$,

and if $((x * y) * z) \subseteq I, y \in I$, then $x * z \ll I$.

Theorem 4.23.

In any hyper SA-algebra $(H; \circ, *, 0)$, the following statements are valid.

- (1) Any hyper SA-ideal of type 1 is a hyper SA-ideal of type 2 and 3.
- (2) Any hyper SA-ideal of type 2 is a hyper SA-ideal of type 4.
- (3) Any hyper SA-ideal of type 3 is a hyper SA-ideal of type 4.
- (4) Any hyper *SA*-ideal of type 1 is a hyper ideal.
- (5) Any hyper SA-ideal of type 2 is a weak hyper ideal.

Proof:

(1) Let *I* be a hyper *SA*-ideal of type 1, then $((x \circ y) \circ z) \ll I, y \in I$, imply $x \circ z \subseteq I$, and

 $((x * y) * z) \ll I, y \in I$, imply $x * z \subseteq I$. By Definition of \ll , we gate $((x \circ y) \circ z) \subseteq I, y \in I$, then $x \circ z \subseteq I$, and

 $((x * y) * z) \subseteq I, y \in I$, then $x * z \subseteq I$. And $((x \circ y) \circ z) \ll I, y \in I$,

then $x \circ z \ll I$, and $((x * y) * z) \ll I$, $y \in I$, then $x * z \ll I$. Hence hyper *SA*-ideal of type 1 is a hyper *SA*-ideal of type 2 and 3. (2) Let *I* be a hyper *SA*-ideal of type 2, then $((x \circ y) \circ z) \subseteq I$, $y \in I$, then

 $x \circ z \subseteq I$, and if $((x * y) * z) \subseteq I$, $y \in I$, then $x * z \subseteq I$.

By Definition of \ll , we gate $((x \circ y) \circ z) \subseteq I, y \in I$, then $x \circ z \ll I$, and $((x * y) * z) \subseteq I, y \in I$, then

 $x * z \ll I$. Hence hyper *SA*-ideal of type 2 is a hyper *SA*-ideal of type 4.

(3) Let *I* be a hyper *SA*-ideal of type 3, then $((x \circ y) \circ z) \ll I, y \in I$, then

 $x \circ z \ll I$, and $((x * y) * z) \ll I, y \in I$, then $x * z \ll I$. By Definition of \ll ,

we gate $((x \circ y) \circ z) \subseteq I, y \in I$, then $x \circ z \ll I$, and $((x * y) * z) \subseteq I, y \in I$, then $x * z \ll I$. Hence hyper SA-ideal of type 3 is a hyper SA-ideal of type 4. (4) Let *I* be a hyper *SA*-ideal of type 1, $(y \circ z) \ll I$ and $(y \ast z) \ll I$, and $y \in I$. Hence, by proposition (p_7) . We obtain $((0 \circ y) \circ z) \ll I$ $((0 * y) * z) \ll I$. But $y \in I$ so applying the hypothesis and proposition (p_5) , we get $\{z\} = 0 \circ z \subseteq I$ ($\{z\} = 0 \ast z \subseteq I$). This shows that I is a hyper-ideal of H. (5) Let *I* be a hyper SA-ideal of type 2, $y \circ z \subseteq I$ ($y * z \subseteq I$), and $y \in I$. Hence, by proposition (p_7), we obtain $0 \circ (y \circ z) \ll I$, $(0 * (y * z) \subseteq I)$. But $y \in I$, so applying the hypothesis and proposition (p_5) , we get $\{z\} = 0 \circ z \subseteq I, (\{z\} = 0 * z \subseteq I)$. This shows that I is a hyper-ideal of H. Theorem 4.24. In any hyper SA-algebra $(H; \circ, *, 0)$, then (1) A hyper SA-ideal of type 1&2&3&4 is weak hyper SA-ideal. (2) A hyper SA-ideal of type 1&2&3&4 is weak hyper ideal. **Proof:** We prove only (1) and the type (2), (3), (4) are similary. (1) Let *I* be a hyper *SA*-ideal of type 1, then $((x \circ y) \circ z) \ll I, y \in I$, imply $x \circ z \subseteq I$, and $((x * y) * z) \ll I, y \in I$, imply $x * z \subseteq I$. Since $((x \circ y) \circ z) \ll I$ is $((x \circ y) \circ z) \subseteq I$ and $((x * y) * z) \ll I$ is $((x * y) * z) \subseteq I$ by Definition of \ll , then $((x \circ y) \circ z) \subseteq I, y \in I$, imply $x \circ z \subseteq I$, and $((x * y) * z) \subseteq I, y \in I$, imply $x * z \subseteq I$. Hence I is weak hyper SA-ideal. (2) By Theorem (4.16) and (1) above. ■

Theorem 4.25.

