Bipolar hyper Fuzzy AT-ideals of AT-Algebra

Dr. Areej Tawfeeq Hameed¹, Rusul Ahmed Flayyih² and Saba Hussein Ali³

¹Department of Mathematics, 1Faculty of Education for Girls, University of Kufa, Iraq. <u>areej.tawfeeq@uokufa.edu.iq</u>

²Department of Mathematics, Faculty of Education for Girls, University of Kufa, Iraq ³Department of Mathematics, Ibn-Al-Haitham college of Education, University of Baghdad, Iraq areej238@gmail.com

Abstract: In this paper, using the notion of bipolar-valued fuzzy set, we establish the bipolar fuzzification the notion of (strong, weak) hyper AT-ideals in hyper AT-algebras, and investigate some of their properties.

Keywords: AT-algebra, hyper AT-algebra, bipolar hyper AT-algebra, bipolar fuzzy hyper AT-ideal, bipolar weak fuzzy hyper AT-ideal, bipolar strong fuzzy hyper AT-ideal.

1. Introduction

Prabpayak and Leerawat [12,13] introduced a new algebraic structure which is called KU-algebras. They studied ideals and congruences in KU-algebras and investigated some related properties. Jun and Xin [7] considered the fuzzification of the notion of a (weak, strong, reflexive) hyper BCK-ideal, and investigated the relations among them. Mostafa et. al. [10] applied the hyper structures to KU- algebras and introduced the concept of a hyper KU-algebra which is a generalization of a KU-algebra, and investigated some related properties. In 1956, Zadeh [14] introduced the notion of fuzzy sets. At present this concept has been applied to many mathematical branches. Mostafa et. al. [9] introduced the notion of fuzzy KU-ideals of KU-algebras and then they investigated several basic properties which are related to fuzzy KU-ideals. Mostafa et al.[11], stated and proved more several theorems of hyper KU-algebras and studied fuzzy set theory to the hyper KU-subalgebras (ideals). Jun et. al. [8] introduced an extension of fuzzy sets named bipolar-valued fuzzy sets. The notion of AT-algebras was introduced by Areej Tawfeeq Hameed [3,4] introduced AT-algebra, she had studied a few properties of these algebras, the notion of AT-ideals on AT-algebras was formulated and some of its properties are investigated. She introduced the notion of fuzzy AT-ideals of AT-algebras and then they investigated several basic properties which are related to fuzzy AT-ideals in [2,4]. Bipolar-valued fuzzy sets are an extension of fuzzy sets whose membership degree range is enlarged from the interval [0, 1] to [-1, 1]. The authors in [1], introduced bipolarvalued fuzzy set on different algebraic structures. In [3], they also introduced the notion of a hyper AT-ideal, a weak hyper ATideal and gave relations between hyper AT-ideals and weak hyper AT-ideals. In this paper, the bipolar fuzzy set theory to the (sweak-strong) hyper AT-ideals in hyper AT-algebras are applied and discussed.

2.1. Preliminaries

In this section, we give some basic definitions and preliminaries lemmas of AT-ideals and fuzzy AT-ideals of AT-algebra **Definition 2.1[4].** An **AT-algebra** is a nonempty set X with a constant (0) and a binary operation (*) satisfying the following

axioms: for all x, y, $z \in X$,

(i) $(x^*y)^*((y^*z)^*(x^*z))=0$,

(ii) $0^* x = x$,

(iii) x * 0 = 0.

In X we can define a binary relation (\leq) by : $x \leq y$ if and only if, y * x = 0.

In AT-algebra (X ;*, 0), the following properties are satisfied: for all x, y, $z \in X$,

(i') $(y^*z)^*(x^*z) \le (x^*y)$,

Definition 2.2 [4]. A nonempty subset S of an AT-algebra X is called **an AT-subalgebra of AT-algebra X** if $x^*y \in S$, whenever x, $y \in S$.

Definition 2.3 [2,4]. A nonempty subset I of an AT-algebra X is called **an AT-ideal of AT-algebra X** if it satisfies the following conditions: for all x, y, $z \in X$; **AT-algebra X** if it satisfies the following conditions: for all x, y, z $\in X$;

 AT_1) $0 \in I$; AT_2) $x * (y *z) \in I$ and $y \in I$ imply $x*z \in I$.

Definition 2.4 [2,4]. Let X be an AT-algebra. A fuzzy set μ in X is called **a fuzzy AT-subalgebra of X** if, for all x, $y \in X$, $\mu(x * y) \ge \min \{\mu(x), \mu(y)\}$.

Definition 2.5 [2,4]. Let X be an AT-algebra. A fuzzy set μ in X is called **a fuzzy AT-ideal of X** if it satisfies the following conditions: for all x, y and $z \in X$,

 $(AT_1) \quad \mu(0) \ge \mu(x). \quad (AT_2) \quad \mu(x * z) \ge \min \{ \mu(x*(y*z)), \mu(y) \}.$

Vol. 5 Issue 1, January - 2021, Pages: 145-152

Remark 2.6 [1]. Let X be the universe of discourse. A bipolar-valued fuzzy set μ in X is an object having the form $\Phi =$ $\{(x, \mu_{\Phi}^{p}(x), \mu_{\Phi}^{N}(x)) | x \in X\}$, where $\mu_{\Phi}^{p} : X \to [0, 1]$ and $\mu_{\Phi}^{N} : X \to [-1, 0]$ are mappings. The positive membership degree μ_{Φ}^{p} (x) denoted the satisfaction degree of an element x to the property corresponding to a bipolar-valued fuzzy $\Phi = \{(x, \mu_{\Phi}^{h}(x), \mu_{\Phi}^{h}(x)) | x \in X\}$, and the negative membership degree $\mu_{\Phi}^{h}(x)$ denotes the satisfaction degree of x to some implicit counter-property of $\Phi = \{ (x, \mu_{\Phi}^{P}(x), \mu_{\Phi}^{N}(x)) | x \in X \}.$

For the sake of simplicity, we shall use the symbol $\Phi = (X: \mu_{\Phi}^{P}, \mu_{\Phi}^{N})$, for the bipolar-valued fuzzy set $\Phi = \{ (x, \mu_{\Phi}^{P}(x), \mu_{\Phi}^{N}(x)) | x \in X \}$, and use the notion of bipolar fuzzy sets instead of the notion of bipolar-valued fuzzy sets. **Definition 2.7** [1]. A bipolar fuzzy set $\Phi = (X; \mu_{\Phi}^{0}, \mu_{\Phi}^{0})$ in X is called a bipolar fuzzy AT-subalgebra of X if it satisfies the following properties: for any $x, y \in X$,

(1) $\mu_{\Phi}^{P}(\mathbf{x}^{*}\mathbf{y}) \ge \min\{\mu_{\Phi}^{P}(\mathbf{x}), \mu_{\Phi}^{P}(\mathbf{y})\}, \text{ and } (2) \quad \mu_{\Phi}^{N}(\mathbf{x}^{*}\mathbf{y}) \le \max\{\mu_{\Phi}^{N}(\mathbf{x}), \mu_{\Phi}^{N}(\mathbf{y})\}.$ **Remark 2.8 [1].** If $\Phi = (X: \mu_{\Phi}^{P}, \mu_{\Phi}^{N})$ is a bipolar fuzzy AT-subalgebra of X, then $\mu_{\Phi}^{P}(0) \ge \mu_{\Phi}^{P}(\mathbf{x})$ and $\mu_{\Phi}^{N}(0) \le \mu_{\Phi}^{N}(\mathbf{x})$, for all $x \in X$.

