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Abstract: Spline Logistic Regression is a modeling solution of binary categorical response data which cannot be modeled by linear 

regression due to violations of normality assumption. The flexibility of the spline in estimating regression curve creates a modelling 

approach of the regression equation that is more fitted to data than ordinary logistic regression. Spline logistic regression model 

parameters are estimated by using Maximum Likelihood Method with Newton Raphson's iteration. The results show that the spline 

logistic regression function is a non-linear estimation that depends on the number of knots of predictor and the order used in the 

model.  
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1. INTRODUCTION 

Regression is a statistical method used to explain the 

relationship between predictor and response variables. In the 

case of linear regression, it is assumed that responses and 

errors are normally distributed. Violation of the normality 

assumption makes the linear regression model unsuitable for 

binary response analysis and hence logistic regression is used 

to model data with binary response. Other methods that can 

be used to model data with categorical responses include 

Probit, and log complement. However, only logistic 

regression can be used to estimate odds ratios for the model 

predictor. Binary logistic regression has a nominal-scale 

response variable with two categories, success and failure, 

which the modeling is derived from The Bernoulli probability 

distribution function [1]. Various studies of logistic regression 

include predicting the relationship between multiple 

predictors and a categorical response using multivariable 

logistic regression method [2], modelling a binary response 

data with categorical predictors using binary logistic 

regression employing closed-form solution [3], testing the 

reliability of logistic regression in terms of the impact of 

sample size, nonlinear predictors, and multicollinearity in 

data [4], and using Group Lasso estimator for logistic 

regression for high dimensional data [5].          

Logistic regression was developed through a 

nonparametric approach to get a model that was more suitable 

to the data. Although nonparametric approach looks more 

complex, it is the more appropriate option because its 

flexibility characteristic, where data will find its own actual 

regression curve shape [6]. Some estimators of nonparametric 

regression include Partitioning, Kernel, k-NN, Least Square, 

Spline, Neural Network, Orthogonal Series, Penalized Spline, 

Local Averaging, Semirecursive and Recursive [7]. The 

Spline regression curves estimator is the most often used 

because it can adjust effectively to changes in data behavior, 

so that the model is fitted [8]. Changes in the behavior of the 

data in spline are shown by knots that occur at the predictor. 

Spline has been developed in polynomial regression [9], 

weighting regression [10], and identified regression [11]. 

Spline regression curves have a very good ability to overcome 

data behavior changes at certain sub-intervals [12]. The 

prominent of polynomial truncated spline method in 

estimating changes in data behavior at certain intervals lies in 

its truncated function with the best model criteria determined 

by the number and location of the knots in data [13]. The 

polynomial truncated spline is easy to interpret [14], and 

provide simple approximation models of complicated data 

pattern which are difficult and impracticable to model 

accurately [15]. Therefore, we use a spline polynomial 

truncated estimator in logistic regression model with the 

parameter estimation method employing Maximum 

Likelihood.  

The maximum likelihood method is used as an estimation 

and inference tool that has optimal properties for large sample 

sizes [16]. The main purpose of using maximum likelihood is 

to estimate parameters by maximizing the likelihood function 

that has been transformed into a log-likelihood. In cases 

where the log-likelihood function cannot be solved explicitly, 

Newton-Raphson's numerical method is one of the fastest and 

most applicable methods for maximizing the log-likelihood 

function [17]. 

This article is divided into five parts. In the second part, 

the development of spline truncated logistic regression 

models is described for binary response data. The third part 

explains the estimation of binary spline logistic regression 

parameters using Maximum Likelihood with the help of 

Newton Raphson's numerical method to solve the implicit 

function. Next in the fourth part, we show the application of 

the method to a simulation data and the fifth part provides 

conclusions related to the results of this study. Furthermore, 

the development of logistic regression theory with the spline 

nonparametric approach is expected to be a reference for the 

use of data analysis methods, particularly to the data with 

binary responses. 
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2. SPLINE LOGISTIC REGRESSION 

Nonparametric regression model as a relationship form 

between response and predictor can be stated as follows: 

𝑦𝑖 = 𝑓(𝑥𝑖) + 𝜀𝑖 (1) 

where y is the response, x is the predictor, 𝜀 is the error and i 

is the 1,2, ..., n sample. Suppose the number of predictors 

considered in the model is  j = 1,2, ..., m, then the equation (1) 

becomes: 

