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Abstract’ In this paper is to introduce the concept of hyper SA-algebras is a generalization of SA-algebras and study a hyper
structure SA-algebra and investigate some of its properties. Also, hyper some types of hyper SA-algebras and hyper SA-ideal of
hyper SA-algebras are studied. We study on the fuzzy theory of hyper SA-ideal of hyper SA-algebras hyper SA-algebra. We study
homomorphism of hyper SA-algebras which are a common generalization of SA-algebras
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1. Introduction

Areej Tawfeeq Hameed and et al ([1]) introduced a new algebraic structure, called SA-algebra, They have studied a few
properties of these algebras, the notion of SA-ideals on SA-algebras was formulated and some of its properties are investigated.
The concept of a fuzzy set, was introduced by L.A. Zadeh [4]. In [6], S.M. Mostafa and A.T. Hameed made an extension of the
concept of fuzzy set by an interval-valued fuzzy set (i.e., a fuzzy set with an interval-valued membership function). This interval-
valued fuzzy KUS-ideals on KUS-algebras is referred to as an i-v fuzzy KUS-ideals on KUS-algebras. they constructed a method
of approximate inference using his i-v fuzzy KUS-ideals on KUS-algebras. In this paper, using the notion of interval-valued fuzzy
set , we introduce the concept of an interval-valued fuzzy SA-ideals (briefly, i-v fuzzy SA-ideals) of a SA-algebra, and study some
of their properties. Using an i-v level set of an i-v fuzzy set, we state a characterization of an i-v fuzzy SA-ideals. We prove that
every SA-ideals of a SA-algebra X can be realized as an i-v level SA-ideals of an i-v fuzzy SA ideals of X. In connection with the
notion of homomorphism, we study how the images and inverse images of i-v fuzzy SA-ideals become i-v fuzzy SA-ideals.
2. Hyper of The SA-algebra

In this section, some properties of hyper SA-algebra are discussed and preliminaries lemmas of SA-ideals and fuzzy SA-ideals of
SA-algebra .

Remark 2.1 [10].

Let H be a nonempty set and p* (H) = p(H) \ {@} the family of the nonempty subsets of H. A multi valued operation (said also
hyper operation) " o " on H is a function, which associates with every pair (x,y) € H x H = H?> anonempty subset of H denoted
x o y. An algebraic hyper structure or simply a hyper structure is a nonempty set H endowed with one or more hyper operations.
Remark 2.2 .

In this work, let H be a nonempty set and p* (H) = p(H) \ {@} the family of the nonempty subsets of H. A hyper operations o
and = on H is a function which a ssociates every pair (x,y) € H x H = H? a nonempty subset of H denoted x oy andx *y. An H
endowed with two hyper operations.

Definition 2.3.
Let H be anonempty set and o and * be two hyper operations on H such that
o« :H X H — p*(H). Then H is called hyper SA-algebra if it contains a constant 0 and satisfies the following axioms: for all
X,y,Z€H,
(HSA)) x+*x={0} =xox,
(HSA,) x+*0={x} =x00,
(HSA;) x*y) *z KL X*(zoy),
(HSA,) (xoy)x(xoz) Ky=*z.
Remark 2.4.
(1) Wherex <y isdefinedbyO0 exoy A 0€x*y, foreveryl,] € H,I < ] is defined by
Va€l,3b€]suchthata « b. Insuch case, we call < the hyper order in H.
(2) We shall use the x o y in stead of x o {y} or {x} o {y} and we shall use the x * y in stead of
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x x{y}or {x} * {y}.