Indeed, for all $x \in X$, $\mu_{\Phi}^{P}(0) = \mu_{\Phi}^{P}(x \ast x) \ge \min\{\mu_{\Phi}^{P}(x), \mu_{\Phi}^{P}(x)\} = \mu_{\Phi}^{P}(x)$, and $\mu_{\Phi}^{N}(0) = \mu_{\Phi}^{N}(x \ast x) \le \max\{\mu_{\Phi}^{N}(x), \mu_{\Phi}^{N}(x)\}$ $= \mu_{\Phi}^{N}(\mathbf{x}).$

Definition 2.9 [1]. A bipolar fuzzy set $\Phi = (X; \mu_{\Phi}^{P}, \mu_{\Phi}^{N})$ in X is called a bipolar fuzzy AT-ideal of X if it satisfies the following properties: for any $x, y, z \in X$,

(1) $\mu_{\Phi}^{P}(0) \ge \mu_{\Phi}^{P}(x)$, and $\mu_{\Phi}^{N}(0) \le \mu_{\Phi}^{N}(x)$, (2) $\mu_{\Phi}^{P}(x \ast z) \ge \min \{\mu_{\Phi}^{P}(x \ast (y \ast z)), \mu_{\Phi}^{P}(y)\}$, and (3) $\mu_{\Phi}^{N}(x \ast z) \le \max \{\mu_{\Phi}^{N}(x \ast (y \ast z)), \mu_{\Phi}^{N}(y)\}$.

Definition 2.10 [1]. A bipolar fuzzy set $\Phi = (X; \mu_{\Phi}^{P}, \mu_{\Phi}^{N})$ in X is called a bipolar strongly fuzzy AT-ideal of X if it satisfies the following properties: for any $x, y, z \in X$,

(1) $\mu_{\Phi}^{P}(0) \ge \mu_{\Phi}^{P}(x)$, and $\mu_{\Phi}^{N}(0) \le \mu_{\Phi}^{N}(x)$, (2) $\mu_{\Phi}^{P}(z) \ge \min \{\mu_{\Phi}^{P}((x * y) * (x * z)), \mu_{\Phi}^{P}(y)\}$, and (3) $\mu_{\Phi}^{N}(z) \le \max \{\mu_{\Phi}^{N}((x * y) * (x * z)), \mu_{\Phi}^{N}(y)\}$.

Remark 2.11 [3]. Some properties of hyper AT-algebra are discussed. Let H be a nonempty set and $P^*(H) = P(H) \setminus \{\phi\}$ the family of the nonempty subsets of H. A multi valued operation (said also hyper operation) " \circ " on H is a function, which associates with every pair $(x, y) \in H \times H = H^2$ a nonempty subset of H denoted $x \circ y$. An algebraic hyper structure or simply a hyper structure is a nonempty set H endowed with one or more hyper operations.

Definition 2.12 [3]. Let H be a nonempty set and " \circ " a hyper operation on H, such that $\circ: H \times H \to P^*(H)$. Then H is called a hyper AT-algebra, if it contains a constant "0" and satisfies the following axioms: for all $x, y, z \in H$

 $(HAT_1) \quad ((y \circ z) \circ (x \circ z)) << x \circ y \quad (HAT_2) \quad 0 \circ x = \{x\} \quad (HAT_3) \quad x \circ 0 = \{0\}.$

where x << y is defined by $0 \in y \circ x$ and for every $A, B \subseteq H$, $A \ll B$ is defined by

 $\forall a \in A, \exists b \in B \text{ such that } a \ll b$. In such case, we call " \ll " the hyper order in H.

We shall use the $x \circ y$ instead of $x \circ \{y\}$, $\{x\} \circ y$ or $\{x\} \circ \{y\}$.

Note that:- if $A, B \subseteq H$, then by $A \circ B$ we mean the subset $\bigcup a \circ b$ of H.

Definition 2.13 [3]. Let S be a non-empty subset of a hyper AT-algebra $(H; \circ, 0)$. Then S is said to be a hyper ATsubalgebra of H if $S_2: x \circ y \ll S$, $\forall x, y \in S$

Proposition 2.14 [3]. Let S be a non-empty subset of a hyper AT-algebra (H; °,0). If $x \circ y \ll S$, $\forall x, y \in S$, then $0 \in S$.

Definition 2.15 [3]. Let A be a nonempty subset of a hyper AT-algebra $(H; \circ, 0)$. Then A is said to be a hyper AT-ideal of H if

 $(HI_1) \ 0 \in A; \quad (HI_2) \ x \circ (y \circ z) \ll A \text{ and } y \in A \text{ imply } x \circ z \in A \text{ for all } x, y, z \in H.$

Definition 2.16[3]. Let A be a nonempty subset of a hyper AT-algebra $(H; \circ, 0)$. Then A is said to be a hyper ideal of H if $(HI_1) \ 0 \in A; \quad (HI_2) \ x \circ y \ll A \text{ and } x \in A \text{ imply } y \in A \text{ for all } x, y \in H.$

Definition 2.17 [3]. Let *I* be a nonempty subset of hyper AT-algebra $(H, \circ, 0)$ and $0 \in I$ Then for all $x, y, z \in H$.

(1) I is said to be a weak hyper AT-ideal of H if $x \circ (y \circ z) \subset I$ and $y \in I$ imply $x \circ z \in I$,

(2) *I* is said a strong hyper AT-ideal of *H* if $x \circ (y \circ z) \cap I \neq \phi$ and $y \in I$ imply

 $x \circ z \in I$.

Definition 2.18 [3]. Let I be a nonempty subset of hyper AT-algebra $(H, \circ, 0)$ and $0 \in I$. Then for all $x, y \in H$.

(1) I is said to be a weak hyper ideal of H if $x \circ y \subset I$ and $x \in I$ imply $y \in I$,

(2) *I* is said a strong hyper ideal of *H* if $(x \circ y) \cap I \neq \phi$ and $x \in I$ imply $y \in I$.

Theorem 2.19 [3]. Every (strong, weak) hyper AT-ideal is a (strong, weak) hyper ideal.

Definition 2.20 [5]. A fuzzy set μ in hyper AT-algebra (H; °,0) is said to be a **fuzzy hyper AT-subalgebra** of H if it satisfies the inequality: $\inf_{z \in x \circ y} \mu(z) \ge \min \{ \mu(x), \mu(y) \}, \ \forall x, y, z \in H.$

Definition 2.21 [5]. Let $(H, \circ, 0)$ be a hyper AT-algebra, the map $\mu : H \to [0,1]$ is a fuzzy subset and $0 \in I$. Then μ is said to be a fuzzy hyper AT-ideal of H if for all $x, y, z, u \in H$, $x \ll y$ implies $\mu(y) \ge \mu(x)$ and

 $\mu(x \circ z) \ge \min\{ \inf_{u \in (x \circ (y \circ z))} \mu(u), \mu(y) \}.$

Definition 2.22 [2]. Let μ be a fuzzy set in X. For any t, $s \in [0, 1]$, the set $\Phi_t^P = U(\mu; t) = \{x \in X \mid \mu(x) \ge t\}$ iscalled **an uppertlevelsubsetof** μ . The set $\Phi_s^N = L(\mu; t) = \{x \in X \mid \mu(x) \le s\}$ is called a lower t-level subset of μ .

3. Bipolar Fuzzy hyper AT-subalgebras (AT-ideals)

Now some fuzzy logic concepts are reviewed. A fuzzy set μ in a set H is a function

 $\mu: H \to [0,1]$. A fuzzy set μ in a set H is said to satisfy the inf (resp. sup) property if for any subset T of H there exists $x_0 \in T$ such that $\mu(x_0) = inf_{x \in T} \mu(x)$ (resp. $\mu(x_0) = sup_{x \in T} \mu(x)$).

