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Abstract: This study was conducted in order to make a Market Basket Analysis by using Association Rules mining through FP-
Growth Algorithm. The data used in the study are transactions of customers in a UK based online retail outfit. Data were analyzed
in the R Studio program and Spark using a data set containing 541910 transactions and 4070 different products. FP-Growth
Algorithm was tried which are Association Rules algorithms, The best rule accordingly a customer who buys Regency Tea Plate
Pink and Regency Tea Plate Roses also gets Regency Tea Plate Green with confidence 0.94 and the lift ratio value 64.3 Similarly,
also other rules were interpreted in this study. As a result, product placement in the supermarket can be made according to these
rules. Thus, sales of these products will increase and revenue will increase directly.
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1 Introduction

The increasing volume of data and the growing importance of retail analytics made it easy for retailers to know their
customers better. With a large amount of data, analytics has become more important to make decisions. The data can help retailers
to understand customer behavior, plan and promote products, increase sales, improve customer experience. There are many
algorithms and techniques used in retail that help uncover better insights and predict future events. One of the keys and widely
used techniques in retail is Market Basket Analysis. This paper talks about Market Basket Analysis using R and spark through FP-
Growth Algorithm and highlights the importance of such techniques in retail to boost sales.

2 Literature Review
In this section, we have concentrated on presenting different areas where data mining algorithms are used.
2.1 A Survey on Association Rule Mining in Market Basket Analysis

Data mining refers to extracting knowledge from large amount of data. Market basket analysis is a data mining technique to
discover associations between datasets. Association rule mining identifies relationship between a large set of data items. When
large quantity of data is constantly obtained and stored in databases, several industries are becoming concerned in mining
association rules from their databases. For example, the detection of interesting association relationships between large quantities
of business transaction data can help in catalog design, cross-marketing and various business decision making processes [8].

2.2 Market basket analysis using apriori algorithm to find consumer patterns in buying goods through transaction data (case
study of Mizan computer retail stores)

Mizan Computer Shop is a shop that is engaged in the trading sector, especially in the field of selling computers and
supporting accessories. Growing and increasing number of business actors in the computer sector, can makes the players
challenged to be able to create unique differentiation and clear positioning. So, that consumers can differentiate from their
competitors. Competitive and dynamic market conditions make every company should always observe competition in their
business environment. Retail stores need to use all of available resources including data. Data processing is expected to be able to
provide information that can be used to support marketing strategies. One of the data processing methods that are often used in
marketing strategies is the use of data mining techniques i.e Market Basket Analysis using a priori algorithm [3].

2.3 Application of market—basket analysis on healthcare

Data analysis plays a vital role in the present era as it helps us to understand the patterns by exploring it in meaningful
ways. Market—basket is one of the main methods used to find frequently occurring items in a transactional database and many
researchers use the Apriori algorithm for this purpose[4].

3 Methodology
There are two major sections:
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e Data preparation
e Exploratory Data Analysis and Data Visualization
e Rules generation by applying FP-Growth Algorithm.

An R program has been developed and implemented in R Studio environment. The following packages were imported:
e dplyr: A Grammar of Data Manipulation
o sparklyr: R interface for Apache Spark
e ggplot2: Data visualization

3.1  Data Pre-Processing

The data used in the study are transactions of customers in a UK based online retail outfit and it taken from UCI ML
Repository, it contains 8 column fields and 541910 transactions and 4070 different products. This “.csv” is read using
read.csv(“file_name”) function and stored as a data frame.

df <- read.csv("online_retail _Il.csv")

head(df)

## Invoice StockCode Description Quantity InvoiceDate

##1 536365 85123A WHITE HANGING HEART T-LIGHT HOLDER 6 12/1/2010 8:26
##2 536365 71053 WHITE METAL LANTERN 6 12/1/2010 8:26

## 3 536365 84406B CREAM CUPID HEARTS COAT HANGER 8 12/1/2010 8:26
## 4 536365 84029G KNITTED UNION FLAG HOT WATER BOTTLE 6 12/1/2010 8:26
##5 536365 84029E RED WOOLLY HOTTIE WHITE HEART. 6 12/1/2010 8:26

## Price Customer.ID Country

##1 255 17850 United Kingdom

##2 3.39 17850 United Kingdom

##3 2.75 17850 United Kingdom

##4 3.39 17850 United Kingdom

##5 3.39 17850 United Kingdom

#To get Number of transactions
count(df)

#H n
## 1541910

# to get number of poducts
df%>% distinct(StockCode) %>% summarize(count = n())

## count
## 1 4070

Before applying algorithms, the dataset has to be prepared by doing the following data preparation steps:

1. Dropping all Null values.

2. Dropping all the duplicate items, if one item duplicates in one transaction then just keep one item
3. Dropping all transactions with just one item.
4

Convert data to transaction structure (Transactional Data) because of this type of data structure can't be used as input to

the algorithm.
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Figure 1: Prepared Data

After previous preparation steps, we have

3.2 Exploratory Data Analysis and Data Visualization
In this section, we use visualization and transformation to explore data in a systematic way.

e Most frequent items, top (10)
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Figure 2: Most frequent items top (10)

From graph we see that most frequently item is that item with StockCode equal 85123A and its name is WHITE HANGING
HEART T-LIGHT HOLDER

e Number of items in each transaction
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Figure 3: Number of Items in each transaction

From graph we can insight that a lot of transactions has only one item, and there are a lot of transactions have item count between

(8,32) items.