In any hyper *SA*-algebra (H; \circ , *, 0), then

(1) A hyper SA-ideal of type 1&2&3&4 is strong hyper SA-ideal.

(2) A hyper SA-ideal of type 1&2&3&4 is strong hyper ideal.

Proof:

We prove only (1) and the type (2), (3), (4) are simillary.

(1) Let *I* be a hyper *SA*-ideal of type 1, then ((x ∘ y) ∘ z) ≪ *I*, y ∈ *I*, imply x ∘ z ⊆ *I*, and ((x ∗ y) ∗ z) ≪ *I*, y ∈ *I*, imply x ∗ z ⊆ *I*. Since ((x ∘ y) ∘ z) ≪ *I* is ((x ∘ y) ∘ z) ⊆ *I* and ((x ∗ y) ∗ z) ≪ *I* is ((x ∗ y) ∗ z) ⊆ *I* by Definition of ≪, then ((x ∘ y) ∘ z) ∩ *I* ≠ Ø, y ∈ *I*, imply x ∘ z ⊆ *I*, and ((x ∗ y) ∗ z) ∩ *I* ≠ Ø, y ∈ *I*, imply x ∗ z ⊆ *I*. Hence *I* is strong hyper *SA*-ideal.
(2) By Theorem (4.19) and (1) above. ■

(2) 29 mooron (....) and (1) wooron 2

5. Homomorphism on Hyper SA-algebras.

In this section, we introduce some result on images and pre-images of homomorphism on hyper SA-algebra and investigate some related theorems.

Definition 5.1.

Let $(H, \circ, *, 0)$, $(K, \circ, *, 0)$ be hyper *SA*-algebras. A mapping $f: H \to K$ is called **a hyper homomorphism** if *f* or all $x, y \in H$, then

 $(HH_1) f(0) = \dot{0},$ $(HH_2) f(x \circ y) = f(x) \circ f(y),$ $(HH_3) f(x * y) = f(x) * f(y).$

Theorem 5.2.

Let $f: (H, \circ, *, 0) \to (K, \circ, *, 0)$ is a hyper homomorphism of hyper SA-algebras, if $x \ll y$ in H, then $f(x) \ll f(y)$ in K. **Proof:**

Let $x, y \in H$ be such that $x \ll y$. Then, $0 \in x * y \land 0 \in x \circ y$, and so by (HH_1) , $\dot{0} = f(0)$, by (HH_2) $f(0) = f(x \circ y) = f(x) \circ f(y)$ and by (HH_3) f(0) = f(x * y) = f(x) * f(y). Hence $f(x) \ll f(y)$ in K. **Theorem 5.3.**

Let $f: (H, \circ, *, 0) \to (K, \circ, *, 0)$ be a hyper homomorphism of hyper SA-algebra, if I is a hyper ideal of K, then $f^{-1}(I)$ is a hyper ideal of H.

Proof:

By Theorem (5.2(1)), $f(0) = \hat{0}$. Since *I* is hyper ideal of *K*, then $\hat{0} \in I$ and $f(0) = \hat{0}$, then $f(0) \in I$ $\Rightarrow f^{-1}(f(0)) \in f^{-1}(I) \Rightarrow 0 \in f^{-1}(I).$

Let $x, y \in H$ such that $x \circ y \ll f^{-1}(I) \land x * y \ll f^{-1}(I)$ and $x \in f^{-1}(I)$, then $f(x) \in I$, and for every $z \in x \circ y \land z \in x * y$, there exists $w \in f^{-1}(I)$ such that $z \ll w$, that is, $0 \in z \circ w \land$

It follows that by $(HH_1) \dot{0} = f(0)$ and by (HH_2) $0 \in z * w$. $f(0) \in f(z \circ w) = f(z) \circ f(w) \subseteq f(x \circ y) \circ I = f(x) \circ f(y) \circ I$, and by (HH_3) $f(0) \in f(z * w) = f(z) * f(w) \subseteq f(x * y) * I = f(x) * f(y) * I$

so that $f(x) \circ f(y) \ll I \land f(x) * f(y) \ll I$. Since I is a hyper ideal of K.