Definition 3.1. A bipolar fuzzy set $\Phi = (H: \mu_{\Phi}^{P}, \mu_{\Phi}^{N})$ in X is called a bipolar fuzzy hyper AT-subalgebra of H if it satisfies the following properties: for any $x, y \in H$,

(1) $inf_{z\in x^{\circ}y} \mu_{\Phi}^{p}(z) \ge \min\{\mu_{\Phi}^{p}(x), \mu_{\Phi}^{p}(y)\}$, and (2) $sup_{z\in x^{\circ}y} \mu_{\Phi}^{N}(z) \le \max\{\mu_{\Phi}^{N}(x), \mu_{\Phi}^{N}(y)\}$. **Proposition 3.2.** If $\Phi = (H: \mu_{\Phi}^{p}, \mu_{\Phi}^{N})$ is a bipolar hyper fuzzy AT-subalgebra of H, then $\mu_{\Phi}^{p}(0) \ge \mu_{\Phi}^{p}(x)$ and $\mu_{\Phi}^{N}(0) \le \mu_{\Phi}^{N}(x)$, for all $x \in H$.

Example 3.3. Consider an AT-algebra $H = \{0, 1, 2, 3\}$ with the following Cayley table:

0	0	1	2	3
0	{0}	{1}	{2}	{3}
1	{0}	{0}	{0}	{3}
2	{0}	{1}	{0}	{3}
3	{0}	{1}	{0}	{0}

Then $(H; \circ, 0)$ is a hyper AT-algebra. Define $\mu_{\Phi}^N: H \to [-1, 0]$ and $\mu_{\Phi}^P: H \to [0, 1]$ are mappings by

Н	0	1	2	3
μ^N_Φ	-0.7	-0.7	-0.6	-0.4
μ^P_Φ	0.6	0.5	0.3	0.3

By routine calculations, we know that $\Phi = (H: \mu_{\Phi}^{p}, \mu_{\Phi}^{N})$ is a bipolar hyper fuzzy AT-subalgebra in X.

Definition 3.4. A bipolar fuzzy set $\Phi = (H: \mu_{\Phi}^{P}, \mu_{\Phi}^{N})$ in *H* is called **a bipolar hyper fuzzy AT-ideal of X** if it satisfies the following properties: for any $x, y, z \in H$,

 $x \ll y$ implies $\mu_{\Phi}^{P}(\mathbf{x}) \ge \mu_{\Phi}^{P}(\mathbf{y})$, and $\mu_{\Phi}^{N}(\mathbf{x}) \le \mu_{\Phi}^{N}(\mathbf{y})$, (2) $\mu_{\Phi}^{P}(\mathbf{x}^{\circ}\mathbf{z}) \ge \min \{inf_{u \in (x^{\circ}(y^{\circ}z))} \mu_{\Phi}^{P}(\mathbf{u}), \mu_{\Phi}^{P}(\mathbf{y})\}$, and (1)(3) $\mu_{\Phi}^{N}(\mathbf{x}^{\circ}\mathbf{z}) \leq \max \{ \sup_{w \in (\mathbf{x}^{\circ}(\mathbf{y}^{\circ}\mathbf{z}))} \mu_{\Phi}^{N}(\mathbf{w}), \mu_{\Phi}^{N}(\mathbf{y}) \}.$

Definition 3.5. A bipolar fuzzy set $\Phi = (H: \mu_{\Phi}^{P}, \mu_{\Phi}^{N})$ in *H* is called **a bipolar weak hyper fuzzy AT-ideal of** *H* if it satisfies the following properties: for any $x, y, z \in H$,

(1) $x \ll y$ implies $\mu_{\Phi}^{P}(\mathbf{x}) \ge \mu_{\Phi}^{P}(\mathbf{y})$, and $\mu_{\Phi}^{N}(\mathbf{x}) \le \mu_{\Phi}^{N}(\mathbf{y})$, (2) $\mu_{\Phi}^{P}(0) \ge \mu_{\Phi}^{P}(\mathbf{x}^{\circ}z) \ge \min \{inf_{u \in (x^{\circ}(y^{\circ}z))} \mu_{\Phi}^{P}(\mathbf{u}), \mu_{\Phi}^{P}(\mathbf{y})\},$ and (3) $\mu_{\Phi}^{N}(0) \le \mu_{\Phi}^{N}(\mathbf{x}^{\circ}z) \le \max \{sup_{w \in (x^{\circ}(y^{\circ}z))} \mu_{\Phi}^{N}(\mathbf{w}), \mu_{\Phi}^{N}(\mathbf{y})\}.$

International Journal of Engineering and Information Systems (IJEAIS) ISSN: 2643-640X

Vol. 5 Issue 1, January - 2021, Pages: 145-152

Definition 3.6. A bipolar fuzzy set $\Phi = (H: \mu_{\Phi}^P, \mu_{\Phi}^N)$ in *H* is called **a bipolar strong hyper fuzzy AT-ideal of** *H* if it satisfies the following properties: for any $x, y, z \in H$,

(1)

 $\begin{array}{l} x \ll y \quad \text{implies} \ \mu_{\Phi}^{P}\left(\mathbf{x}\right) \geq \mu_{\Phi}^{P}\left(\mathbf{y}\right), \ \text{and} \ \mu_{\Phi}^{N}\left(\mathbf{x}\right) \leq \mu_{\Phi}^{N}\left(\mathbf{y}\right), \\ inf_{u \in (x^{\circ}(y^{\circ}z))} \mu_{\Phi}^{P}\left(\mathbf{u}\right) \geq \mu_{\Phi}^{P}\left(\mathbf{x^{\circ}z}\right) \geq \min \left\{ sup_{u \in (x^{\circ}(y^{\circ}z))} \ \mu_{\Phi}^{P}\left(\mathbf{u}\right), \ \mu_{\Phi}^{P}\left(\mathbf{y}\right) \right\}, \ \text{ and} \ \begin{array}{l} \mu_{\Phi}^{N}\left(\mathbf{x}\right) \leq \mu_{\Phi}^{N}\left(\mathbf{x}\right) \leq \mu_{\Phi}^{N}\left(\mathbf{x}\right) \leq \mu_{\Phi}^{N}\left(\mathbf{x^{\circ}z}\right) \leq \mu_{\Phi}^{N}\left(\mathbf{x}\right) \leq \mu_{\Phi}^{N}\left(\mathbf{x^{\circ}z}\right) = \mu_{\Phi}^{$ (2)

 $sup_{w\in(x^{\circ}(y^{\circ}z))}\mu_{\Phi}^{N}(w) \leq \mu_{\Phi}^{N}(x^{\circ}z) \leq \max \{inf_{w\in(x^{\circ}(y^{\circ}z))}\mu_{\Phi}^{N}(w), \mu_{\Phi}^{N}(y)\}.$ (3)

Definition 3.7. A bipolar fuzzy set $\Phi = (X: \mu_{\Phi}^{P}, \mu_{\Phi}^{N})$ in X is called a bipolar hyper fuzzy ideal of X if it satisfies the following properties: for any x, y, $z \in H$,

(1)

 $\begin{aligned} x \ll y \text{ implies } \mu_{\Phi}^{P}(\mathbf{x}) \geq \mu_{\Phi}^{P}(\mathbf{y}), \text{ and } \mu_{\Phi}^{N}(\mathbf{x}) \leq \mu_{\Phi}^{N}(\mathbf{y}), \\ \mu_{\Phi}^{P}(\mathbf{y}) \geq \min \left\{ inf_{u \in (x^{\circ}y)} \mu_{\Phi}^{P}(\mathbf{u}), \mu_{\Phi}^{P}(\mathbf{x}) \right\}, \text{ and } (3) \ \mu_{\Phi}^{N}(\mathbf{y}) \leq \max \left\{ sup_{w \in (x^{\circ}y)} \mu_{\Phi}^{N}(\mathbf{w}), \mu_{\Phi}^{N}(\mathbf{x}) \right\}. \end{aligned}$ (2)

Definition 3.8. A bipolar fuzzy set $\Phi = (H: \mu_{\Phi}^{P}, \mu_{\Phi}^{N})$ in *H* is called **a bipolar weak hyper fuzzy ideal of** *H* if it satisfies the following properties: for any $x, y, z \in H$,

(1)