𝑦𝑖 = 𝑓(𝑥𝑗𝑖) + 𝜀𝑖  

The function 𝑓(𝑥𝑗𝑖) is an unknown shape function, 

assumed to be smooth and contained in a Sobolev Space. In 

this article, we estimate 𝑓(𝑥𝑗𝑖)  by using the truncated 

polynomial spline estimator. In nonparametric regression, 

spline has an ability to estimate the data pattern that tends to 

be different at different intervals [8]. The ability to estimate 

the data pattern is shown by the truncated (pieces) attached to 

the estimator, these pieces are called knots. Knots are joint 

fusion points that indicate changes in the behavior patterns of 

functions at different intervals. Knot points are taken at 

intervals of 𝑎 < 𝑘𝑟 < 𝑏, where a is the minimum value and b 

is the maximum value of the data [18]. 

The truncated spline function which states the relationship 

between p predictors and a single response is expressed with 

the spline function 𝑓(𝑥𝑗𝑖) as follows: 

𝑓(𝑥𝑗𝑖) = 𝛼0𝑗 + ∑ 𝛼𝑗𝑙𝑥𝑗𝑖
𝑙

𝑞

𝑙=1

+ ∑ 𝛼𝑗(𝑞+ℎ)(𝑥𝑗𝑖𝑘𝑗ℎ)+
𝑞

𝑟

ℎ=1

   (2) 

where 𝛼0𝑗 is the jth intercept predictor, 𝛼𝑗𝑙 is the polynomial 

parameter at the jth predictor and lth order, 𝛼𝑗(𝑞+ℎ) is the 

truncated parameter at the jth predictor, hth knot point, and  q 

order. (𝑥𝑗𝑖 − 𝑘𝑗ℎ)+
𝑞

 is a truncated polynomial function 

described as follows: 

(𝑥𝑗𝑖 − 𝑘𝑗ℎ)+
𝑞

= {
(𝑥𝑗𝑖 − 𝑘𝑗ℎ)𝑞;  𝑥𝑗𝑖 ≥ 𝑘𝑗ℎ

0                  ;  𝑥𝑗𝑖 < 𝑘𝑗ℎ
  

where q is the order of the polynomial spline truncated and  

𝑘𝑗ℎ  is the hth knot point, (h = 1,2, ..., r). 

For n observational data with k knot points, Equation (2) 

can be expressed in the form of a matrix as follows: 

𝒚 = 𝑿[𝑘1, 𝑘2, … 𝑘𝑟]𝜶 + 𝜺  

where y is a vector with 𝑛 × 1  size, X is a matrix with 𝑛 ×
(1 + 𝑞 + 𝑟) size, 𝛼 is a vector with (1 + (𝑞 + 𝑟) × 1 size, 

and ε is a vector with n × 1 size [19]. 

Binary logistic regression analysis is used to explain the 

relationship between a response variable that is dichotomic/ 

binary and predictor variables that is interval or categorical 

[20]. The binary logistic regression model is derived from 

Bernoulli Exponential distribution, which is the distribution 

of random variables that only has 2 categories, 1 for success 

and 0 for failure [21]. The Bernoulli distribution probability 

function is shown as follows: 

𝑓(𝑦𝑖) = 𝜋𝑖
𝑦𝑖(1 − 𝜋𝑖)

1−𝑦𝑖    

If 𝑦𝑖 = 0 then 𝑓(𝑦𝑖) = 1 − 𝜋𝑖 and if 𝑦𝑖 = 1 then 𝑓(𝑦𝑖) = 𝜋𝑖,  

𝜋𝑖 is the probability of the ith event and ith random variable. 