(3) If I,J € H, thenby I o], we mean the subset Uaera o b of H and I * J, we mean the subset Uger a * b of H.

bej bej
Example 2.5.
(1) LetH = {0, a} and hyper operation o and * as the following table:
°° 0 a o 0 a
0 {0} | {0} 0 {0} | {0a}
a {a} | {0} a {a} | {0}
Then (H;eo,*,0) is a hyper SA-algebra.
(2) Let H =1{0,1,2} and hyper operation o and = as the following table:
o 0 1 2 % 0 1 2
. W [ [{% . @ {0 {0
2 | {2+ [{02} |{0} 2 {2+ | {0} {0}

Then (H;o,*,0) is a hyper SA-algebra.
(3) Let (H;+,—,0) be a SA-algebra and define a hyper operation o and * on H

xoy={x+y} A xxy={x—y}, forall x,y € H,then (H;o,*,0) is a hyper SA-algebra.

(4) IfH ={0,1,2,...} and hyper operations o and * on H is defind as follows:
_ _ ({0, x} ifx<y
xry=x y_{{x} ifx>y
Then (H;o,*,0) is a hyper SA-algebra.
Proposition 2.6.

, forall x,y € H.

Let (H;o,*,0) be a hyper SA-algebra. Then for all x,y,z € H and for all nonempty subset I, ] of H the following statements hold:

(p1) 1 <Jimplies] < J;

(p2) 000={0}=0%0;

(p3) x L x;

(pg) 100=1=1%0;

(Ps) xoy Kyxx;

(P6) x°(000) ={x} =x=(0%0);

(p7) x*(xoz) K z;

(Pg) 020 ={0}=0x0;

Proof:

(p1) By Definition of «<.

(p2) By (HSA,), putx=0,then 0c0=0%0=0.

(p3) By (HSA3), lety = z = 0. Then by (p,) and (HSA,) then x « x.
(p4) The proof follows by (HSA,).

(ps) By (HSA,) and (HSA,),putz = x,then,x oy < y * x.
(pe) The proof follows by (HSA,), (HSA,).

(p7) By (HSA,),puty =0,then,x * (xoz) < z.

(pg) The proof follows by (HSA,). =

Lemma 2.7.

In hyper SA-algebra (H;o,*,0) the following hold: for all x,y,z€ H, y Kz & x oy K x o z.

Proof:
Since y < z,itfollowsthat0 e yoz A0 €y xz By (HSA,), we obtain

(xoy)*x(xo0z) K (y*z).ThenO € (xoy)*(xoz)o(y*z), and0 € (xoy)*(xoz)*x(y*z),but 0€Eyoz AOE Y=

z.Hence,0 € (xoy)*(xoz),(i.e.), xoyKxoz 1
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Lemma 2.8.

In hyper SA-algebra (H;o,*,0) , the following statements hold: for all x,y,z € H,

Q) x*xyKzeexKz0y,
2 I<K0e=0€l,

B)ye(xo)Ay€eE(x*x0) = x K y.

Proof:

(1) Letx,y,z€ Hsuchthatx *y « z, then thereexistst e x *y suchthat t Kz 0€toz AOELt*z = 0ELt*xzC
(xxy)*zKLx*(zoy)by(HSA;) & 0E€Ex*(zoy) &

X KL (zoy).

(2) LetI « 0. It meansthattherea € I suchthata <« 0. By (HSA,)a=0,andso0 € I.
(3) Lety€e(xo0)A y € (x*0),then by (2),(xo0) Ky A(x*0) < y, then
0€E(xo0)oy=x0y AOE(X*0)*y=xxy (i.e.),0Exoy ANOEXx*y.Hencex <K y. m

Definition 2.9.

Let S be a nonempty subset of a hyper SA-algebra H. Then S is said to be a hyper SA-subalgebra of H if

XoyCSAx*xyCS,Vx,y€ES.

Proposition 2.10.

Let S be a nonempty subset of a hyper SA-algebra (H,*,0,0), if S is hyper SA-subalgebra of H,then 0 € S.

Proof:

Since if S is hyper SA-subalgebraof H ,then xocy €S A x*y € S.

Leta€ S, since ak a,we have0E aca €S andOeEa+xa S S ,then 0 € S.

