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Abstract: A computer virus is a program that can replicate, multiply and infect from one program to another, user to user, computer 

to computer, and network to network. The mathematical  model approach can be used to predict the dynamics of spread of computer 

viruses on a network. The model of spread of computer viruses on network is based on the fact that computer will be infected by 

infected computers and exposed computers and some computers that are in a vulnerable and exposed status can obtain immunity 

with antivirus capabilities. In this paper, we present a fractional mathematical model of the spread of computer viruses on networks 

with fractional order. The dynamic behavior of this model is investigated. First, we determine the stability of the equilibrium point 

for the fractional model. Based on the model analysis, we gained two points of equilibrium, the equilibrium point is virus-free 

computer and equilibrium point endemic virus computer . We also obtain basic reproduction rate, which determine the existence 

and stability os the equilibrium point. The equilibrium point is virus-free computer is stable asymptotic locally if basic reproduction 

number less than one and equilibrium endemic virus computer point stable asymptotic locally if basic reproduction number more 

than one. Next, we analyze the sensitivity of the parameters that most influence the spread of computer viruses. Finally, we carry 

out numerical simulations with variations α to illustrate analytical result.  

Keywords— computer viruses, fractional mathematical model, stability, equilibrium, sensitivity, numerical simulations. 

1. INTRODUCTION  

A computer virus is a computer program that can reproduce 

and infect a program, user, computer, or network [1]. 

Computer viruses work by deleting data, corrupting files, or 

modifying normal operations [2]. Computer viruses have 

similarities with viruses in the case of biology, especially in 

the way they are spread. A computer virus rides on a program 

or document which if the program or document is executed, 

the virus is like being given permission to infect other 

programs or documents. This is similar to a virus in the case of 

biology that hitches a ride on the cells of other living things for 

their survival. The living thing that is carried by this biological 

virus is called the host. The virus also causes the host to 

become sick. A comparison between biological viruses and 

computer viruses is presented in Table 1 [3]. 

Table 1. Comparison between biological viruses and computer 

viruses 

Characteristic 
Biological 

viruses 

Computer 

Viruses 

 Size 

 

 Composition 

 

 Infection 

 Life Cycle 

 

 

 

 

 

 100 – 300 

nm 

 

 contains 

protein 

 living cells 

 20 – 45 

minutes 

 

 

 

 124 bytes – 5 

kb 

 contains 

malicious 

code 

 files, 

programs 

 almost the 

same as the 

application 

software 

 Deployment 

 

 

 

 

 Main enemy 

 Consequence 

 

 

 

 Reproduction 

 

 

 Antidetect 

 

 

 The 

intervention 

of other 

living things 

is required 

 antibodies 

 cause 

disease and 

cell damage  

 

 by creating 

the genetic 

code 

 evolution of 

forms and 

abilities 

installation 

process 

 human 

intervention 

is required 

 

 

 antivirus 

 manipulating 

the system 

and 

potensially 

damaging it 

 by replicating 

the program 

code  

 polymorphic, 

encryption, 

anti 

debugging, 

stealth 

The high similarity between computer viruses and 

biological viruses has led to the emergence of various 

papers on computer virus transmission models [4]. 

Computer viruses have a latency period, the computer 

can be exposed to the virus but cannot transmit it. An 

infected computer that is in latency, is called an exposed 

computer and will not directly infect other computers. 

Based on these characteristics, the delay in the spread of 

computer viruses is used in several computer virus models 
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to illustrate that although the exposed computer does not 

infect other computers, it still has infectivity [5]. Yang et al 

[6] developed SLB and SLBS models to study the dynamics 

of computer viruses. In the model, Yang et al. assumed that 

computer viruses have latency, and computers also have 

infectivity in the latency period. However, Yang et al. did 

not show the length of latency and took into account the 

impact of artificial immunization methods such as installing 

antivirus software. Computers that have just been 

connected to the internet are vulnerable. While Mei Peng et 

al [2] developed a SEIR model for computer viruses by 

dividing the population into four compartments, namely the 

susceptible computer population S, the computer 

population exposed to E, the computer population infected 

with I and the computer population recovered from 

infection with R. Mei Peng et al [2] developed mathematical 

models of computer viruses and their dynamics using a 

system of ordinary differential equations. 

