Actions on Collections. Package Concept

Usmonov Makhsud
Tashkent University of Information Technologies
Karshi branch 3rd year student
+998919471340
maqsudusmonov22@gmail.com

Abstract

To 'plam is one of the basic concepts of mathematics. We will study it based on examples. Here we can talk about a set of pedagogical college students, a set of solutions of the inequality $x+1>0$, a set of chairs in the auditorium. In real life, special words can be used instead of the word collection, such as herd, gala, herd, and so on.

Keywords: Sets and elements of a link, a set of all non-negative numbers, a set of elements.

INTRODUCTION

Any object that makes up a collection is called its elements. For example, number 3 is an element of a set of natural numbers, and April 4 is the fourth day of April.

The relationship between a set and its elements is described by the word "appropriate". The number 3 can be said to belong to a set of natural numbers.

Different comments about collections and link elements can be replaced with short notes, or more precisely, symbols. Typically, a collection is written in capital letters of the Latin alphabet, its elements are lowercase, and the corresponding word is marked with "£".
element a belongs to set A, the comment a is written as G G A. element a does not belong to set A, the comment is written as a $£ \mathrm{~A}$ (or G). For example, for some elements of set A, the statements $16 \mathrm{GA}, 328 \mathrm{GA}, 17 \& \mathrm{~A}, \backslash 1 £ \mathrm{~A}$ are true. There are special characters for some numeric packages. For example, all sets of natural numbers are denoted by N , all sets of non-negative numbers are denoted by Z 0 , all sets of integers are denoted by Z , all sets of rational numbers are denoted by Q , and all sets of real numbers are denoted by R .

METHODS

Collection items can be finite or unlimited. For example, the set of subjects taught is limited, but the set of points on a straight line is infinite.
$A=\{a \backslash b \backslash c ; d)$ and $B=\{c \backslash d ;$ Let $e\}$ be a set. A set $P=\{c \backslash d\}$ consisting of elements belonging to A and B at the same time is the intersection of the sets, which is written as $\mathrm{A} n \mathrm{~B}$, where n denotes the intersection of the sets.

If sets A and B do not have common elements, they do not intersect, and ${ }^{\wedge} n i$? Is written as $=0$. Also for any sets A, B and C :
$(\mathrm{A} \cap \mathrm{B})=\mathrm{B} \cap \mathrm{A} \backslash$
$(\mathrm{AnB}) \mathrm{nc}=\mathrm{An}(\mathrm{BnQ} \mathrm{Q}$.
If $A C B$, then $A n B=A$. In particular, $A n A=A, A n 0=0$, $A n J=A$, the universal set $(J=A)$.
A set of elements belonging to at least one of the sets A and B is their combination, and $A U$ is denoted by B, where " U " is the combination symbol. For example, $A=\{m \backslash n \backslash p \backslash k \backslash /\}$ and $B=\{p \backslash r \backslash \$$; The combination of $n\}$ sets is $A \backslash J B=\{m \backslash n \backslash p \backslash k \backslash l$ $\backslash \mathrm{r} \backslash \mathrm{j}\}$.

Let A be the first-year students of the pedagogical college and B the second year students. The A U B package may include firstyear or second-year students. These may include first-year students or second-year students or first- and second-year students. Properties:

1) for any sets A and $\mathrm{B}, \mathrm{A} \mathrm{UB}=\mathrm{BUA}$ (commutative);
2) for any sets A, B and $C\{A U B) U$ is $C==/ 4 U(2 ? U C)$;
3) If $\mathrm{B} C \mathrm{~A}$, then $\mathrm{A} U \mathrm{~B}=\mathrm{A}$. In particular, $\mathrm{AUA}=\mathrm{A}, \mathrm{AU}=\mathrm{A}, \mathrm{AUJ}=\mathrm{J}$;
4) for any A, B and C sets
$A n(B U Q=(A f l B) U(A n Q$,
The equations $\mathrm{A} U(\mathrm{~B} \cap \mathrm{C})=(\mathrm{A} U B) \mathrm{fl}(\mathrm{A} \mathrm{U} \mathrm{C})$ are valid.
Let set B be part of A. A set of elements of set A that does not belong to B is filled with B and is denoted by B'A.
If A is a set of first-year students, B is a set of first-year girls, and B is a set of boys.
1- example. $A=\{2 ; 3 ; 4\}$ Write all the part sets of the set.
Solution. One-element part sets $\{2\},\{3\},\{4\}$, two-part part sets $\{2 ; 3\},\{2 ; 4\},\{3 ; 4\}$, as well as the set A itself, i.e. $\{2 ; 3 ; 4\}$ and an empty set 0 are sampled. So, given set A has 8 sets.