3. Some Types of Hyper SA-algebras.
In this section, the notion of some types of hyper SA-algebras is introduced. Several theorems and properties are stated and

proved.
Definition 3.1.

A hyper SA-algebra (H;o,*,0) is said
(1) Column hyper SA-algebra (briefly,C-hyper SA-algebra),
if x*0={x}=x00,forall x € H;
(2) Diagonal hyper SA-algebra (briefly,D-hyper SA-algebra),
ifxox ={0}=x=xx, forall x € H;

(3) Very thin hyper SA-algebra (briefly,V-hyper SA-algebra), if it is a

CD-hyper SA-algebra

Example 3.2.
(1) LetH = {0,a,b} be a set. Define a hyper operations o,* on H as following table :
)
%o 0 a b ** 0 a b
o | {0 {0 [{%} o |0 [0 [{®
. @ [ [{% o | @ [0 [
p | b} [{0a} | {0} p | by | {ob} | {0}
Then, (H;o,*,0) is an V-hyper SA-algebra.
(3) LetH ={0,a} be a set. Define a hyper operations o,* on H
(4) as follows table:
(=P 0 a * 0 a
o | {0} {0} {0} {0}
a | {8} {0,a} {a} {0}
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Then, (H;o,*,0) is an C-hyper SA-algebra.
(5) Let H = {0, a} be a set. Define a hyper operations o,x on H as follows table:

0® 0 a ok 0 a
o | {0} {a} o |10} {0}
{a} {0} a {0.a} | {0}

Then, (H;o,*,0) isan D-hyper SA-algebra.
Theorem 3.3.
Let (H;o,*,0) be a D-hyper SA-algebra.Then, forallx,y,z € H
(1) a € 0 = x implies a * x «< {0},
(2) (xxy) xy < x* {0}
Proof:
(1) By Definition (3.1(1,3)) and (HSA3), (0 *x) * x < 0 * (x o x) = 0% 0 = {0}. It follows that,forall a € 0 *x,a * x < {0}.
(2) By (HSA,) and Definition (3.1(3)), (x * y) * y < x * (y o y) = x * 0, then
(xxy)*y LKx={0}. m
Theorem 3.4.
Let (H;o,*,0) be a V-hyper SA-algebra. Then, for all x,y,z € H
1) PI<xxyeox).
(2) Ifzexoy, then{x} Ky=*z.
Proof:
(1) By (HSAj3) and (p,) and Definition (3.1(1,3)), {y} =y *0 =y * (x * x) < x * (y o x), then {y} < x * (y o x).
(2) Letz€xoy, thenby(1),{x} <Ky=*(xoy). Hence{x} Ky+*z m

4. Hyper SA-ideal of SA-algebra.
In this section, the notion of hyper SA-ideal of SA-algebra is introduced. Several definitions and theorems and properties are
stated and proved.
Definition 4.1.
Let I be a nonempty subset of hyper SA-algebra (H;o,*,0). I is called a hyper SA-ideal of H ifV x,y,z € H,
(HSAL) 0 €1,
(HASL) xoz K I and y*z < I implies xoy < I.

Example 4.2.
Let H = {0,1,2} is a hyper SA-algebra. Define a hyper operations o, on H as follows table:

o 0 1 2 o F 0 1 2

o | {O0F [ [ o {0y {01 {02

L Oy [0y [0 L o [{or [{®
0y [0 [{0} , | {0y |[{02} |{0}

Then, I, = {0,1} and I, = {0,2} are the only hyper SA-ideals of H.
Example 4.3.
Let H = {0,1,2,... } and hyper operations o and * on H is defind as follows:
{0, x} if x <
ey=rer={g” L5
SA-algebra. Then, I, = {0,1},1, = {0,1,2},I; = {0,1,2,3}, ..., I, = {0,1,2,3, ..., n} are hyper SA-ideals of H.
Definition 4.4.