System of ordinary differential equations (ODE) which 

consists of a first-order differential equation can be 

generalized to system of fractional differential equations 

(FDE) which consists of a fractional order differential 

equation 𝛼, with 0 < 𝛼 ≤  1. [7].  In most biologic cases, 

FDEs are naturally connected to systems with memory [8]. In 

addition, memory effects have an important role in the spread 

of disease. The presence of memory effects on past events will 

influence the spread of disease in the future. The distance from 

the memory effect indicates the history of the spread of the 

disease. Thus, the effect of memory on the spread of infectious 

diseases could be investigated using fractional derivatives [9, 

10, 11, 12, 13, 14]. 

Based on the explanation above, in this paper, a review of 

the ODE model from Mei Peng et al [2] is carried out but 

using the FDE model approach. This paper also determines 

the equilibrium point, stability of the equilibrium point and 

analysis of the sensitivity of the model made. Furthermore, 

numerical simulations were carried out to support the 

interpretation of the mathematical model created.  

This paper is structured as follows: part 2 formulating a 

computer virus model, part 3 testing the stability of the 

equilibrium point, part 4 determining the sensitivity of the 

model and part 5 performing numerical simulations to show 

the correctness of the analytical results. Finally, in section 6, 

conclusions and suggestions from this paper are given. 

2. MATHEMATICAL MODEL FORMULATION 

In this section, a mathematical model of the fractional order 

of the spread of computer viruses in the network is formulated 

based on the model developed by Mei Peng et al [2]. The 

model consists of four compartments, namely:  

 Susceptible computers, which are computers that 

have just been connected to the internet network and are not 

infected, are denoted by 𝑆(𝑡). 

 Exposed computer, a computer that is infected with a 

virus but has not been able to transmit the virus, is denoted by 

𝐸(𝑡). 

 The computer is infected, denoted by 𝐼(𝑡). 

 Recovered computer, a virus-free computer that has 

immunity, is denoted by 𝑅(𝑡).  

Furthermore, without having a double meaning, 

𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡) and 𝑅(𝑡) will be abbreviated as 𝑆, 𝐸, 𝐼, 𝑅.  

The model transmission diagram is shown in Figure 1. 

 

 

 

 

 

 

 

 

 

Fig. 1 Transmission diagram of a mathematical model of 

the spread of a computer virus on a network 

The basic model for the spread of computer viruses in the 

form of ODE developed by Mei Peng et al [2] is given by 

equations (1) – (4) below: 

𝑑𝑆

𝑑𝑡
= (1 − 𝑝)𝑁 − 𝛽1𝑆𝐼 − 𝛽2𝑆𝐸 − 𝑝𝑆 − 𝜇𝑆     (1) 

𝑑𝐸

𝑑𝑡
= 𝛽1𝑆𝐼 + 𝛽2𝑆𝐸 − 𝑘𝐸 − 𝛾𝐸 − 𝜇𝐸                (2) 

𝑑𝐼

𝑑𝑡
= 𝛾𝐸 − 𝑟𝐼 − 𝜇𝐼                                                 (3) 

𝑑𝑅

𝑑𝑡
= 𝑝𝑆 + 𝑘𝐸 + 𝑟𝐼                                               (4) 

𝑁(𝑡) = 𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝑅(𝑡)                                

With all parameters 𝑝, 𝜇, 𝑘, 𝛾, 𝑟, 𝛽1, 𝛽2 > 0 and  

𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑅(𝑡), 𝑁(𝑡) ≥ 0.   