Based on equation (2), the spline logistic regression model 

that is influenced by p predictor variables can be expressed as 

the expected value of y with respect to x, so that: 

𝐸(𝑦𝑖|𝑥𝑖)

=
exp( 𝛼0𝑗 + ∑ 𝛼𝑗𝑙𝑥𝑗𝑖

𝑙𝑞
𝑙=1 + ∑ 𝛼𝑗(𝑞+ℎ)(𝑥𝑗𝑖 − 𝑘𝑗ℎ)+

𝑞𝑟
ℎ=1 )

1 + exp( 𝛼0𝑗 + ∑ 𝛼𝑗𝑙𝑥𝑗𝑖
𝑙𝑞

𝑙=1 + ∑ 𝛼𝑗(𝑞+ℎ)(𝑥𝑗𝑖 − 𝑘𝑗ℎ)+
𝑞𝑟

ℎ=1 )
  

 

… (3) 

where 0 ≤ 𝐸(𝑦𝑖|𝑥𝑖) ≤ 1, 𝑦𝑖  has values 0 or 1, the value 1 is 

the success probability of 𝐸(𝑦𝑖|𝑥𝑖), so the equation (3) can be 

stated as follows: 

𝜋(𝑥)

=
exp (𝛼0𝑗 + ∑ 𝛼𝑗𝑙𝑥𝑗𝑖

𝑙𝑞
𝑙=1 + ∑ 𝛼𝑗(𝑞+ℎ)(𝑥𝑗𝑖 − 𝑘𝑗ℎ)+

𝑞𝑟
ℎ=1 )

1 + exp( 𝛼0𝑗 + ∑ 𝛼𝑗𝑙𝑥𝑗𝑖
𝑙𝑞

𝑙=1 + ∑ 𝛼𝑗(𝑞+ℎ)(𝑥𝑗𝑖 − 𝑘𝑗ℎ)+
𝑞𝑟

ℎ=1 )
  

 

 

Logit transformation of 𝜋(𝑥) yields truncated polynomial 

spline regression as follows:  

𝑔(𝑥) = 𝑙𝑛 (
𝜋(𝑥)

1 − 𝜋(𝑥)
) 

= 𝛼0𝑗 + ∑ 𝛼𝑗𝑙𝑥𝑗𝑖
𝑙

𝑞

𝑙=1

+ ∑ 𝛼𝑗(𝑞+ℎ)(𝑥𝑗𝑖 − 𝑘𝑗ℎ)+
𝑞

𝑟

ℎ=1

 

 

where 𝜋(𝑥)is the probability of occurrence and 𝑔(𝑥) is logit 

estimation value.   

Based on the description of the truncated spline regression 

model and logistic regression, the spline logistic regression 

model can be developed as follows: 

𝜋(𝑥𝑖𝑗)

=
exp {𝛼0𝑗 + ∑ 𝛼𝑗𝑙𝑥𝑗𝑖

𝑙𝑞
𝑙=1 + ∑ 𝛼𝑗(𝑞+ℎ)(𝑥𝑗𝑖 − 𝑘𝑗ℎ)+

𝑞
}𝑟

ℎ=1

1 +  𝑒𝑥𝑝 {𝛼0𝑗 + ∑ 𝛼𝑗𝑙𝑥𝑗𝑖
𝑙𝑞

𝑙=1 + ∑ 𝛼𝑗(𝑞+ℎ)(𝑥𝑗𝑖 − 𝑘𝑗ℎ)+
𝑞𝑟

ℎ=1 }

+  𝜀𝑖 

 

… (4) 

where 𝛼0𝑗, 𝛼𝑗𝑙,…, 𝛼𝑗(𝑞+ℎ)  is the binary spline logistic 

regression coefficient and k is the knot point. 

3. ESTIMATION OF SPLINE LOGISTIC REGRESSION 

PARAMETERS USING MAXIMUM LIKELIHOOD 

Based on equation (4), the parameter to be estimated is α 

by using maximum likelihood estimator. The maximum 

likelihood method estimates the coefficient α by maximizing 

the likelihood function and requires that the data must follow 

a certain distribution. Spline logistic regression is derived 

from Bernoulli distribution and assumed to be independent, 

so that the likelihood function can be said as combination of 

each distribution function. It is known that 𝑦𝑖  has a Bernoulli 

distribution, with the probability density function as follows: 

𝑓(𝑦𝑖) = 𝜋(𝑥𝑖𝑗)
𝑦𝑖(1 − 𝜋(𝑥𝑖𝑗))1−𝑦𝑖   

with likelihood function can be stated as follows:  

𝐿(𝜶) = ∏ 𝜋(𝑥𝑖𝑗)
𝑦𝑖

(1 − 𝜋(𝑥𝑖𝑗))
1−𝑦𝑖

𝑛

𝑖=1
 (5) 

The likelihood function in equation (5) is changed in the 

form of  log natural function so its easier to maximize: 