forall x,y € H, isahyper
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Let I be a nonempty subset of hyper SA-algebra (H;o,*,0).Then I is said to be a hyper ideal of H if: V x,y € H,
(HI) 0 €1,
(HL) xoy LI andx €l imply y€el,
(HI;)) x*y <1 andx €1 imply y €l

Example 4.5.
Concider a hyper SA-algebra H = {0,1,2} with the following table,

o2 0 1 2 o 0 1 2
o {0 [ [ 0 {0 |01 [{02
L {0y [ [{@ L @ [y [©@

, {0y {02y [{0} > | |03 [0

Then [ = {0,2} is hyper ideal of H.
Definition 4.6.
Let I be a nonempty subset of a hyper SA-algebra (H;o,*,0) and 0 € I. [ is called a weak hyper ideal of H , if Vx,y € H,
1) xoyclandx e€limplythatyel,
2) xxyclandif x €l implythaty € I.
Definition 4.7.
Let I be a nonempty subset of a hyper SA-algebra (H;e,*,0) and 0 € I. [ is called a strong hyper ideal of H , if Vx,y € H,
1) (xey)nI+#@andx €l implythaty e,
2) (*xy)nl+@andif x € I implythaty € I.
Theorem 4.8.
Every weak hyper ideal is strong hyper ideal.
Proof:

Let | be a weak hyper ideal, then x oy ST and x € I implies y € I. Thus (xey)NI # @ and x € [ implies y €. And
x*yCSland x € limpliessy € . Thus (x * y) NI # @ and x € I implies y € I. Hence | is a strong hyper ideal. m
Remark 4.9:

Every strong hyper ideal is not a weak hyper ideal, as the following example:

Example 4.10:
Let H = {0, a} be a set. Define a hyper operations o, on H as following table:

*
*

0 b
{0y [{a} {0.a}
{0y [{0a} |{b}
{0y | {b} {0,b}

0 a b
{0y |{a} {0,a}
{0y [{0a} |{b}
{0} | {b} {0,b}

o © Po
o R ©

1={0, b} is strong hyper ideal but is not weak hyper ideal.
Oeb)NI + @ ={0cb)N] + @ &0EI=b€EIl,butOchb=1{0,a} &I.
Definition 4.11.
For a hyper SA-algebra (H;e,*,0). A nonempty subset I € H, containing 0 is said a weak hyper SA-ideal of H, ifV a,b,c €
Hr
1) ((aeb)oc)clandb €l implyaoccc<l,
2) ((axb)xc)yclandbelimplythataxc <.
Definition 4.12.
For a hyper SA-algebra (H;e,*,0). A nonempty subset I € H, containing 0 is said a strong hyper SA-ideal of H, ifV a,b,c €
Hr
1) ((@aeb)ec)nI#@) andb el implythataoc S,
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2) (axb)y*c)ynl=+@)andb €l implythata*c < I.
Theorem 4.13.
Every weak hyper SA-ideal of a hyper SA-algebra (H;o,*,0) is strong hyper SA-ideal.
Proof:

Since | is weak hyper SA-ideal, then ((xecy)ez)S1I and y € Iimply xoz S [. Thus
((xey)ez)Nl # @ and y €limplyxoz €. And ((x *y) *z) €1 and y € I imply
x*zQI.Thus((x*y)*z)nI # Q@and yelimplyxoz€el.

Hence | is strong hyper SA-ideal. =
Remark 4.14:

Every strong hyper SA-ideal is not a weak hyper SA-ideal, as the following example:

Example 4.15:
Let H = {0, a, b} be a set. Define a hyper operations o,* on H as following table:

e
*

0 1 2
{0y [{o1}y {12}
{0y {01} |{2}
{0y [{1.2}y | {02}

0 1 2
{0y {01} {12}
{0y ({01} |{2}
{0y {12y [ {02}

p
N o P
N B o

1={0,2} is a strong hyper SA-ideal, but is not weak hyper SA-ideal.