 $\begin{array}{l} x < y \text{ implies } \mu_{\Phi}^{P}(x) \geq \mu_{\Phi}^{P}(y), \text{ and } \mu_{\Phi}^{N}(x) \leq \mu_{\Phi}^{N}(y), \\ \mu_{\Phi}^{P}(0) \geq \mu_{\Phi}^{P}(y) \geq \min \left\{ \inf_{u \in (x^{\circ}y)} \mu_{\Phi}^{P}(u), \mu_{\Phi}^{P}(x) \right\}, \text{ and } (3) \ \mu_{\Phi}^{N}(0) \leq \mu_{\Phi}^{N}(y) \leq \max \left\{ \sup_{w \in (x^{\circ}y)} \mu_{\Phi}^{N}(w), \mu_{\Phi}^{N}(x) \right\}. \end{array}$ (2)

Definition 3.9. A bipolar fuzzy set $\Phi = (H: \mu_{\Phi}^P, \mu_{\Phi}^N)$ in *H* is called **a bipolar strong hyper fuzzy ideal of** *H* if it satisfies the following properties: for any $x, y, z \in H$,

 $x \ll y$ implies $\mu_{\Phi}^{P}(x) \ge \mu_{\Phi}^{P}(y)$, and $\mu_{\Phi}^{N}(x) \le \mu_{\Phi}^{N}(y)$, (1)

 $inf_{u\in(x^{\circ}y)}\mu_{\Phi}^{P}(\mathbf{u}) \geq \mu_{\Phi}^{P}(\mathbf{y}) \geq \min \{sup_{u\in(x^{\circ}y)}\mu_{\Phi}^{P}(\mathbf{u}), \mu_{\Phi}^{P}(\mathbf{x})\}, \text{ and }$ (2)

 $sup_{w\in(x^{\circ}y)}\mu_{\Phi}^{N}(w) \le \mu_{\Phi}^{N}(y) \le \max \{inf_{w\in(x^{\circ}y)}\mu_{\Phi}^{N}(w), \mu_{\Phi}^{N}(x)\}.$ (3)

Example 3.10. Consider an AT-algebra $H = \{0, 1, 2\}$ with the following Cayley table:

0	0	1	2
0	{0}	{1}	{2}
1	{0}	{0}	{1,2}
2	{0}	{0,1}	{0}

Then $(H; \circ, 0)$ is a hyper AT-algebra. Define μ_{Φ}^{N} and μ_{Φ}^{P} are mappings by

Х	0	1	2
μ^N_Φ	-0.7	-0.7	-0.6
μ^P_Φ	1	0.5	0

By routine calculations, we know that $\Phi = (H: \mu_{\Phi}^{P}, \mu_{\Phi}^{N})$ is a bipolar (weak) hyper fuzzy AT-ideal in H. **Example 3.11.** Consider an AT-algebra $H = \{0, 1, 2\}$ with the following Cayley table:

0	0	1	2
0	{0}	{1}	{2}
1	{0}	{0}	{1,2}
2	{0}	{0,1}	{0}

Then $(H; \circ, 0)$ is a hyper AT-algebra. Define μ_{Φ}^{N} and μ_{Φ}^{P} are mappings by

Н	0	1	2
μ^N_Φ	-0.8	-0.6	-0.2
μ^P_Φ	0.9	0.5	0.3

By routine calculations, we know that $\Phi = (H: \mu_{\Phi}^{P}, \mu_{\Phi}^{N})$ is a bipolar strong hyper fuzzy AT-ideal in H.

Theorem 3.12. Any bipolar (weak, strong) hyper fuzzy AT-ideal is a bipolar (weak, strong) hyper fuzzy ideal. **Proof**:

Let $\Phi = (H: \mu_{\Phi}^{P}, \mu_{\Phi}^{N})$ be a bipolar weak hyper fuzzy AT-ideal of H, we get for any $x, y, z \in H$, $\mu_{\Phi}^{P}(0) \ge \mu_{\Phi}^{P}(x^{\circ}z) \ge \min \{ inf_{z \in (x^{\circ}(y^{\circ}z))} \mu_{\Phi}^{P}(u), \mu_{\Phi}^{P}(y) \}, \text{ and}$

(1)

 $\mu_{\Phi}^{N}(0) \leq \mu_{\Phi}^{N}(\mathbf{x}^{\circ}\mathbf{z}) \leq \max \{ \sup_{w \in (x^{\circ}(v^{\circ}\mathbf{z}))} \mu_{\Phi}^{N}(w), \mu_{\Phi}^{N}(y) \}.$ (2)Put x = 0 in (1) and (2), we get

 $\mu_{\Phi}^{P}(0) \geq \mu_{\Phi}^{P}(0^{\circ}z) \geq \min \{ \inf_{u \in (0^{\circ}(y^{\circ}z))} \mu_{\Phi}^{P}(u), \mu_{\Phi}^{P}(y) \}, \Longrightarrow \mu_{\Phi}^{P}(0) \geq \mu_{\Phi}^{P}(z) \geq \min \{ \inf_{u \in (y^{\circ}z)} \mu_{\Phi}^{P}(u), \mu_{\Phi}^{P}(y) \}, \text{ and } u \in (y^{\circ}z) \}$

 $\mu_{\Phi}^{N}(0) \leq \mu_{\Phi}^{N}(0^{\circ}z) \leq \max \left\{ sup_{w \in (0^{\circ}(y^{\circ}z))} \mu_{\Phi}^{N}(w), \mu_{\Phi}^{N}(y) \right\} \Longrightarrow \mu_{\Phi}^{N}(0) \leq \mu_{\Phi}^{N}(z) \leq \max \left\{ sup_{w \in (y^{\circ}z)} \mu_{\Phi}^{N}(w), \mu_{\Phi}^{N}(y) \right\}.$

Similarly, we can prove that, every bipolar strong hyper fuzzy AT-ideal of H is bipolar strong hyper fuzzy ideal of H. Ending the proof.

Theorem 3.13. Let $\Phi = (H: \mu_{\Phi}^{P}, \mu_{\Phi}^{N})$ be bipolar strong hyper fuzzy AT-ideal of H and for any x, y, $z \in H$, then

- $\mu_{\Phi}^{P}(0) \geq \mu_{\Phi}^{P}(\mathbf{x}), \text{ and } \mu_{\Phi}^{N}(0) \leq \mu_{\Phi}^{N}(\mathbf{x}),$ i.
- $x \ll y$ implies $\mu_{\Phi}^{P}(x) \ge \mu_{\Phi}^{P}(y)$, and $\mu_{\Phi}^{N}(x) \le \mu_{\Phi}^{N}(y)$, ii.
- $$\begin{split} & \mu_{\Phi}^{P}\left(x^{\circ}z\right) \geq \min\left\{ \ \mu_{\Phi}^{P}\left(u\right), \ \mu_{\Phi}^{P}\left(y\right)\right\}, \ \forall \ u \in (x^{\circ}(y^{\circ}z)) \ , \ \text{and} \\ & \mu_{\Phi}^{N}\left(x^{\circ}z\right) \leq \max\left\{ \mu_{\Phi}^{N}\left(w\right), \ \mu_{\Phi}^{N}\left(y\right)\right\}, \ \forall \ w \in (x^{\circ}(y^{\circ}z)) \ . \end{split}$$
 iii.

Proof.