2- example. Using the numbers 5 and 3, explain the essence of the problem of the part set feeder.
Solution. We take 5 notebooks and separate 3 of them and count the rest. So 2 notebooks remain. From this, in general, a colored part with b elements is removed from a given set with elements a, and the rest of the set is colored with $a-b$ elements.

3- example. $A=\{1 ; 2 ; 3 ; 5\}, B=\{1 ; 5\}$ boisa, An B ni toping.
Yechish. By definition, $\mathrm{An} \mathrm{B}=\{2 ; 3\}$ boiadi.
It should be noted that TV is a set of all natural numbers,
Since Z is the set of all integers, Q is the set of all rational numbers, R is the set of all real numbers, and N C Zc Qc R is the set, so the set R is a universal set for the remaining sets of numbers.

The difference between A and U is the set of all elements of A that are not included in B, and is denoted by $A \backslash B$.
$\mathrm{A}=\{\mathrm{a} ; \mathrm{b} ; \mathrm{c} ; \mathrm{d} ; \mathrm{e}\}, \mathrm{B}=\{\mathrm{b} ; \mathrm{d} ; \mathrm{e} ; \mathrm{k} ; \mathrm{fn}\}$ boisa, $\mathrm{A} \backslash \mathrm{B}=\{\mathrm{a} ; \mathrm{c}\}$ boiadi.

4- example. You can easily verify the following:
A is the set of all even numbers $A=\{<3 \mid$ If $a=2 n, n G N\}, B$ is the set of all odd numbers $B=\{b \backslash b=2 n-1, /$ ieiV $\}$, then $A \backslash J$ $\mathrm{B}=\mathrm{N}$;
$A=\{a \mid 4$ s a s 14, a G R $\}, B=\{b \mid$ If $10<b<19, b$ e $N\}$, then $A c \backslash B=\{x \backslash 11<*<14, x G N\} ;$
$A=\{a|,|a|<4$, a e $R\}, B=\{b||, b \backslash<2$, a e R $\} . A \operatorname{B}=\{x \mid-4<x<-2 U 2<x<4\} ;$
If BcA , then A U is denoted by $\mathrm{B}=\mathrm{B}^{\prime} \mathrm{A}$, and set B is a complement to set A ;
The set of all ordered pairs in the form $(a ; b)$ derived from set A, element 2, and set B of sets $y 4$ and B is called the Cartesian product of A and B, and $A \cdot B$ or $A x B$ is marked in the view. $A x B=\{(a ; b) \mid a e A$ and $b E B\}$. If $A=\{2 ; 3 ; 4 ; 5\}, B=\{a$; If $b \backslash c\}$, then $\operatorname{Ax} B=\{(2 ; a),(2 ; b),(2 ; c),(3 ; a),(3 ; b),(3 ; c),(4 ; a),(4 ; b),(4 ; c),(5 ; a),(5 ; b),(5 ; c)\}$.

RESULTS

Let A be the first-year students of the pedagogical college and B the second year students. The A U B package may include firstyear or second-year students. These may include first-year students or second-year students or first- and second-year students.

Properties:

1) for any sets A and $\mathrm{B}, \mathrm{A} \mathrm{UB}=\mathrm{BUA}$ (commutative);
2) for any sets A, B and $C\{A$ UB) U is $C==/ 4 U(2$? $U C)$;
3) If $\mathrm{B} C \mathrm{~A}$, then $\mathrm{A} U \mathrm{~B}=\mathrm{A}$. In particular, $\mathrm{AUA}=\mathrm{A}, \mathrm{AU} 0=\mathrm{A}, \mathrm{AUJ}=\mathrm{J}$;
4) for any A, B and C sets
$A n(B U Q=(A f l B) U(A n Q$,
The equations $\mathrm{A} \mathrm{U}(\mathrm{B} \cap \mathrm{C})=(\mathrm{A} \mathrm{UB}) \mathrm{fl}(\mathrm{A} \mathrm{U} \mathrm{C})$ are valid.
Let set B be part of A. A set of elements of set A that does not belong to B is filled with B and is denoted by B'A.
If A is a set of first-year students, B is a set of first-year girls, and B is a set of boys.
1- example. $A=\{2 ; 3 ; 4\}$ Write all the part sets of the set.
Solution. One-element part sets $\{2\},\{3\},\{4\}$, two-part part sets $\{2 ; 3\},\{2 ; 4\},\{3 ; 4\}$, as well as the set A itself, i.e. $\{2 ; 3 ; 4\}$ and an empty set 0 are sampled. So, given set A has 8 sets.