(100)e2)NI + P &0 ElI=102={2}C1, but (120)e2)={0,1,2} £ 1.
Theorem 4.16.

Every weak hyper SA-ideal of a hyper SA-algebra (H;eo,*,0) is a weak hyper ideal.
Proof:

Let I be a weak hyper SA-ideal of H,V a,b,c € H , then ((aeb)oc) K Iandb €I imply
aocS . Puttinga=0,weget (0eb)oc)KLIlandbelimplyOoc=c€l.
Hence (boc) K Iland belimplycel. And((a*b)*c)<Ilandbelimplyaxc<SI. Puttinga =0, weget ((0*b) *
c)Llandbelimply0xc=ce€l.

Hence (b xc) < I'and b € I imply ¢ € I. Hence | is weak hyper ideal. m

Remark 4.17.
Generally,every weak hyper ideal is not a weak hyper SA-ideal. It can be observed with the help of examples given below:
Example 4.18.
Let H = {0,1,2,3} be a set with the following cayley table:
. 0 1 2 |8 S0 1 2 |8
0 {0} | {0} {0} {0} 0 {0} | {0} {0} {0}
1 ({1 {9} {02}y | {23} 1 {1y {0} {02}y | {23}
2 | {2+ {01} |{0} {1} 2 | {2y {01} |{0} {1}
3 {38 {02} |{0} {0} 3 {38 {02} |{0} {0}

Then (H,o,x,0) is a hyper SA-algebra.Take I = {0,1}, then I is a weak hyper ideal, however, I is not a weak hyper SA-ideal of
Has (3e1)el)c,1€l,but3el1=2¢1.
Theorem 4.19.
Every strong hyper SA-ideal of a hyper SA-algebra (H,o,*,0) is a strong hyper ideal.
Proof:
Let I be a strong hyper SA-ideal of H,V a,b,c € H ,then ((aeb)ec)nNI+@ andb el implyaocc S1I. Puttinga =0,
weget ((0ob)oc)=(boc) andbelimplyOoc=c €1.
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Thus (bec)NI#@ and belimplycel.And ((axb)*c)NI*@) andbelimplyaxc<SI.

Putting a = 0, we get

((0xb)*c)=(b*c) andbelimplyOxc=c € L. Thus(b*c)nI =@ and b € I imply c € I. Hence | is strong hyper

ideal. m
Remark 4.20.

Generally,every strong hyper ideal is not a strong hyper SA-ideal. It can be observed with the help of examples given below:

Example 4.21.
Let H = {0, a, b} be a set with the following table:

3
*

0 a b 0 a b
{0y |{a} {0,a} {0y |{a} {0.a}

10y | {0a} |{b} {0y [{0a} | {b}

o e Po
R P

10y | {b} 10,0} 0  |[{b} 10,0}

Then (H,0,*,0) is a hyper SA-algebra.Take I = {0, b},Then I is a hyper ideal, but not a hyper
SA-ideal of H, since ((Oeb)eca) LK I,bel,butOca=aél.
Here I = {0, b} is also a strong hyper ideal, but it is not a strong hyper SA-ideal of H,
since (0eb)oca)={b}nI+Pandb e, butOca=a¢l.
Definition 4.22.
A subset I of a hyper SA-algebra (H;eo,*,0) such that 0 € I is called the following: V x,y,z € H
(1) A hyper SA-ideal of type 1,if ((x cy)oz) < I,y € I, then x oz S |,
andif ((x*y)*z) < L,y€l, thenx*zCI.
(2) A hyper SA-ideal of type 2,if ((xoy)oz) S 1,y € ,then xoz |,
andif((x*y)*z) clyel thenx*xzcl.
(3) A hyper SA-ideal of type 3,if ((x cy)oz) < I,y € I, then x oz < I,
and if((x*y)*z) LI,y€el, thenx*z < I.
(4) A hyper SA-ideal of type 4,if ((x cy)oz) S 1,y €I, then xoz < I,
and if((x*y)*z) clLyel thenx*z < I.