𝑙𝑛 𝐿(𝜶) = ln (∏ (𝜋(𝑥𝑖𝑗))
𝑦𝑖

(1 − 𝜋(𝑥𝑖𝑗))
1−𝑦𝑖𝑛

𝑖=1
) 
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ln 𝐿(𝜶) = ∑ {𝑦𝑖 (𝜋(𝑥𝑖𝑗)) − ln[1 + exp (𝜋(𝑥𝑖𝑗)]}𝑛
𝑖=1  (6) 

Equation (6) is derived to the parameters 𝛼  or  𝜋(𝑥𝑖𝑗), so we 

have: 

𝜕 ln 𝐿(𝜶)

𝜕𝜶
=  ∑ {𝑦𝑖 −

exp (�̂�(𝑥𝑖𝑗))

1 + exp (�̂�(𝑥𝑖𝑗))
} 

𝑛

𝑖=1

 (7) 

Estimator α is obtained by solving the equation (7), 

however the equation is implicit and difficult to solve 

explicitly, so in order to get 𝛼 estimator from 𝐿(𝛼) nonlinear 

function, the Newton Raphson method is used as an iteration 

method to solve nonlinear equations [22]. Based on Newton 

Raphson's iteration, a second derivative of the likelihood 

function is obtained for each parameter. Newton Raphson's 

iteration used to estimate the α parameter can be written as 

follows: 

𝜶(𝑡+1) = 𝜶(𝑡) − 𝑯(𝑡)
−1𝑫(𝑡)   

where 𝑫(𝑡) is the first derivative matrix for each parameter 𝛼, 

𝑯(𝑡) is the second derivative matrix for each parameter α. 

Iteration ends if  �̂�(𝒕+𝟏) ≅ �̂�(𝒕) is obtained. 

At the end of the iteration, the parameter estimation of logistic 

spline regression becomes convergent and we obtain the 

estimated binary spline logistic regression parameters as 

follows: 

�̂�(𝑥𝑖𝑗)

=
exp {�̂�0𝑗 + ∑ �̂�𝑗𝑙𝑥𝑗𝑖

𝑙𝑞
𝑙=1 + ∑ �̂�𝑗(𝑞+ℎ)(𝑥𝑗𝑖 − 𝑘𝑗ℎ)+

𝑞
}𝑟

ℎ=1

1 +  𝑒𝑥𝑝 {�̂�0𝑗 + ∑ �̂�𝑗𝑙𝑥𝑗𝑖
𝑙𝑞

𝑙=1 + ∑ �̂�𝑗(𝑞+ℎ)(𝑥𝑗𝑖 − 𝑘𝑗ℎ)+
𝑞𝑟

ℎ=1 }
 

 

where �̂�(𝑥𝑖𝑗) is the estimated success probability, �̂�0𝑗 is the 

estimated jth intercept predictor, �̂�𝑗𝑙 is the estimated 

polynomial parameter at the jth predictor and lth order, 𝛼𝑗(𝑞+ℎ) 

is the estimated truncated parameter at the jth predictor, hth knot 

point, and  qth order. 

4 CONCLUSION 

Binary categorical response data cannot be modeled using 

linear regression due to a violation of the normality 

assumption in errors and responses. One possible approach 

that can be used to overcome this problem is using binary 

spline logistic regression where the use of spline plays a role 

in the flexibility of establishing a regression curve based on 

data. The method used to estimate binary spline logistic 

regression parameters is a maximum likelihood estimator 

with the Newton Raphson iteration 𝜶(𝑡+1) = 𝜶(𝑡) −

𝑯(𝑡)
−1𝑫(𝑡). The focus of this article is on the evolution of 

more flexible estimation methods and in-depth analysis of 

binary response data modeling, with the expectation that this 

flexibility can be widely used for the development of data 

analysis methods and software. This article uses binary 

categorical responses with the order q spline degree, so further 

we recommend the development of research on responses that 

have more than two categories by considering violations of 

the linear regression assumptions. 

The results of the estimation of binary spline logistic 

regression through simulation data show a smaller AIC value 

than the classical logistic approach. This becomes a reference 

that for the analysis of categorical response data, it can be 

analyzed with a nonparametric regression approach in 

particular the use of a truncated spline estimator with its 

optimal knot points. We hope that the application of this 

method can be used in real data to get more accurate 

estimation results. 
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