We can see that equations (1), (2) and (3) are independent 

of equation (4). Therefore, equation (4) can be omitted, so the 

above model can be written as follows: 

𝑑𝑆

𝑑𝑡
= 𝐴 − 𝛽1𝑆𝐼 − 𝛽2𝑆𝐸 − 𝑎𝑆                              (5) 

𝑑𝐸

𝑑𝑡
= 𝛽1𝑆𝐼 + 𝛽2𝑆𝐸 − 𝑏𝐸                                     (6) 

𝑑𝐼

𝑑𝑡
= 𝛾𝐸 − 𝑐𝐼                                                          (7) 

S E I R 
(1 − 𝑝)𝑁 𝛽2𝑆𝐸 𝛾𝐸 𝑟𝐼 

𝜇𝐴 𝜇𝐴 𝜇𝐴 

𝛽1𝑆𝐼 

𝑝𝑆 

𝑘𝐸 
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with 𝑎 = 𝑝 + 𝜇, 𝑏 = 𝑘 + 𝛾 + 𝜇, 

  𝑐 = 𝑟 + 𝜇, 𝐴 = (1 − 𝑝)𝑁 

Furthermore, a mathematical model of the fractional order 

of the spread of computer viruses on a network in the form of 

an SPDF can be built according to equations (5) – (7) as 

follows: 

𝑑𝛼𝑆

𝑑𝑡𝛼
= 𝐴 − 𝛽1𝑆𝐼 − 𝛽2𝑆𝐸 − 𝑎𝑆   

𝑑𝛼𝐸

𝑑𝑡𝛼
= 𝛽1𝑆𝐼 + 𝛽2𝑆𝐸 − 𝑏𝐸                            (8) 

𝑑𝛼𝐼

𝑑𝑡𝛼
= 𝛾𝐸 − 𝑐𝐼 

with fractional order  0 < 𝛼 ≤ 1.   

The parameters used in the mathematical model of the 

fractional order of the spread of computer viruses on the 

network are presented in Table 2. 

Table 2. Description of the parameters in the model 

Parameters Description 

𝑝 Computer recovery rate is vulnerable due 

to network antivirus capabilities 

𝜇 The rate at which a computer is 

disconnected from the network 

𝑘 Computer recovery rate exposed due to 

network antivirus capabilities  

𝛾 The speed of the exposed computer cannot 

be recovered with antivirus and is 

corrupted 

𝑟 Infected computer recovery rate 

𝛽1 The rate when a vulnerable computer has a 

connection to an infected computer, then a 

vulnerable computer can be infected but 

cannot infect 

𝛽2 The rate at which a vulnerable computer 

has a connection to a computer is exposed, 

then a vulnerable computer can be exposed 

𝑁 Number of external computers connected 

to the network 

 

The fractional derivative of model (8) is adopted from 

Caputo's fractional derivative. Caputo's fractional derivative 

has advantages, namely the initial value of the fractional-

order differential equation is in the form of an integer order, 

which means it has the same shape as the integer-order 

differential equation [15]. Caputo's fractional derivative is 

defined as follows: 

Definition 1 [15]. Given 𝛼 > 0,  𝑡 > 0 and 𝑛 ∈ ℕ. Caputo 

fractional derivative 𝐷𝛼: =
𝑑𝛼

𝑑𝑡𝛼, with fractional order 𝛼, from 

function 𝑓(𝑡) defined by: 

𝐷𝛼𝑓(𝑡) = 

𝐼𝑛−𝛼𝐷𝑛𝑓(𝑡) = {

1

Γ(𝑛−𝛼)
∫

𝑓(𝑛)(𝑠)

(𝑡−𝑠)𝛼−𝑛+1 𝑑𝑠, 𝑛 − 1 < 𝛼 < 𝑛
𝑡

0

𝑓(𝑛)(𝑡), 𝛼 = 𝑛 
        

(9) 

with Γ(∙) is gamma function. 

3. EQUILIBRIUM POINT STABILITY ANALYSIS 

Equilibrium point is a condition when the rate of change of 

a particular subpopulation over time is zero. In this section, we 

study the equilibrium point stability of the model (8). The 

stability theorem for a system of fractional order is given by 

the following theorem. 