Theorem 4.23.
In any hyper SA-algebra (H;o,*,0), the following statements are valid.
(1) Any hyper SA-ideal of type 1 is a hyper SA-ideal of type 2 and 3.
(2) Any hyper SA-ideal of type 2 is a hyper SA-ideal of type 4.
(3) Any hyper SA-ideal of type 3 is a hyper SA-ideal of type 4.
(4) Any hyper SA-ideal of type 1 is a hyper ideal.
(5) Any hyper SA-ideal of type 2 is a weak hyper ideal.
Proof:
(1) Let I be a hyper SA-ideal of type 1, then ((x o y) o z) K ILyelimply xez < I, and

((x*y)*z) < I,y €1, imply x * z € I. By Definition of «, we gate ((x o y) cz) S 1,y €1, then x oz C I, and

((x*y)*z)gl,yel,then x*zCl. And((xoy)oz)<<1,yel,

then x oz « I, and ((x *y) * z) & I,y €l, thenx xz < I. Hence hyper SA-ideal of type 1 is a hyper SA-ideal of type 2 and 3.

(2) Let I be a hyper SA-ideal of type 2, then ((x o y) 0 z) € I,y € I, then
xozgl,andif((x*y)*z)QI,yEI, thenx x z C I.

By Definition of «, we gate ((x o y)oz) €1,y € I,then x oz < I,and ((x *y) xz) S I,y € I, then
x * z < I. Hence hyper SA-ideal of type 2 is a hyper SA-ideal of type 4.

(3) Let I be a hyper SA-ideal of type 3, then ((x o y) 0 z) < I,y € I, then
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x oz <K I,and ((x *Y) * z) K I,y €1, thenx » z < I. By Definition of «,

we gate ((xoy) oz) cl,yelthen xoz < I,and ((x *y) *z) C I,y €1, then
x * z < I. Hence hyper SA-ideal of type 3 is a hyper SA-ideal of type 4.

(4) LetI be a hyper SA-ideal of type 1, (yoz) < I and (y * z) < I),and y € I. Hence, by proposition (p,). We obtain
((0ey)ez) K I ((0xy)=2z)KI).Buty €I soapplying the hypothesis and proposition (ps), we get
{z}=00z<c1I ({z} = 0%z < I). Thisshows that I is a hyper-ideal of H.

(5) LetI be ahyper SA-ideal of type 2, yoz < I (y*z S I),and y € I. Hence, by proposition (p,) , we obtain
0o(yoz) <I1,(0x(y=*z)<I).Buty €I, soapplying the hypothesis and proposition (ps), we get
{z} =00z < I,({z} = 0xz < I). This shows that I is a hyper-ideal of H. m

Theorem 4.24.

In any hyper SA-algebra (H;e,*,0), then

(1) A hyper SA-ideal of type 1&2&3&4 is weak hyper SA-ideal .

(2) A hyper SA-ideal of type 1&2&3&4 is weak hyper ideal.

Proof:

We prove only (1) and the type (2) , (3), (4) are simillary.

(1) Let I be a hyper SA-ideal of type 1, then ((x o y)oz) < I,y € I,imply xoz < I,and
((xxy)*z) < ILy€el imply x*z <. Since((xoy)oz)<«<Iis((xoy)oz)cIand
((x*y)*z) «Tis ((x*y)=*z) < I by Definition of <, then ((x o y) 0 z) S I,y € I, imply
xozcl,and ((x*y)*z) S 1,y €I, imply x =z C I. Hence I is weak hyper SA-ideal.

(2) By Theorem (4.16) and (1) above. m

Theorem 4.25.

In any hyper SA-algebra (H;o,*,0), then

(1) A hyper SA-ideal of type 1&2&3&4 is strong hyper SA-ideal .

