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1. INTRODUCTION 

 Due to the unique physical properties of gallium phosphide (GaP - point symmetry group 43m), arsenide gallium (GaAs - 

point symmetry group   ̅̅̅̅ m), yttrium aluminum garnet (Y3Al5O12 - point symmetry group m3m) crystals have always been of 
interest, and are used in acoustics (acousto-optics). 

     Therefore, the study of their acoustic properties and the discovery of new aspects has been the main goal of many studies. 
In this work, the acoustic wave velocity and extinction anisotropy of the crystals were studied based on the experimental data on 

the extinction of acoustic waves by the Axiezor mechanism of crystals. 

 To accurately and completely describe the acoustic properties of crystals, it is convenient to use graphical surfaces of 

acoustic wave attenuation and acoustic wave propagation velocity, along with other characteristic magnitudes. The extinction of 

acoustic waves depends on the abstract part of the elasticity constant C"ijkl  tensor and the viscosity tensor ijkl   
The properties of symmetry and, accordingly, the number of independent components of these tensors are the same for the 

real part of the elastic coefficient tensor C´ ijkl, which determines the speed of acoustic waves. Graphic surfaces of acoustic wave 

attenuation and velocity for cubic crystals Y3Al5O12,, GaP, GaAs 

The tensor of these crystals was determined by measuring the extinction of two longitudinal and transverse waves during 

propagation along the <110> direction of the three independent components of c"ijkl. An acoustic extinction surface has been 

identified that fully detects the extinction of acoustic waves. 

Extinction was observed during the propagation of acoustic waves in different directions in the plane [100], and a good 

correlation was obtained between computation and experiment. 
These crystals are cubic crystals that belong to the m3m class and have three independent components of the tensor ciklm 

cycle. Accordingly, three independent extinction measurements were required to determine all components of the viscosity tensor. 

 

2. EXPERIENCE AND RESULTS 

 The viscosity tensor ijkl  , which describes the extinction of acoustic waves, is included in the equation related to 
deformation, and deformation rate. 

 

              
    

   
̇    (1) 

 

By substituting this expression for the equation of motion of the theory of elasticity, hence 
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where  ̈   is the shear component, Ω  is the complex modulus of frequency and flexibility, and is expressed as follows. 
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The solution of equation (2) can be written in the form 

 

                                    (4) 

 

here α  is the extinction coefficient, 

It is convenient to write this equation [4] in terms of real and abstract components using the Green-Christoffel tensor. 
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Real (in units of  1010 N / m2) and abstract parts of the elasticity coefficient tensor (сэфф, 107,Нм-2) 

Table 1. This table gives the elastic constants of the crystals. 

Crystals                
      

      
   

Y3A15O12 33.32 11.07 11.5 2,68 0,89 0,93 

GaP 14.14 6.4 7.03 6.48 4.86 1.3 

GaAs 12.26 5.71 6 8.93 7.70 0.94 

 

                               ,   (7) 

 

                                  ,   (8) 

Here, k, i -  are the cosines of the direction of the wave vector and the cosine of the direction of the displacement vector. From the 
solution of the general Christoffel equation, the velocity can be calculated as follows. 
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c) 

Fig. 1 a) Phosphide gallium b) Arsenic gallium c) Velocity anisotropy for yttrium aluminum garnet. vL is the longitudinal acoustic 

wave velocity, v  is the transverse acoustic wave velocity. The unit of speed was taken as km /s. 

The velocities of the acoustic waves in the crystals vary greatly in direction. The surfaces of the gallium phosphide and 
gallium arsenide are curved, while the yttrium aluminum garnet is circular,  the velocities are very close to each other. 

The extinction coefficient can be written from the real and abstract parts of the elastic modulus. 
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We can get the following from formulas 9) and (10) 
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                                      a)                                                                                           b) 

Fig. 2 a) Gallium phosphide, b) Counting coefficient in yttrium aluminum garnet crystals. Here, the counting coefficient was taken 
as dB / mks 

3. CONCLUSION 

From these graphs it can be seen that the extinction coefficient of the longitudinal waves     in the gallium crystal of 

phosphide is almost two and a half times greater than the extinction coefficient of the transverse wave   . From the graph of the 

extinction coefficient of yttrium aluminum garnet it can be seen that the extinction coefficients of the transverse and longitudinal 

waves are almost indistinguishable from each other . 
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