Theorem 1 [16]. Consider a nonlinear fractional system 

𝐷𝛼𝒙(𝒕) = 𝒇(𝒕) 

with  0 < 𝛼 ≤ 1, 𝒙 ∈ ℝ𝑛 and  𝒇 ∈ ℝ𝑛. Equilibrium point  𝒙∗ 

from system (10) calculated by solving the equation 𝒇(𝒙) =
𝟎. Equilibrium point 𝒙∗ is said to be locally asymptotically 

stable if all the eigenvalues 𝜆𝑗(𝑗 = 1, 2, … , 𝑛) from Jacobian  

matrix 𝐴 =
𝜕𝑓

𝜕𝑥
 evaluated at equilibrium points  𝒙∗ following 

conditions: 

|arg 𝜆𝑗| >
𝛼𝜋

2
                                                  (11) 

The equilibrium point of the model (8) satisfies the 

following equations: 

 𝐴 − 𝛽1𝑆𝐼 − 𝛽2𝑆𝐸 − 𝑎𝑆 = 0                         (12) 

 𝛽1𝑆𝐼 + 𝛽2𝑆𝐸 − 𝑏𝐸 = 0                                 (13) 

 𝛾𝐸 − 𝑐𝐼 = 0                                                     (14) 

     Model (8) has two equilibrium points, namely the 

computer virus-free equilibrium point 𝑃0 = (𝑆0, 𝐸0, 𝐼0) and the 

equilibrium point of endemic computer viruses 𝑃∗ =
(𝑆∗, 𝐸∗, 𝐼∗). 

3.1 COMPUTER VIRUS FREE EQUILIBRIUM POINT 

Computer virus free equilibrium point 𝑃0 = (𝑆0, 𝐸0, 𝐼0) is 

a condition when no computer is infected with a virus, which 

means 𝐸0 = 0 and 𝐼0 = 0. Meanwhile for vulnerable 

computers 𝑆0 ≠ 0, This means that there are uninfected 

computers among the computers that have just connected to 

the internet network. The virus-free equilibrium point of model 

(8) is given by 𝑃0 = (
𝐴

𝑎
, 0,0). 

The basic reproduction number (𝑅0) will be calculated 

from model (8). The basic reproduction number (𝑅0) is an 

important parameter in epidemiological cases. The basic 

reproduction number (𝑅0) defined as the rate of secondary 

infection caused by one primary infection in a susceptible 

population [17]. Basic reproduction number (𝑅0) can be used 

to measure the potential spread of disease in a population. If 

𝑅0 < 1, then there is no endemic, meaning that the population 

is free from disease infection. Whereas if 𝑅0 >1, disease 
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infection occurs in that population and results in endemic [18]. 

In this paper, the method used to determine 𝑅0 is Next 

Generation Matrix (NGM) method developed by Driessche 

and Watmough [19]. By using the NGM method, we get 𝑅0 =
𝐴(𝛽1𝛾+𝛽2𝑐)

𝑎𝑏𝑐
 . 

The stability of the computer virus-free equilibrium point 

is presented in Theorem 2. 

Theorem 2. The virus-free equilibrium point 𝑃0 of model (8) 

is locally asymptotically stable if and only if  𝑅0 < 1. 

Proof: Model (8) can be presented as follows:  

𝑑𝛼𝑆

𝑑𝑡𝛼
= 𝐴 − 𝛽1𝑆𝐼 − 𝛽2𝑆𝐸 − 𝑎𝑆 = 𝑓1(𝑆, 𝐸, 𝐼)     

𝑑𝛼𝐸

𝑑𝑡𝛼
= 𝛽1𝑆𝐼 + 𝛽2𝑆𝐸 − 𝑏𝐸 = 𝑓2(𝑆, 𝐸, 𝐼)                  (15)  

𝑑𝛼𝐼

𝑑𝑡𝛼
= 𝛾𝐸 − 𝑐𝐼 = 𝑓3(𝑆, 𝐸, 𝐼) 

with fractional order  0 < 𝛼 ≤ 1. 