(2) A hyper SA-ideal of type 1&2&3&4 is strong hyper ideal.

Proof:

We prove only (1) and the type (2) , (3), (4) are simillary.

(1) Let I be a hyper SA-ideal of type 1, then ((x o y)oz) < I,y € I,imply xozC I, and
((x*y)*z) LILy€el imply x«xzcl. Since((xoy)oz) i is((xoy)oz) cland

((x*y)*z) K TIis ((x*y)*z) c I by Definition of «, then ((xoy)oz)ﬂl # @ ,y€elimply xoz <, and ((x*y)*

z) NIl # @,y el imply x*z S I.Hence I is strong hyper SA-ideal.

(2) By Theorem (4.19) and (1) above. =

5. Homomorphism on Hyper SA-algebras.
In this section, we introduce some result on images and pre-images of homomorphism on hyper SA-algebra and investigate some
related theorems.
Definition 5.1.
Let (H,0,*,0), (K,3,% 0) be hyper SA-algebras. A mapping f: H — K is called a hyper homomorphism if for all x,y € H,
then
(HH,) £(0) = 0,
(HHy) f(xoy) = f(0) 8 f(y),
(HH3) f(x *y) = fQ) * f ().
Theorem 5.2.
Let f: (H,o,x,0) — (K,3,%0) is a hyper homomorphism of hyper SA-algebras, if x «< y in H, then f(x) < f(y) inK.
Proof:
Let x,y € H be such that x < y. Then,0 € x *y A0 € x o y, and so by (HH,), 0 = £(0) , by (HH,)
fO) =flxey)=f()sf(y) andby (HHs) f(0) = f(x*y) =f(x) *f(y). Hence f(x) K f(y) inK. m
Theorem 5.3.
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Let f: (H,0,%,0) — (K,5,% 0) be a hyper homomorphism of hyper SA-algebra, if I is a hyper ideal of K, then f=1(I) is a hyper
ideal of H.
Proof:
By Theorem (5.2(1)), £(0) = 0. Since is hyper ideal of K, then 0 € I and £(0) = 0, then £(0) € I
= fHfO) € FI) = 0 € f1(D).
Letx,y e Hsuchthatxey < f71() A x*y < f~X()andx € f~1(I), then f(x) €l,andforeveryz€ xoy A zEx*y,
there exists w € f~1(I) such that z < w, thatis,0 € zow A
0ez+w. Itfollows that by (HH;) 0 = £(0) and by (HH,)
fO)efzow)=f(2)sf(w) Sfxey)dl=f(x)of(y)sl, and by (HH;)
fOef@xw)=f@*fW)sflxxy)*I=f)*f(y)*I,
sothat f(x) o f(y) K I A f(x)* f(y) < I.Since | is ahyper ideal of K.
It follows that f(y) € I, thatis,y € f~1(I) by (HI,). Hence f~1(I) is a hyper ideal of H. m
Definition 5.4.
Let f: (H,0,%,0) = (K,3,%0) be a hyper homomorphism of hyper SA-algebras.
ker(f) = {x € H: f(x) = 0}, called the kernel of f .
Theorem 5.5.
Let f: (H,0,%,0) — (K,5,% 0) be a hyper homomorphism of hyper SA-algebras. ker(f) is a hyper ideal of H.
Proof:
By Definition (5.4), 0 € ker(f), letx,y € H such that x oy < ker(f) A x *y < ker(f) and
x € ker(f), then f(x) =0, andforeacha € x*y A a € x oy, there exists b € ker(f) such that a « b, it follows from (HH,)
and (ps) that is, a € ker(f) sothat 0 = f(a) € f(xoy) = f(x) 8 f(y) =08 f(y) = f(y) and by (HH;)
0=f(a) Ef(x*y)=f(x)*f(y) =0%*f(y) = f(y) thatis y € ker(f). Hence ker(f) is a hyper ideal of H. m