(i) Since $0 \in \mathbf{x} \circ \mathbf{x}$, $\forall \mathbf{x} \in H$, we have $\mu_{\Phi}^{P}(0) \geq \{inf_{u \in (\mathbf{x} \circ \mathbf{x})} \mu_{\Phi}^{P}(\mathbf{u}), \mu_{\Phi}^{P}(\mathbf{x})\}, \mu_{\Phi}^{N}(0) \leq \{sup_{u \in (\mathbf{x} \circ \mathbf{x})} \mu_{\Phi}^{N}(\mathbf{u}), \mu_{\Phi}^{N}(\mathbf{x})\}.$ (ii) Let x, $y \in H$ be such that ,we have $x \ll y$. Then $0 \in x^{\circ} y$, $\forall x, y \in H$ and so $sup_{u\in(x^{\circ}y)}\mu_{\Phi}^{P}(u) \ge \mu_{\Phi}^{P}(0), inf_{w\in(x^{\circ}y)}\mu_{\Phi}^{N}(w) \le \mu_{\Phi}^{N}(0).$ It follows from (i) that $\mu_{\Phi}^{P}(0^{\circ}y) = \mu_{\Phi}^{P}(y) \ge \min \{ \sup_{u \in (x^{\circ}y)} \mu_{\Phi}^{P}(u), \mu_{\Phi}^{P}(x) \} \ge \min \{ \mu_{\Phi}^{P}(0), \mu_{\Phi}^{P}(x) \} = \mu_{\Phi}^{P}(x).$ And $\mu_{\Phi}^{N}\left(0^{\circ}y\right) = \mu_{\Phi}^{N}\left(y\right) \leq \max\left\{inf_{u\in(x^{\circ}y)}\,\mu_{\Phi}^{N}\left(u\right),\mu_{\Phi}^{N}\left(x\right)\right\} \leq \max\left\{\mu_{\Phi}^{N}\left(0\right),\mu_{\Phi}^{N}\left(x\right)\right\} = \mu_{\Phi}^{N}(x).$ (iii) Let x, y, z $\in H$ be such that , we get $\mu_{\Phi}^{p}(\mathbf{x}^{\circ}\mathbf{z}) \geq \min \{sup_{u \in (x^{\circ}(y^{\circ}z))} \mu_{\Phi}^{p}(\mathbf{u}), \mu_{\Phi}^{p}(\mathbf{y})\} \geq \min \{\mu_{\Phi}^{p}(\mathbf{u}), \mu_{\Phi}^{p}(\mathbf{y})\}, \forall \mathbf{u} \in (x^{\circ}(y^{\circ}z))$

$$\in$$
 (x°(y°z))

And $\mu_{\Phi}^{N}(x^{\circ}z) \leq \max\{\inf_{w \in (x^{\circ}(y^{\circ}z))} \mu_{\Phi}^{N}(w), \mu_{\Phi}^{N}(y)\} \leq \max\{\mu_{\Phi}^{N}(w), \mu_{\Phi}^{N}(y)\}, \forall w \in (x^{\circ}(y^{\circ}z)).$ We conclude that (iii) is true.

Note that, in a finite hyper AT-algebra, every bipolar fuzzy set satisfies inf-sup property. Hence the concept of bipolar fuzzy weak hyper AT-ideals coincide in a finite hyper AT-algebra.

Proposition 3.14. Let $\Phi = (H; \mu_{\Phi}^{p}, \mu_{\Phi}^{N})$ be a bipolar fuzzy hyper AT-ideal of *H*, then: $\mu_{\Phi}^{p}(0) \ge \mu_{\Phi}^{p}(\mathbf{x})$, and $\mu_{\Phi}^{N}(0) \le \mu_{\Phi}^{N}(\mathbf{x})$. If $\Phi = (H; \mu_{\Phi}^{p}, \mu_{\Phi}^{N})$ satisfies the inf-sup property, then $\mu_{\Phi}^{p}(\mathbf{x}^{\circ}\mathbf{z}) \ge \min \{ \mu_{\Phi}^{p}(\mathbf{u}), \mu_{\Phi}^{p}(\mathbf{y}) \}$, $\forall \mathbf{u} \in (\mathbf{x}^{\circ}(\mathbf{y}^{\circ}\mathbf{z}))$, and $\mu_{\Phi}^{N}(\mathbf{x}^{\circ}\mathbf{z}) \le \max \{ \mu_{\Phi}^{N}(\mathbf{w}), \mu_{\Phi}^{N}(\mathbf{y}) \}$, $\forall \mathbf{w} \in (\mathbf{x}^{\circ}(\mathbf{y}^{\circ}\mathbf{z}))$.

Proof.

Since 0 << x, $\forall x \in H$, it follows from Definition (3.4), $\mu_{\Phi}^{P}(0) \ge \mu_{\Phi}^{P}(x)$, and $\mu_{\Phi}^{N}(0) \le \mu_{\Phi}^{N}(x)$.

Since $\Phi = (H: \mu_{\Phi}^{P}, \mu_{\Phi}^{N})$ satisfies the inf-sup property there exists $u_{0}, w_{0} \in (x^{\circ}(y^{\circ}z))$ such that $\mu_{\Phi}^{P}(u_{0}) = inf_{u \in (x^{\circ}(y^{\circ}z))} \mu_{\Phi}^{P}(u)$, and $\mu_{\Phi}^{N}(w_{0}) = sup_{w \in (x^{\circ}(y^{\circ}z))} \mu_{\Phi}^{N}(w)$. Hence

 $\mu_{\Phi}^{P}(\mathbf{x}^{\circ}\mathbf{z}) \geq \min \{ \inf_{u \in (x^{\circ}(y^{\circ}z))} \mu_{\Phi}^{P}(\mathbf{u}), \mu_{\Phi}^{P}(\mathbf{y}) \} \geq \min \{ \mu_{\Phi}^{P}(\mathbf{u}_{0}), \mu_{\Phi}^{P}(\mathbf{y}) \}, \text{ and }$

 $\mu_{\Phi}^{N}\left(x^{\circ}z\right) \leq \max\{\sup_{w\in(x^{\circ}(y^{\circ}z))}\mu_{\Phi}^{N}\left(w\right),\mu_{\Phi}^{N}\left(y\right)\} \leq \max\{\mu_{\Phi}^{N}\left(w_{0}\right),\mu_{\Phi}^{N}\left(y\right)\}.$

Corollary 3.15. Every bipolar hyper fuzzy AT-ideal is a bipolar weak hyper fuzzy AT-ideal.

Proposition 3.16. Let $\Phi = (H; \mu_{\Phi}^{P}, \mu_{\Phi}^{N})$ be a bipolar fuzzy set, then $\Phi = (H; \mu_{\Phi}^{P}, \mu_{\Phi}^{N})$ is bipolar weak hyper fuzzy AT-ideal of *H*, if and only if, the positive level set Φ_t^P and negative level set Φ_s^N , for every $(\alpha,\beta) \in [0,1] \times [-1,0]$ are weak hyper AT-ideals of Н.

Proof.

Assume that $\Phi = (H; \mu_{\Phi}^{P}, \mu_{\Phi}^{N})$ is bipolar weak hyper fuzzy AT-ideal of H and $\Phi_{t}^{P} \neq \Phi \neq \Phi_{s}^{N}$, for every $(\alpha, \beta) \in [0, 1] \times [-1, 0]$. It clear from

 $\mu_{\Phi}^{P}(0) \geq \mu_{\Phi}^{P}(\mathbf{x}^{\circ}\mathbf{z}) \geq \min \{ \inf_{u \in (x^{\circ}(y^{\circ}\mathbf{z}))} \mu_{\Phi}^{P}(\mathbf{u}), \mu_{\Phi}^{P}(\mathbf{y}) \},\$

 $\mu_{\Phi}^{N}(0) \leq \mu_{\Phi}^{N}(\mathbf{x}^{\circ}\mathbf{z}) \leq \max \{ \sup_{w \in (\mathbf{x}^{\circ}(\mathbf{y}^{\circ}\mathbf{z}))} \mu_{\Phi}^{N}(w), \mu_{\Phi}^{N}(y) \}.$

That $0 \in \Phi_t^P \cap \Phi_s^N$, Let x, y, $z \in H$ be such that $(x^\circ(y^\circ z)) \subseteq \Phi_t^P, y \in \Phi_t^P$. Then for any $u \in (x^\circ(y^\circ z)), u \in \Phi_t^P$. It follows that $\mu_{\Phi}^{P}(u) \ge \alpha$ so that $\inf_{u \in (x^{\circ}(y^{\circ}z))} \mu_{\Phi}^{P}(u) \ge \alpha$, thus $\mu_{\Phi}^{P}(x^{\circ}z) \ge \min\{\inf_{u \in (x^{\circ}(y^{\circ}z))} \mu_{\Phi}^{P}(u), \mu_{\Phi}^{P}(y)\} \ge \alpha$ and so $x^{\circ}z \in \Phi_{t}^{P}$, there for Φ_t^P is weak hyper AT-ideal of H.