The mathematical model in the system (15) above is in the 

form of a non-linear FDE. Therefore, it is necessary to 

linearize around the equilibrium point using the Jacobian 

matrix. The Jacobian matrix of the system (15) above is 

obtained by partially deriving each of the three equations 𝑓1 to 

𝑓3 for the variables 𝑆, 𝐸 and 𝐼 respectively as follows [20]:  

𝐽 =

[
 
 
 
 
 
𝜕𝑓1
𝜕𝑆

𝜕𝑓1
𝜕𝐸

𝜕𝑓1
𝜕𝐼

𝜕𝑓2

𝜕𝑆

𝜕𝑓2

𝜕𝐸

𝜕𝑓2

𝜕𝐼
𝜕𝑓3

𝜕𝑆

𝜕𝑓3

𝜕𝐸

𝜕𝑓3

𝜕𝐼 ]
 
 
 
 
 

 

 

The Jacobian matrix is obtained for the mathematical 

model of the fractional order of the spread of computer viruses 

as follows: 

 𝐽 = [

−𝛽1𝐼 − 𝛽2𝐸 − 𝑎 −𝛽2𝑆 −𝛽1𝑆
𝛽1𝐼 + 𝛽2𝐸 𝛽2𝑆 − 𝑏 𝛽1𝑆

0 𝛾 −𝑐
]                     (16) 

Furthermore, stability analysis was carried out against the 

computer virus-free equilibrium point, 𝑃0 = (
𝐴

𝑎
, 0,0), by using 

the eigenvalue approach so that the stability properties 

obtained are local stability. 

Analysis of local asymptotic stability at the computer 

virus-free equilibrium point begins by substituting the 

equilibrium point 𝑃0 = (
𝐴

𝑎
, 0,0) to Jacobian matrix (16), we 

get: 

𝐽(𝑃0) =

[
 
 
 
 −𝑎 −𝛽2

𝐴

𝑎
−𝛽1

𝐴

𝑎

0 𝛽2

𝐴

𝑎
− 𝑏 𝛽1

𝐴

𝑎
0 𝛾 −𝑐 ]

 
 
 
 

 

From matrix 𝐽(𝑃0) characteristic equation can be formed 

through det(𝜆𝐼 − 𝐽(𝑃0)) = 0, and got: 

(𝜆 + 𝑎)[𝜆2 − (𝛽2𝑆0 − 𝑏 − 𝑐)𝜆 − 𝑏𝑐(𝑅0 − 1)] = 0       (17) 

Equation (17) has a characteristic root 𝜆1 = −𝑎 and 𝜆𝑖 , 𝑖 =
2,3 is the root of the equation of: 

𝜆2 − (𝛽2𝑆0 − 𝑏 − 𝑐)𝜆 − 𝑏𝑐(𝑅0 − 1) = 0                         (18) 

Based on Proposition 1 (vi) [21], necessary conditions so 

that arg|𝜆𝑖| >
𝛼𝜋

2
, 𝑖 = 2,3 that is −𝑏𝑐(𝑅0 − 1) > 0, that is 

𝑅0 < 1. Whereas if 𝑅0 < 1, than −(𝛽2𝑆0 − 𝑏 − 𝑐) > 0. 

Therefore, based on the Routh-Hurwitz criteria [21] t is found 

that the roots of equation (18) are negative real numbers or 

negative real parts. Based on the description above, arg|𝜆𝑖| >
𝛼𝜋

2
, 𝑖 = 1,2,3 for every 0 < 𝛼 ≤ 1 if and only if 𝑅0 < 1. So, 

virus-free equilibrium point 𝑃0 = (
𝐴

𝑎
, 0,0) from model (8) is a 

locally asymptotically stable equilibrium point if and only if  

𝑅0 < 1. 

 

3.2 EQUILIBRIUM POINT OF ENDEMIC COMPUTER VIRUS 

Equilibrium point of endemic computer virus 𝑃∗ =
(𝑆∗, 𝐸∗, 𝐼∗) is a condition when a computer virus spreads, 

meaning that a computer is infected with a virus. The computer 

virus endemic equilibrium point is found if 𝑆∗, 𝐸∗, 𝐼∗ ≠ 0. The 

computer virus endemic equilibrium point of model (8) is 

given by 𝑃∗ = (
𝐴

𝑎𝑅0
,

𝐴(𝑅0−1)

𝑏𝑅0
,
𝐴𝛾(𝑅0−1)

𝑏𝑐𝑅0
), with 𝑅0 =

𝐴(𝛽1𝛾+𝛽2𝑐)

𝑎𝑏𝑐
. This non-virus-free equilibrium point exists if 

𝑅0 > 1. 