Theorem 5.6.
Let f: (H,0,%,0) — (K,5,% 0) be an epimorphism of hyper SA-algebra. If I is a hyper ideal of H contaning ker(f), then f£(I) is
a hyper ideal of K.
Proof:
By (HH,),0 = f(0) € f(I). Letx,y € Ksuchthatx sy « f(I) A x*y <« f(I) and x € f(I). Since f is onto, it follows that
there exist a, b € H such that f(a) = x and f(b) = y.
Thus f(aeb) =f(a)of(b) =x3y K f(D). A flaxb)=f(a)*f(b) =x*y <f().
Letweaobh Aweaxb andforeveryz € f(aeb) A z € f(a *b), there exist w € f(I) such that z << w. Then
f(2) K f(w), thatis 0 € f(z) e f(w) =f(zew) A OEf(2)*f(w) =f(z*w).
It followsthat zew S ker(f) €1 A z*w Cker(f) S I,sothatzow <K I A z*xw K Iby (py).
Since | is a hyper ideal of H, it follows thatw € I , by (HI,). Henceaeb S 1 A axb Sl andaecbh K1 A axb < I.Since
a € I, it follows from (HI,) that b € I , sothat v = f(b) in f(I). Hence f(I) isahyper ideal of K. m
Theorem 5.7.
Let f: (H,0,%,0) — (K,5,%0) and g: (H,o,,0) — (M,5,%,0) be two homomorphism of hyper SA-algebras such that £ is onto
and ker(f) € ker(g), then there exists a homomorphism h: (K,3,%,0) — (M,5,% 0) suchthat ho f = g.
Proof:
Let y € K, since f is onto, there exists x € H such that y = f(x). Define h : K — M by h(y) = g(x), forall y € K.
Now, we show that h is well-defined. Let y;,y, € K and y, = y,, since f is onto, then there are x;,x, € H such that
y1=f(x1) andy, = f(x;). Hence f(x;) = f(xz) and0 € f(x) 8 f(x2) = f(xy0x5) A
0 € foxy) * fxz) = foxg % x3)
It follows that there exists z € x; o x, A z € x; * x, such that f(z) = 0. Thus z € ker(f) < ker(g) and g(z) = 0.
Sincez € xy 0 x; A Z €xy %Xy, then 0= g(2) € g(xy o x;) = g(x1) 3g(x2) A0 =g(2) € glxy * x3) = g(xy) % g(x3)
which implies that g(x;) < g(x,).
On the other hand, since 0 € f(x;) 3 f(xy) = f(xy0x,) A 0 € f(xy) * f(x,) = f(x; * x,), similarly we can conclude that
0€glxzex) =g(x)389(x ) A 0€E glay*x) = g(xz) % g(xy), then g(xz) K g(xy) .
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Thus g(x;) = g(x,) which shows that h is well-defined. Clearly, ho f = g.

Finally, we show that h is a homomorphism, let y,,y, € K. Since f is onto, there are x,, x, € H such that

vy, = f(x,) and y, = f(x,). Then
h(y, *y,) = h(f(x1) * f(x2)>

= h(f(x1 * xz))

= (ho f)(x; *x3)

= g(xy * x3)

=9g(x;) ¥ g(x;)

= (ho f)(x1) # (ho f)(x;)
= h(f(x1)) * h(f(xz))

= h(y,) ¥h(y,) and

h(y13y2) = h(f(x) 8 f(xz))

= h(f(x, 0 x,))
= (ho f)(x;°x;)
= g(x; © x;)
=g(x,) 8 g(x;)
= (hof)(x) 3 (hof)(xy)
= h(f(x) 3 h(f(x))
= h(y,) 3 h(y2).
Moreover, since £(0) = 0, and g(0) = 0, then

h(0) = h(£(0)) = (h o £)(0) = g(0) = 0.

Hence h is a homomorphism. m
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