Now, Let x, y, $z \in H$ be such that $(x^{\circ}(y^{\circ}z)) \subseteq \Phi_s^N, y \in \Phi_s^N$. Then for any $w \in (x^{\circ}(y^{\circ}z)), w \in \Phi_s^N$. It follows that $\mu_{\Phi}^N(u) \le \beta$ so that $sup_{w\in(x^{\circ}(y^{\circ}z))} \mu_{\Phi}^{N}(w) \leq \beta$, thus $\mu_{\Phi}^{N}(x^{\circ}z) \leq \max\{sup_{w\in(x^{\circ}(y^{\circ}z))} \mu_{\Phi}^{P}(w), \mu_{\Phi}^{P}(y)\} \leq \beta$ and so $x^{\circ}z \in \Phi_{S}^{N}$, there for Φ_{S}^{N} is weak hyper AT-ideal of H.

Conversely, suppose that the nonempty positive and negative level sets Φ_t^P , Φ_s^N are is weak hyper AT-ideals of H for every $(\alpha,\beta) \in [0,1] \times [-1,0]$. Let $\mu_{\Phi}^{P}(x) = \alpha$, $\mu_{\Phi}^{N}(x) = \beta$, for $x \in H$, then by $0 \in \Phi_{t}^{P}$, $0 \in \Phi_{s}^{N}$. It follows that $\mu_{\Phi}^{P}(x) \ge \alpha$, $\mu_{\Phi}^{N}(x) \le \beta$ and so $\mu_{\Phi}^{P}(0) \ge \mu_{\Phi}^{P}(\mathbf{x})$, and $\mu_{\Phi}^{N}(0) \le \mu_{\Phi}^{N}(\mathbf{x})$. Now, let min { $inf_{u \in (x^{\circ}(y^{\circ}z))}\mu_{\Phi}^{P}(\mathbf{u}), \mu_{\Phi}^{P}(\mathbf{y})$ } = α , max { $sup_{w \in (x^{\circ}(y^{\circ}z))}\mu_{\Phi}^{N}(\mathbf{w}), \mu_{\Phi}^{N}(\mathbf{w}), \mu_{\Phi}^{N}(\mathbf{w}),$ $(\mathbf{y})\} = \beta.$

Theorem 3.17. Let $\Phi = (H; \mu_{\Phi}^{P}, \mu_{\Phi}^{N})$ be a bipolar fuzzy set, then $\Phi = (H; \mu_{\Phi}^{P}, \mu_{\Phi}^{N})$ is bipolar hyper fuzzy AT-ideal of *H*, if and only if, the positive level set Φ_t^P and negative level set Φ_s^N , for every $(\alpha,\beta) \in [0,1] \times [-1,0]$ are hyper AT-ideals of *H*. Proof.

Assume that $\Phi = (H; \mu_{\Phi}^{P}, \mu_{\Phi}^{N})$ is bipolar hyper fuzzy AT-ideal of H and $\Phi_{t}^{P} \neq \Phi \neq \Phi_{s}^{N}$, for every $(\alpha, \beta) \in [0, 1] \times [-1, 0]$. It clear that $0 \in \Phi_t^P \cap \Phi_s^N$.

Let x, y, $z \in H$ be such that $(x^{\circ}(y^{\circ}z)) \subseteq \Phi_t^p, y \in \Phi_t^p$. Then for any $u \in (x^{\circ}(y^{\circ}z)), \quad u \in \Phi_t^p$. It follows that $\mu_{\Phi}^p(u) \ge \alpha$ so that $inf_{u \in (x^{\circ}(y^{\circ}z))} \mu_{\Phi}^p(u) \ge \alpha$, thus $\mu_{\Phi}^p(x^{\circ}z) \ge \min\{inf_{u \in (x^{\circ}(y^{\circ}z))} \mu_{\Phi}^p(u), \mu_{\Phi}^p(y)\} \ge \alpha$ and so $x^{\circ}z \in \Phi_t^p$, there for Φ_t^p is hyper AT-ideal of H.

Now, Let x, y, $z \in H$ be such that $(x^{\circ}(y^{\circ}z)) \subseteq \Phi_{s}^{N}, y \in \Phi_{s}^{N}$. Then for any $w \in (x^{\circ}(y^{\circ}z)), w \in \Phi_{s}^{N}$. It follows that $\mu_{\Phi}^{N}(u) \leq \beta$ so that $sup_{w \in (x^{\circ}(y^{\circ}z))} \mu_{\Phi}^{N}(w) \leq \beta$, thus $\mu_{\Phi}^{N}(x^{\circ}z) \leq \max\{sup_{w \in (x^{\circ}(y^{\circ}z))} \mu_{\Phi}^{N}(w), \mu_{\Phi}^{N}(y)\} \leq \beta$ and so $x^{\circ}z \in \Phi_{s}^{N}$, there for Φ_{s}^{N} is hyper AT-ideal of H.

Conversely, suppose that the nonempty positive and negative level sets Φ_t^P, Φ_s^N are is hyper AT-ideals of H for every $(\alpha,\beta) \in [0,1] \times [-1,0]. \text{ Let } \mu^{P}_{\Phi}(x) = \alpha, \ \mu^{N}_{\Phi}(x) = \beta, \text{ for } x \in H, \text{ then by } 0 \in \Phi^{P}_{t}, 0 \in \Phi^{N}_{s}. \text{ It follows that } \mu^{P}_{\Phi}(x) \ge \alpha, \ \mu^{N}_{\Phi}(x) \le \beta \text{ and so } \mu^{P}_{\Phi}(0) \ge \mu^{P}_{\Phi}(x), \text{ and } \mu^{N}_{\Phi}(0) \le \mu^{N}_{\Phi}(x). \text{ Now, let min } \{ \inf_{u \in (x^{\circ}(y^{\circ}z))} \mu^{P}_{\Phi}(u), \mu^{P}_{\Phi}(y) \} = \alpha, \ \max\{\sup_{w \in (x^{\circ}(y^{\circ}z))} \mu^{N}_{\Phi}(w), \mu^{N}_{\Phi}(w)\} = \alpha \text{ for } x \in \mathbb{R}$ (\mathbf{y}) = β .

Note that, in a finite hyper AT-algebra, every bipolar fuzzy set satisfies inf -sup property. Hence the concept of bipolar weak hyper fuzzy AT-ideals and bipolar strong hyper fuzzy AT-ideals coincide in a finite hyper AT-algebra.

Corollary 3.18. Every bipolar strong hyper fuzzy AT-ideal is bipolar hyper fuzzy AT-ideal.

Proposition 3.19. Let $\Phi = (H; \mu_{\Phi}^{P}, \mu_{\Phi}^{N})$ be bipolar hyper fuzzy AT-ideal of H and let x, y, $z \in H$. Then

- (i) $\mu_{\Phi}^{P}(0) \ge \mu_{\Phi}^{P}(\mathbf{x})$, and $\mu_{\Phi}^{N}(0) \le \mu_{\Phi}^{N}(\mathbf{x})$. (ii) If $\Phi = (H: \mu_{\Phi}^{P}, \mu_{\Phi}^{N})$ satisfies inf -sup property, then , $\mu_{\Phi}^{P}(\mathbf{x}^{\circ}\mathbf{z}) \ge \min \{ \mu_{\Phi}^{P}(\mathbf{u}), \mu_{\Phi}^{P}(\mathbf{y}) \}$, for some $\mathbf{u} \in (\mathbf{x}^{\circ}(\mathbf{y}^{\circ}\mathbf{z}))$, and $\mu_{\Phi}^{N}(\mathbf{x}^{\circ}\mathbf{z}) \le \max \{ \mu_{\Phi}^{N}(\mathbf{w}), \mu_{\Phi}^{N}(\mathbf{y}) \}$, for some $\mathbf{w} \in (\mathbf{x}^{\circ}(\mathbf{y}^{\circ}\mathbf{z}))$.