Theorem 3. Suppose 𝑅0 > 1. Computer virus endemic 

equilibrium point 𝑃∗ = (
𝐴

𝑎𝑅0
,

𝐴(𝑅0−1)

𝑏𝑅0
,
𝐴𝛾(𝑅0−1)

𝑏𝑐𝑅0
) locally 

asymptotically stable  

(1) For every 𝛼 ∈ (0,1]  if  and only if  𝑎1 𝑎2 > 𝑎3  

(2) For a 𝛼 ∈ (0,1]  if and only if  𝑎1 𝑎2 ≤ 𝑎3.  

Proof. Analysis of local asymptotic stability at the computer 

virus endemic equilibrium point begins by substituting the 

equilibrium point 𝑃∗ = (𝑆∗, 𝐸∗, 𝐼∗) = (
𝐴

𝑎𝑅0
,

𝐴(𝑅0−1)

𝑏𝑅0
,
𝐴𝛾(𝑅0−1)

𝑏𝑐𝑅0
), with 𝑅0 =

𝐴(𝛽1𝛾+𝛽2𝑐)

𝑎𝑏𝑐
  to Jacobian matrix 

(16), so we get:     

𝐽(𝑃∗) = [

−𝑎𝑅0 −𝛽2𝑆
∗ −𝛽1𝑆

∗

𝑎(𝑅0 − 1) 𝛽2𝑆
∗ − 𝑏 𝛽1𝑆

∗

0 𝛾 −𝑐
] 
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From matrix 𝐽(𝑃∗), characteristic equation can be formed 

through det(𝜆𝐼 − 𝐽(𝑃∗)) = 0, and got 

𝜆3 + 𝑎1𝜆
2 + 𝑎2𝜆 + 𝑎3 = 0,   (19) 

with 

𝑎1 = 𝑎𝑅0 − (𝛽2𝑆
∗ − 𝑏 − 𝑐), 

𝑎2 = 𝑎𝑏𝑅0 + 𝑎𝑐𝑅0 − 𝑎𝛽2𝑆
∗, and 

𝑎3 = 𝑎𝑏𝑐(𝑅0 − 1). 

 Based on Proposition 1 (vi) [21], necessary conditions 

arg|𝜆𝑖| >
𝛼𝜋

2
, 𝑖 = 1,2,3 that is 𝑎3 > 0, that is 𝑎𝑏𝑐(𝑅0 − 1) >

0, than obtained 𝑅0 > 1. 
 Previously obtained that 𝛽2𝑆

∗ − 𝑏 − 𝑐 < 0, than 

−𝑎𝛽2𝑆
∗ > −𝑎(𝑏 + 𝑐). So that 𝑎2 = 𝑎𝑏𝑅0 + 𝑎𝑐𝑅0 −

𝑎𝛽2𝑆
∗ > 𝑎𝑏𝑅0 + 𝑎𝑐𝑅0 − 𝑎(𝑏 + 𝑐) = 𝑎(𝑏 + 𝑐)(𝑅0 − 1). 

Because 𝑅0 > 1, than 𝑎(𝑏 + 𝑐)(𝑅0 − 1) > 0, so that it is 

obtained 𝑎2 > 0. Because 𝑅0 > 1 and 𝛽2𝑆
∗ − 𝑏 − 𝑐 < 0, 

than 𝑎1 = 𝑎𝑅0 − (𝛽2𝑆
∗ − 𝑏 − 𝑐) > 0. 

Since all coefficients of equation (19) are positive, then 

based on Descartes' sign test, equation (19) has no positive 

roots. So the roots are negative or complex roots whose real 

parts are negative. Based on the Routh-Hurwitz criteria [21], 

the root of equation (19) is negative or the real part is negative 

if and only if 𝑎1 𝑎2 > 𝑎3. Therefore, equation (19) has roots 

with positive real parts if and only if 𝑎1 𝑎2 ≤ 𝑎3. 