3.3 Market Basket Analysis

Market basket analysis is also known as association analysis is an unsupervised machine learning method, is one of the key
techniques used by large retailers to uncover associations between items. It works by looking for combinations of items that occur
together frequently in transactions. To put it another way, it allows retailers to identify relationships between the items that people
buy and help identify customer behavior and pattern and also Optimize marketing campaigns and strategies.

Which items are frequently
purchased together by customers?
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Figure 4: Overall picture of market basket analysis
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Market basket analysis gives us insight into the goods by telling us which products tend to be purchased together and which are
most enable to purchase. FP-growth algorithm is an efficient algorithm for mining frequent patterns. It does not need to produce
the candidate sets and that is quite time consuming. It scans database only twice and frequent item set is mining by using of FP
tree. In this paper, R and spark is used to find association rules.

3.4 Association Rule Mining

Association Rule Mining is a rule-based machine learning method to find associations and relationships between large sets
of items, this rule also shows how frequently an item occurs in the itemset based on the occurrences of other items in a transaction,
Association rules are widely used to analyze basket or transaction data to discover strong rules based on the interestingness and
frequency of occurrences and it can be understood as the “if this, then that” rule. For example, if a user buys coffee and sugar,
then he/she is likely to buy milk. This rule could be written as: If {A} Then {B}, Here, if part of the rule is known as antecedent
and THEN part of the rule is known as consequent. {A} part is the condition and {B} part is considered as the result. These rules
are applied to hundreds and thousands of records to obtain closer and accurate results. But it is not considered significantly
accurate if applied to a small set of data.

3.5 SUPPORT, CONFIDENCE, LIFT

The association rule has primarily three measures to decide the degree of confidence, these are: Support, Confidence and
Lift.
Support: This is one of the important measures to determine how frequently an itemset occurs in the transaction as a percentage

of all transactions, Support is the number of transactions that include both {A} and {B} parts as a percentage of the total number
of transactions.

(A+B)
Total

support =

Confidence: This rule is the ratio of the number of transactions that include items in {A} and {B} to the number of transactions
that include items in {A}. It can be understood as to how often items in B appear in transactions that contain A only. Itisa
conditional probability.
(A+B)

A

Lift: This third measure, lift or lift ratio is the ratio of confidence to expected confidence. Greater lift value tells how strong the
association is. It shows us the rate of confidence that B will be purchased given that A was purchased.

confidence =

(A+ B)
_A
B
Total

lift =

3.6 Implementation

After Pre-processing the data, now data is ready for modeling, we use Spark through R by using sparklyr (R interface for
Apache Spark), the sparklyr library provide ml_fpgrowth
A parallel FP-growth algorithm to mine frequent item sets, with two parameters

e min_support: Minimal support level of the frequent pattern.
e min_confidence: Minimal confidence for generating Association Rule

fp_mode] items_tbl
ml_fpaqrowth(min_support = 0.01, min_confidence = 0.6
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After model created successfully, we can call two methods and pass the model as parameter

e  The first one is ml_freq_itemsets to get frequency for items
e The second one is ml_association_rules to get generated rules with support, confidence, lift for each one.

items freq
1 [s485123A") %93
2 st(224237) 181

3 [s1"850998") 624
4 [5184879) 382
S list("47566") 381
6 [ist"20725") 322
7 Ist227207) 1195
8 [i5t(°23203") 092
9 [stPOST) 077
10 Ust~20727") 1067

Figure 5: item sets frequency

As we show in [figure 6] there are a lot of confidant association rule was generated by the model

For example, the first rule indicates that item [23171] will be purchased given that item [23170] and item [23172] were purchased
with rate of confidence 94%.

Model has generated 151 different rules, these rules allow retailers to identify relationships between the items that people buy and
help identify customer behavior and pattern and also Optimize marketing campaigns and strategies
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Figure 6: Generated association rules top (10)
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3.7 EXPERIMENTAL RESULT

List Of All generated association rules:
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Conclusion

This study was conducted in order to make a Market Basket Analysis by using Association Rules mining through FP-Growth
Algorithm. Data were analyzed in the R Studio program and Spark using a data set containing 541910 transactions and 4070 different
products. The best rule accordingly a customer who buys Regency Tea Plate Pink and Regency Tea Plate Roses also gets Regency
Tea Plate Green with confidence 0.94 and the lift ratio value 64.3 As a result, product placement in the supermarket can be made
according to these rules. Thus, sales of these products will increase and revenue will increase directly.
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