2- example. Using the numbers 5 and 3, explain the essence of the problem of the part set feeder.
Solution. We take 5 notebooks and separate 3 of them and count the rest. So 2 notebooks remain. From this, in general, a colored part with b elements is removed from a given set with elements a, and the rest of the set is colored with $a-b$ elements.

DISCUSSION

$A=\{a \backslash b \backslash c ; d)$ and $B=\{c \backslash d ;$ Let $e\}$ be a set. A set $P=\{c \backslash d\}$ consisting of elements belonging to A and B at the same time is the intersection of the sets, which is written as $\mathrm{A} n \mathrm{~B}$, where n denotes the intersection of the sets.

If sets A and B do not have common elements, they do not intersect, and ${ }^{\wedge}$ ni? Is written as $=0$. Also for any sets A, B and C :
$(\mathrm{A} \cap \mathrm{B})=\mathrm{B} \cap \mathrm{A} \backslash$
$(\mathrm{AnB}) \mathrm{nc}=\mathrm{An}(\mathrm{Bn} \mathrm{Q}$.
If $A C B$, then $A n B=A$. In particular, $A n A=A, A n 0=0, A n J=A$, the universal set $(J=A)$.
A set of elements belonging to at least one of the sets A and B is their combination, and $A U$ is denoted by B, where " U " is the combination symbol. For example, $A=\{m \backslash n \backslash p \backslash k \backslash /\}$ and $B=\{p \backslash r \backslash \$$; The combination of $n\}$ sets is $A \backslash J B=\{m \backslash n \backslash p \backslash k \backslash l$ $\backslash \mathrm{r} \backslash \mathrm{j}\}$.

Let A be the first-year students of the pedagogical college and B the second year students. The A U B package may include firstyear or second-year students. These may include first-year students or second-year students or first- and second-year students. Properties:

1) for any sets A and $\mathrm{B}, \mathrm{A} \mathrm{U} B=\mathrm{BUA}$ (commutative);
2) for any sets A, B and $C\{A$ UB) U is $C==/ 4 U(2$? $U C)$;
3) If $\mathrm{B} C \mathrm{~A}$, then $\mathrm{A} U \mathrm{~B}=\mathrm{A}$. In particular, $\mathrm{AUA}=\mathrm{A}, \mathrm{AUO}=\mathrm{A}, \mathrm{AUJ}=\mathrm{J}$;
4) for any A, B and C sets
$A n(B U Q=(A f l B) U(A n Q$,

The equations $\mathrm{A} \mathrm{U}(\mathrm{B} n \mathrm{C})=(\mathrm{A} \mathrm{U} \mathrm{B}) \mathrm{fl}(\mathrm{A} \mathrm{U} \mathrm{C})$ are valid.
Let set B be part of A. A set of elements of set A that does not belong to B is filled with B and is denoted by B'A.
If A is a set of first-year students, B is a set of first-year girls, and B is a set of boys.

CONCLUSION

Different comments about collections and link elements can be replaced with short notes, or more precisely, symbols. Typically, a collection is written in capital letters of the Latin alphabet, its elements are lowercase, and the corresponding word is marked with "£".
element a belongs to set A , the comment a is written as G G A. element a does not belong to set A , the comment is written as a $£ \mathrm{~A}$ (or G). For example, for some elements of set A, the statements $16 \mathrm{GA}, 328 \mathrm{GA}, 17 \& \mathrm{~A}, \backslash 1 £ \mathrm{~A}$ are true. There are special characters for some numeric packages. For example, all sets of natural numbers are denoted by N , all sets of non-negative numbers are denoted by Z 0 , all sets of integers are denoted by Z , all sets of rational numbers are denoted by Q , and all sets of real numbers are denoted by R .

REFERENCES

1. Bikbayeva NU, Sidelnikova RI, Adambekova GA Methods of teaching mathematics in primary school. A Methodological Guide for Elementary School Teachers. - T .: "Teacher", 1996.
2. Ahmedov M., Abdurahmonova N., Jumayev M. 1st grade mathematics textbook. - T .: «Turon-Iqbol», 2009.
3. Ahmedov M., Abdurahmonova N., Jumayev M., Ibragimov R. Teacher's book. Methodical manual for the first grade mathematics textbook. - T .: «Turon-Iqbol», 2008.
4. Bikboyeva N. and others. Second grade math textbook. - T .: "Teacher 0", 2008.
5. Jumayev M. Theory and methods of development of mathematical concepts in children. - T .: «Ilm-Ziyo», 2009.
6. Jumayev M. and others. Methods of teaching mathematics. - T .: «Ilm-Ziyo», 2003.