4. SENSITIVITY ANALYSIS 

In this section, we will analyze the sensitivity of the 

parameters in model (8) above. Parameter sensitivity analysis 

is used to determine which parameters in the model have a 

major influence on the rate of change of the model. Parameter 

sensitivity analysis was performed by calculating the 

sensitivity index value of each parameter. 

The amount 
𝜕𝑅0

𝜕𝑘

𝑘

𝑅0
 is the sensitivity index of parameter 𝑘, 

where 𝑘 is the parameter of 𝑅0 to be analyzed [22]. The 

parameter values used for the calculation of the sensitivity 

index refer to [2]. In Basic Reproductive Numbers  𝑅0 =
𝐴(𝛽1𝛾+𝛽2𝑐)

𝑎𝑏𝑐
 with 𝑎 = 𝑝 + 𝜇, 𝑏 = 𝑘 + 𝛾 + 𝜇, 𝑐 = 𝑟 +

𝜇 and 𝐴 = (1 − 𝑝)𝑁 there are seven parameters for which the 

sensitivity index will be searched, namely 

𝑝, 𝜇, 𝑘, 𝛾, 𝑟, 𝛽1 and 𝛽2. The results of the parameter sensitivity 

index analysis of 𝑅0 in model (8) are shown in Table 3 with 

the following calculations: 

𝜕𝑅0

𝜕𝑝

𝑝

𝑅0
,
𝜕𝑅0

𝜕𝛾

𝛾

𝑅0
,
𝜕𝑅0

𝜕𝑟

𝑟

𝑅0
,
𝜕𝑅0

𝜕𝜇

𝜇

𝑅0
,
𝜕𝑅0

𝜕𝑘

𝑘

𝑅0
,
𝜕𝑅0

𝜕𝛽1

𝛽1

𝑅0
 and 

𝜕𝑅0

𝜕𝛽2

𝛽2

𝑅0
. 

Table 3 Parameter sensitivity index 

Parameters Parameters 

Value 

Sensitivity Index 

𝑝 0.5 1.539 

𝜇 0.02 0.125 

𝑘 0.4 0.001 

𝛾 0.6 0.703 

𝑟 0.6 0.803 

𝛽1 0.7 0.705 

𝛽2 0.8 0.832 

Based on Table 3 above, it can be explained as follows: 

 The sensitivity index for 𝑝 is -1.539, meaning that if 

the recovery rate of the computer is vulnerable because the 

network antivirus capability is increased (decreased) by 10%, 

it will result in 𝑅0 decreasing (increasing) by 15.39%. 

 The sensitivity index for 𝜇 is 0.125, meaning that if 

the speed of computers disconnected from the network 

increases (decreases) by 10%, it will cause 𝑅0 to increase 

(decrease) by 1.25%. 

 The sensitivity index for 𝑘 is -0.001, meaning that if 

the recovery rate of the computer is exposed because the 

network antivirus capability is increased (decreased) by 10%, 

it will cause 𝑅0 to decrease (increase) by 0.01%. 

 The sensitivity index for 𝛾 is 0.703, meaning that if 

the rate at which the computer is exposed cannot be recovered 

with antivirus and is damaged increases (decreases) by 10%, it 

will cause 𝑅0 to increase (decrease) by 7.03%. 

 The sensitivity index for 𝑟 is 0.803, meaning that if 

the recovery rate of the infected computer increases 

(decreases) by 10%, it will cause 𝑅0 to increase (decrease) by 

8.03%. 

 The sensitivity index for 𝛽1 is 0.705, meaning that 

when a computer is connected to an infected computer, if the 

rate at which a vulnerable computer can become exposed 

increases (decreases) by 10%, it will cause 𝑅0 to increase 

(decrease) by 7.05%. 

 The sensitivity index for 𝛽2 is 0.832, meaning that 

when a computer connected to a computer is exposed, then if 

the rate at which vulnerable computers can become exposed 

increases (decreases) by 10%, it will result in 𝑅0 increasing 

(decreasing) by 8.32%. 

Based on the explanation above, it can be concluded that 

the most influential parameter on the rate of change of the 

computer virus distribution model is 𝑝. 