Proof.

(i) Since $0 \ll x$, $\forall x \in H$, we have $\mu_{\Phi}^{P}(0) \ge \mu_{\Phi}^{P}(x)$, $\mu_{\Phi}^{N}(0) \le \mu_{\Phi}^{N}(x)$, by Definition (3.4(1)) and hence (i) holds. (ii) Since $\Phi = (H: \mu_{\Phi}^{p}, \mu_{\Phi}^{N})$ satisfies the inf -sup property, there is exists $u_{0}, w_{0} \in (x^{\circ}(y^{\circ}z))$ such that $\mu_{\Phi}^{p}(u_{0}) = inf_{u \in (x^{\circ}(y^{\circ}z))} \mu_{\Phi}^{p}$ (u), and $\mu_{\Phi}^{N}(w_{0}) = \sup_{w \in (x^{\circ}(y^{\circ}z))} \mu_{\Phi}^{N}(w)$. Hence $\mu_{\Phi}^{P}(x^{\circ}z) \geq \min \{inf_{u \in (x^{\circ}(y^{\circ}z))} \mu_{\Phi}^{P}(u), \mu_{\Phi}^{P}(y)\} \geq \min \{\mu_{\Phi}^{P}(u_{0}), \mu_{\Phi}^{P}(y)\}$, and $\mu_{\Phi}^{N}(x^{\circ}z) \leq \max \{sup_{w \in (x^{\circ}(y^{\circ}z))} \mu_{\Phi}^{N}(w), \mu_{\Phi}^{N}(y)\} \leq \max \{\mu_{\Phi}^{N}(w_{0}), \mu_{\Phi}^{N}(y)\}$, which implies that (ii) is true. The proof is complete. Corollary 3.20. Every bipolar hyper fuzzy AT-ideal of H is bipolar weak hyper fuzzy AT-ideal of H.

The following example shows that the converse of Corollary (3.18) and (3.20) may not be true.

Example 3.21.

(1) Consider the hyper AT-algebra $H = \{0, 1, 2\}$ with the following table:

0	0	1	2
0	{0}	{1}	{2}
1	{0}	{0}	{1,2}
2	{0}	{0,1}	{0}

Then $(H; \circ, 0)$ is a hyper AT-algebra. Define μ_{Φ}^{N} and μ_{Φ}^{P} are mappings by

Н	0	1	2
μ^N_Φ	-0.7	-0.7	-0.6
μ^P_Φ	1	0.5	0

By routine calculations, we know that $\Phi = (H; \mu_{\Phi}^{0}, \mu_{\Phi}^{0})$ is a bipolar hyper fuzzy AT-ideal in H and hence it is also bipolar weak hyper fuzzy AT-ideal in H. But $\Phi = (H; \mu_{\Phi}^{p}, \mu_{\Phi}^{N})$ is not bipolar strong hyper fuzzy AT-ideal in H since $\min \{ \sup_{u \in (0^{\circ}(1^{\circ}2))} \mu_{\Phi}^{P}(u), \mu_{\Phi}^{P}(1) \} \ge \min \{ \mu_{\Phi}^{P}(1), \mu_{\Phi}^{P}(1) \} = 0.5 \ge 0 = \mu_{\Phi}^{P}(2), \text{ for all } u \in (0^{\circ}(1^{\circ}2)).$

(2) Consider the hyper AT-algebra $H = \{0, 1, 2\}$ with the following Cayley table:

0	0	1	2
0	{0}	{1}	{2}
1	{0}	{0}	{1,2}
2	{0}	{0,1}	{0}

Then (*H*; °, 0) is a hyper AT-algebra. Define μ_{Φ}^{N} and μ_{Φ}^{P} are mappings by

Н	0	1	2
μ^N_Φ	-0.7	-0.7	-0.6
μ^P_Φ	1	0	0.5

Then $\Phi = (H; \mu_{\Phi}^{P}, \mu_{\Phi}^{N})$ is a bipolar weak hyper fuzzy AT-ideal in H, but it is not bipolar hyper fuzzy AT-ideal in H since $1 \ll 2$, but $\mu_{\Phi}^{P}(1) \geq \mu_{\Phi}^{P}(2)$.

Theorem 3.22. Let $\Phi = (H; \mu_{\Phi}^{P}, \mu_{\Phi}^{N})$ be a bipolar fuzzy set. If $\Phi = (H; \mu_{\Phi}^{P}, \mu_{\Phi}^{N})$ is bipolar strong hyper fuzzy AT-ideal of *H*, then the set the positive level set Φ_t^p and negative level set Φ_s^N , for every $t \in [0,1]$ and $s \in [-1,0]$ are strong hyper AT-ideals of Н.

Proof.

Assume that $\Phi = (H; \mu_{\Phi}^{P}, \mu_{\Phi}^{N})$ is bipolar strong hyper fuzzy AT-ideal of H and $\Phi_{t}^{P} \neq \Phi \neq \Phi_{s}^{N}$, for every $t \in [0,1]$ and $s \in [-1,1]$. 1,0]. Let $x \in H$, by Theorem (3.13 (i)), $\mu_{\Phi}^{P}(0) \ge \mu_{\Phi}^{P}(x)$, and $\mu_{\Phi}^{N}(0) \le \mu_{\Phi}^{N}(x)$. It clear that $0 \in \Phi_{t}^{P}$ and $0 \in \Phi_{s}^{N}$. Let x, y, $z \in H$ be such that $(x^{\circ}(y^{\circ}z)) \cap \Phi_{t}^{P} \ne \Phi$, and $y \in \Phi_{t}^{P}$, also, $(x^{\circ}(y^{\circ}z)) \cap \Phi_{s}^{N} \ne \Phi$, and $y \in \Phi_{s}^{N}$. Then there exists u

 $\in (\mathbf{x}^{\circ}(\mathbf{y}^{\circ}\mathbf{z})) \cap \Phi_t^P, \ \mu_{\Phi}^P(\mathbf{u}) \ge \mathbf{t}, \text{ also } \mathbf{w} \in (\mathbf{x}^{\circ}(\mathbf{y}^{\circ}\mathbf{z})) \cap \Phi_s^N, \ \mu_{\Phi}^N(\mathbf{w}) \le \mathbf{s}.$ By Definition (3.6), we have

 $\mu_{\Phi}^{P}(\mathbf{x}^{\circ}\mathbf{z}) \geq \min \{ sup_{u \in (x^{\circ}(y^{\circ}z))} \mu_{\Phi}^{P}(\mathbf{u}), \mu_{\Phi}^{P}(\mathbf{y}) \} \geq \min \{ \mu_{\Phi}^{P}(\mathbf{u}), \mu_{\Phi}^{P}(\mathbf{y}) \} \geq \min \{ t, t \} = t, \text{ and } t \in [t, t] \}$

 $\mu_{\Phi}^{N}(\mathbf{x}^{\circ}\mathbf{z}) \leq \max \{ \inf_{w \in (x^{\circ}(y^{\circ}z))} \mu_{\Phi}^{N}(w), \mu_{\Phi}^{N}(y) \} \leq \max \{ \mu_{\Phi}^{N}(w), \mu_{\Phi}^{N}(y) \} \leq \max \{ s, s \} = s.$

So $x^{\circ}z \in \Phi_t^P$, and $x^{\circ}z \in \Phi_s^N$, there for Φ_t^P and Φ_s^N are strong hyper AT-ideals of H.