It follows that $f(y) \in I$, that is, $y \in f^{-1}(I)$ by (HI_1) . Hence $f^{-1}(I)$ is a hyper ideal of H.

Definition 5.4.

Let $f: (H, \circ, *, 0) \to (K, \circ, *, 0)$ be a hyper homomorphism of hyper SA-algebras. $ker(f) = \{x \in H: f(x) = 0\}$, called the kernel of f.

Theorem 5.5.

Let $f: (H, \circ, *, 0) \to (K, \circ, *, 0)$ be a hyper homomorphism of hyper SA-algebras. ker(f) is a hyper ideal of H.

Proof:

By Definition (5.4), $0 \in \ker(f)$, let $x, y \in H$ such that $x \circ y \ll \ker(f) \land x * y \ll \ker(f)$ and

 $x \in \text{ker}(f)$, then f(x) = 0, and for each $a \in x * y \land a \in x \circ y$, there exists $b \in \text{ker}(f)$ such that $a \ll b$, it follows from (HH_2) and (p_5) that is, $a \in \ker(f)$ so that $\hat{0} = f(a) \in f(x \circ y) = f(x) \circ f(y) = \hat{0} \circ f(y) = f(y)$ and by (HH_3) $\hat{0} = f(a) \in f(x * y) = f(x) * f(y) = \hat{0} * f(y) = f(y)$ that is $y \in \text{ker}(f)$. Hence ker(f) is a hyper ideal of H.

Theorem 5.6.

Let $f:(H,\circ,*,0) \to (K,\circ,*,0)$ be an epimorphism of hyper SA-algebra. If I is a hyper ideal of H containing ker(f), then f(I) is a hyper ideal of K.

Proof:

By (HH_1) , $\hat{0} = f(0) \in f(l)$. Let $x, y \in K$ such that $x \circ y \ll f(l) \land x \circ y \ll f(l)$ and $x \in f(l)$. Since f is onto, it follows that there exist $a, b \in H$ such that f(a) = x and f(b) = y.

Thus $f(a \circ b) = f(a) \circ f(b) = x \circ y \ll f(I)$. $\land f(a * b) = f(a) * f(b) = x * y \ll f(I)$.

Let $w \in a \circ b \land w \in a \ast b$ and for every $z \in f(a \circ b) \land z \in f(a \ast b)$, there exist $w \in f(I)$ such that $z \ll w$. Then $f(z) \ll f(w)$, that is $0 \in f(z) \circ f(w) = f(z \circ w) \land 0 \in f(z) * f(w) = f(z * w)$.

It follows that $z \circ w \subseteq \ker(f) \subseteq I \land z \ast w \subseteq \ker(f) \subseteq I$, so that $z \circ w \ll I \land z \ast w \ll I$ by (p_1) .

Since I is a hyper ideal of H, it follows that $w \in I$, by (HI_2) . Hence $a \circ b \subseteq I \land a \ast b \subseteq I$ and $a \circ b \ll I \land a \ast b \ll I$. Since $a \in I$, it follows from (H_2) that $b \in I$, so that y = f(b) in f(I). Hence f(I) is a hyper ideal of K.

Theorem 5.7.

Let $f: (H, \circ, *, 0) \to (K, \circ, *, 0)$ and $g: (H, \circ, *, 0) \to (M, \circ, *, 0)$ be two homomorphism of hyper SA-algebras such that f is onto and $ker(f) \subseteq ker(g)$, then there exists a homomorphism $h: (K, \delta, *, \dot{0}) \to (M, \ddot{o}, *, \ddot{0})$ such that $h \circ f = g$. **Proof:**

Let $y \in K$, since f is onto, there exists $x \in H$ such that y = f(x). Define $h: K \to M$ by h(y) = g(x), for all $y \in K$. Now, we show that h is well-defined. Let $y_1, y_2 \in K$ and $y_1 = y_2$, since f is onto, then there are $x_1, x_2 \in H$ such that $y_1 = f(x_1)$ and $y_2 = f(x_2)$. Hence $f(x_1) = f(x_2)$ and $0 \in f(x_1) \circ f(x_2) = f(x_1 \circ x_2) \wedge f(x_2) = f(x_2 \circ x_2) = f(x_2 \circ x_2) \wedge f(x_2) = f(x_2 \circ x_2) = f(x_2 \circ x_2) = f(x_2 \circ x_2) \wedge f(x_2) = f(x_2 \circ x_2) = f(x$ $0 \in f(x_1) \stackrel{*}{*} f(x_2) = f(x_1 * x_2)$.