5. NUMERICAL SIMULATION 

Numerical simulation of the mathematical model of the 

spread of computer viruses on the network for computer virus-

free equilibrium points and computer virus endemic 

equilibrium points was carried out using MATLAB R2013a 

software. The parameter values used for this numerical 

simulation can be seen in Table 4. The simulation was carried 

out by taking four different fractional order values, 𝛼 ∈ (0, 1], 
namely 𝛼 = 0.3, 𝛼 = 0.5, 𝛼 = 0.9 and 𝛼 = 1. Simulations 

are carried out for 𝑡 = 0 to 𝑡 = 200 time units. 
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Table 4 Parameter values for the mathematical model of the 

spread of computer viruses on the network 

Parameters 
Parameter Value 

Source 
𝑹𝟎 < 𝟏 𝑹𝟎 > 𝟏 

𝑝 0.7 0.5  

 

 

Mei Peng et al 

(2013) 

 

𝜇 0.001  0.02 

𝑘 0.02  0.4 

𝛾 0.09  0.6 

𝑟 0.04  0.6 

𝛽1 0.002  0.7 

𝛽2 0.003  0.8 

N 10 100 

 

5.1 NUMERICAL SIMULATION IN NON-ENDEMIC 

CONDITIONS (COMPUTER VIRUS FREE) 

In the simulation of the virus-free condition, the initial 

value used is 𝑃(0) = (𝑆(0), 𝐸(0), 𝐼(0)) = (10, 2, 4) [2]. 

Based on the parameter values listed in Table 4, the value of 

𝑅0 =
𝐴(𝛽1𝛾+𝛽2𝑐)

𝑎𝑏𝑐
= 0.284931 < 1 which indicates non-

endemic conditions or no spread of computer viruses. The 

results of the numerical simulation in non-endemic conditions 

can be seen in Figure 2. 

 

 

 
Fig. 2 Model of computer virus spread for non-endemic 

conditions  

 In Figure 2, it can be seen that the greater the value of used, 

the faster the model will reach the equilibrium point 𝑃0 =

(
𝐴

𝑎
, 0,0) = (4.2796, 0, 0). In Figure 2 it can also be seen that 

the greater the value of 𝛼 used, the population of vulnerable 

computers tends to increase, while the population of exposed 

computers and infected computers decreases. This is because 

there is no transmission of computer viruses on computer 

networks. 

5.2 NUMERICAL SIMULATION IN VIRUS ENDEMIC 

CONDITIONS (COMPUTER VIRUS SPREAD) 

Furthermore, numerical simulations will be carried out during 

endemic conditions. The initial value used is 𝑃(0) =

(𝑆(0), 𝐸(0), 𝐼(0)) = (50, 50, 10) [2]. Based on the 

parameter values listed in Table 4, the value of 𝑅0 =
𝐴(𝛽1𝛾+𝛽2𝑐)

𝑎𝑏𝑐
= 139.2741 > 1 indicating endemic conditions or 

the spread of computer viruses. The results of numerical 

simulations in endemic conditions can be seen in Figure 3. 
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Fig. 3 Computer virus spread model for endemic conditions  

 In Figure 3, it can be seen that the greater the value of used, 

the faster the model will reach the equilibrium point 𝑃∗ =

(
𝐴

𝑎𝑅0
,
𝐴(𝑅0−1)

𝑏𝑅0
,
𝐴𝛾(𝑅0−1)

𝑏𝑐𝑅0
) = (0.6904, 48.6676,47.0977). In 

Figure 3 it can also be seen that the greater the value of 𝛼 used, 

the population of vulnerable computers tends to decrease, 

while the population of exposed computers and infected 

computers increases. This is due to the transmission of 

computer viruses on computer networks. 

6. CONCLUSION 

We assume that the computer virus process has a latency 

period and currently the infected computer also has infectivity. 

In this paper, a fractional order mathematical model has been 

formulated for the spread of computer viruses on a network 

and its dynamics have been studied. 

The result shows that we should try to make effort so that 

𝑅0 < 1. The most effective way is to increase the parameter 

𝑝, 𝑘 and decrease the parameter 𝛽1, 𝛽2, 𝜇, , 𝛾, 𝑟. Thus, computer 

viruses can be predicted and controlled. 
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