Theorem 3.23. Let $\Phi = (H; \mu_{\Phi}^{P}, \mu_{\Phi}^{N})$ be a bipolar fuzzy set of *H* satisfies the inf -sup property. If the set the positive level set Φ_t^P and negative level set Φ_s^N , for every $t \in [0,1]$ and $s \in [-1,0]$ are nonempty strong hyper AT-ideals of *H*, then $\Phi =$ $(H; \mu_{\Phi}^{P}, \mu_{\Phi}^{N})$ is bipolar strong hyper fuzzy AT-ideal of H.

Proof.

Assume that Φ_t^P and Φ_s^N are nonempty strong hyper AT-ideals of *H*, for every $t \in [0,1]$ and $s \in [-1,0]$. Then there $x \in \mu_{\Phi}^P$ and $x \in \mu_{\Phi}^{N}$ such that $x^{\circ}x \ll x$. Using Proposition (2.14), we have $x^{\circ}x \subseteq \mu_{\Phi}^{P}$ and $x^{\circ}x \subseteq \mu_{\Phi}^{N}$. Thus for $a, b \in x^{\circ}x$, we have a $\in \mu_{\Phi}^{P}$ and $b \in \mu_{\Phi}^{N}$, hence $\mu_{\Phi}^{P}(a) \ge t$ and $\mu_{\Phi}^{N}(b) \le s$. It follows that

 $inf_{a\in(x^{\circ}(y^{\circ}z))}\mu_{\Phi}^{p}(a) \ge t = \mu_{\Phi}^{p}(x) \text{ and } sup_{b\in(x^{\circ}(y^{\circ}z))}\mu_{\Phi}^{N}(b) \le s = \mu_{\Phi}^{N}(x).$

Moreover, let x, y, $z \in H$ and such that $\alpha' = \min \{ sup_{a \in (x^{\circ}(y^{\circ}z))} \mu_{\Phi}^{P}(a), \mu_{\Phi}^{P}(y) \}, \beta' = \max \{ inf_{b \in (x^{\circ}(y^{\circ}z))} \mu_{\Phi}^{N}(b), \mu_{\Phi}^{N}(y) \}.$ By hypothesis Φ_t^P and Φ_s^N are strong hyper AT-ideals of H and $\Phi = (H; \mu_{\Phi}^P, \mu_{\Phi}^N)$ satisfies the inf -sup property, there u, w \in $(x^{\circ}(y^{\circ}z))$ such that $\mu_{\Phi}^{P}(u) = sup_{a \in (x^{\circ}(y^{\circ}z))} \mu_{\Phi}^{P}(a), \ \mu_{\Phi}^{N}(w) = inf_{b \in (x^{\circ}(y^{\circ}z))} \mu_{\Phi}^{N}(b)$. Thus

 $\mu_{\Phi}^{P}(\mathbf{u}) = \sup_{a \in (x^{\circ}(y^{\circ}z))} \mu_{\Phi}^{P}(\mathbf{a}) \geq \min \{\sup_{a \in (x^{\circ}(y^{\circ}z))} \mu_{\Phi}^{P}(\mathbf{a}), \mu_{\Phi}^{P}(\mathbf{y})\} = \alpha', \text{ and }$

 $\mu_{\Phi}^{N}(w) = inf_{b \in (x^{\circ}(y^{\circ}z))} \mu_{\Phi}^{N}(b) \le \max \{ inf_{b \in (x^{\circ}(y^{\circ}z))} \mu_{\Phi}^{N}(b), \mu_{\Phi}^{N}(y) \} = \beta'.$

This shows that $u \in \mu_{\Phi}^{p}$ and $w \in \mu_{\Phi}^{N}$, and $u \in (x^{\circ}(y^{\circ}z)) \cap \mu_{\Phi}^{p}$ and $w \in (x^{\circ}(y^{\circ}z)) \cap \mu_{\Phi}^{N}$, hence $(x^{\circ}(y^{\circ}z)) \cap \mu_{\Phi}^{p} \neq \Phi$ and $(\mathbf{x}^{\circ}(\mathbf{y}^{\circ}\mathbf{z})) \cap \mu_{\Phi}^{N} \neq \Phi.$

Combining $y \in \mu_{\Phi}^{P}$ and $y \in \mu_{\Phi}^{N}$, and noticing that any bipolar (weak, strong)hyper fuzzy AT-ideal is a bipolar (weak, strong)hyper fuzzy AT-ideal, we get $\mathbf{x}^{\circ}\mathbf{z} \in \mu_{\Phi}^{P}$ and $\mathbf{x}^{\circ}\mathbf{z} \in \mu_{\Phi}^{N}$. Hence $\mu_{\Phi}^{P}(\mathbf{x}^{\circ}\mathbf{z}) \geq \min \{ \sup_{z \in (x^{\circ}(y^{\circ}z))} \mu_{\Phi}^{P}(\mathbf{u}), \mu_{\Phi}^{P}(\mathbf{y}) \}$, and $\mu_{\Phi}^{N}(\mathbf{x}^{\circ}\mathbf{z}) \leq \max \{ inf_{w \in (x^{\circ}(y^{\circ}z))} \mu_{\Phi}^{N}(\mathbf{w}), \mu_{\Phi}^{N}(\mathbf{y}) \}.$ Therefore, $\Phi = (H; \mu_{\Phi}^{P}, \mu_{\Phi}^{N})$ is bipolar strong hyper fuzzy AT-ideal of H.

References

[1] A.T. Hameed, Bipolar Fuzzy AT-ideals of AT-Algebra, Journal of Physics: Conference Series(IOP Publishing), 2021, to appear.

A.T. Hameed, Fuzzy sets on AT-algebras, International Journal of Engineering and Information Systems (IJEAIS), vol.4, [2] Issue 3, March (2020), pp: 28-37.

[3] A.T. Hameed, F. F. Kareem and S.H. Ali, Hyper AT-ideal on AT-algebra, Journal of Physics: Conference Series (IOP Publishing), 2020, pp:1-16.

[4] A.T. Hameed, AT-ideals & Fuzzy AT-ideals of AT-algebras, Journal of Iraqi AL-Khwarizmi Society. (2018),1, 2, 2521-2621.

[5] A.T. Hameed, F. F. Kareem and S.H. Ali, Fuzzy hyper AT-ideal on AT-algebra, Journal of Physics: Conference Series (IOP Publishing), 2021, to appear.

[6] Y. B. Jun, X. L. Xin, E. H. Roh, and M. M. Zahedi, Strong hyper BCK-ideals of hyper BCK-algebra, Math. Jap. (2000), 51,3, 493-498.

[7] Young Bae Jun and Xiao Long Xin , **fuzzy hyperbck{ideals of hyper BCK –algebras**, Scientiae Mathematicae Japonicae Online, (2001), 4,415-422.

[8] Y. B. Jun, M. S. kang and H. S. Kim, **Bipolar fuzzy hyper bck-ideals in hyper bck-algebras**, Iranian Journal of Fuzzy Systems. (2011), 8,2, pp. 105-120.

[9] S.M. Mostafa, M.A. Abd-Elnaby and M.M.M. Yousef, **Fuzzy ideals of KU-Algebras**, Int. Math. Forum. (2011) ,63, 6, 3139-3149.

[10] S. M. Mostafa, F. Kareem, B. Davvaz, **Hyper structure theory applied to KU-algebras**. Journal of Hyperstructures (2017),6,2, 82-95.

[11] S. M. Mostafa , A.T. Hameed , R. A.Ghanem, **Hyper structures of KU-algebras**: Theorems & fuzzy Applications . Submitted.

[12] G. Muhiuddin, Bipolar fuzzy KU-subalgebras/ideals of KU-algebras. Ann. Fuzzy Math. Inform. (2014), 8, 409-418.

[13] C. Prabpayak and U. Leerawat, On ideals and congruences in KU-algebras. Sci. Magna, (2009), 5, 54-57.

[14] L. A. Zadeh, Fuzzy sets. Inf. Cont., (1965), 8, 338-353.