It follows that there exists $z \in x_1 \circ x_2 \land z \in x_1 * x_2$ such that f(z) = 0. Thus $z \in ker(f) \subseteq ker(g)$ and g(z) = 0. Since $z \in x_1 \circ x_2 \land z \in x_1 * x_2$, then $0 = g(z) \in g(x_1 \circ x_2) = g(x_1) \circ g(x_2) \land 0 = g(z) \in g(x_1 * x_2) = g(x_1) \circ g(x_2)$ which implies that $g(x_1) \ll g(x_2)$.

On the other hand, since $0 \in f(x_1) \circ f(x_2) = f(x_1 \circ x_2) \land 0 \in f(x_1) \circ f(x_2) = f(x_1 \circ x_2)$, similarly we can conclude that $0 \in g(x_2 \circ x_1) = g(x_2) \circ g(x_1) \land 0 \in g(x_2 \ast x_1) = g(x_2) = g(x_1), \text{ then } g(x_2) \ll g(x_1).$

Thus $g(x_1) = g(x_2)$ which shows that *h* is well-defined. Clearly, $h \circ f = g$.

Finally, we show that h is a homomorphism, let $y_1, y_2 \in K$. Since f is onto, there are $x_1, x_2 \in H$ such that $y_1 = f(x_1)$ and $y_2 = f(x_2)$. Then $h(y_1 * y_2) = h(f(x_1) * f(x_2))$ $= h(f(x_1 * x_2))$ $= (h \circ f)(x_1 * x_2)$ $= g(x_1 * x_2)$ $= g(x_1) \ddot{*} g(x_2)$ $= h(f(x_1)) \,\ddot{\ast} \, h(f(x_2))$ $= h(y_1) \stackrel{\text{\tiny{``}}}{=} h(y_2)$ and $h(y_1 \circ y_2) = h(f(x_1) \circ f(x_2))$ $= h(f(x_1 \circ x_2))$ $= (h \circ f)(x_1 \circ x_2)$ $= g(x_1 \circ x_2)$ $= g(x_1) \ddot{\circ} g(x_2)$ $= (h \circ f)(x_1) \ddot{\circ} (h \circ f)(x_2)$ $= h(f(x_1)) \ddot{\circ} h(f(x_2))$ $= h(y_1) \circ h(y_2).$ Moreover, since $f(0) = \dot{0}$, and $g(0) = \ddot{0}$, then $h(0) = h(f(0)) = (h \circ f)(0) = g(0) = \ddot{0}.$

Hence h is a homomorphism.

References

- A.T. Hameed, (2018), AT-ideals & Fuzzy AT-ideals of AT-algebras, Journal of Iraqi AL-Khwarizmi Society, vol.1, no.2, pp: 2521-2621.
- [2] A.T. Hameed, 2016, AT-ideals and Fuzzy AT-ideals of AT-algebra, LAP LEMBRT Academic Publishing, Germany.
- [3] A.T. Hameed, 2015, Fuzzy ideal of some algebras ,PH.D.SC. Thesis, Faculty of Science, Ain Shams University, Egypt.
- [4] A.T. Hameed and N.J. Raheem and A.H. Abed, (2020), Anti-Fuzzy SA-Ideals on SA -algebras, Journal of Physics: Conference Series, vol.1530, pp: 1-15.
- [5] A.T. Hameed, F. F. Kareem and S.H. Ali, (2020), Hyper AT-ideal on AT-algebra, Journal of Physics: Conference Series, vol.1530, pp: 1-17.
- [6] R. A. Borzooei and M. Bakhshi, Some results on hyper BCK-algebras, Quasigroups and Related Systems, vol. 11 (2004), pp: 9-24.
- [7] S. M. Mostafa, F.Kareem, B. Davvaz, (2017), **Hyper structure theory applied to KU-algebras**, The Journal of Hyperstructures, vol.6, no. 2, pp: 82-95.
- [8] S.M. Mostafa, M.A. Abd-Elnaby and M.M.M. Yousef, (2011), Fuzzy ideals of KU-Algebras, Int. Math. Forum, vol.63, no.6, pp: 3139-3149.
- [9] Y. B. Jun, M. M. Zahedi, X. L. Xin, and R. A. Borzooei, (2000), On hyper BCK-algebra, Italian J. Pure App. Math., Oxford Ser., vol.10, pp: 127-136.