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Abstract: Optimization has become a standard phenomenon in the majority of organizations and establishments. Many 

Manufacturing companies operate under uncertainties which affect the system performance. Product demand is one of the common 

kinds of uncertainty that characterizes production environments.  One of the challenges faced by manufacturing companies that use 

cost analyses is product demand uncertainty that often affects the manufacturing system performance and decision making. 

Manufacturing Lot size problems are normally related to proficient production planning of a given product. If a manufacturing firm 

wants to compete within the market, it must make the right decisions regarding lot-sizing problems and this can be a critical decision 

for any manufacturer. In this paper, an optimization model for the manufacturing lot size was developed using Markov chains in 

conjunction with stochastic goal programming. The goal constraints, deviation variables, priorities and objective function were 

defined to determine the over-achievement or underachievement of the manufacturing lot size for aggregate production planning, 

the different states of demand for the product being represented by states of a Markov chain. The model was solved using the linear 

programming solver in MATLABTM to determine the quantity of product plan for manufacturing within the first quarter of the year 

when demand changes from one state to another. 
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1. Introduction 

Uncertainties present an unavoidable concern associated with a continuous operation of the manufacturing system, a state of 

insufficient information, and this can be seen in three forms: inexactness, unreliability, and border with ignorance [1]. 

One of the challenges faced by manufacturing companies that use cost analyses is product demand uncertainty, as it may influence 

the manufacturing system performance hence the final decision on utilizing a manufacturing system at the initial stages [2]. When 

assessing the risk related to a decision, understanding these uncertainties and their impacts, which can make it difficult to predict 

performance, are of major concern [3]. 

Production planning is the pillar of any manufacturing operation, with the main aim of determining the amount of products to be 

manufactured considering the level of inventory to be shifted from one period to another with the objective to minimize both the 

total costs of production and the inventory, meeting the customers’ demand [4]. In production planning, making the right decisions 

about the lot size is very important as it directly affects the system performance and productivity [5] and this is key for any 

manufacturing firm that wants to compete in the Market. 

Lot sizing problems have got a direct effect on the system performance and productivity. Manufacturing Lot sizing can be defined 

as determining the quantity of a given product that needs to be manufactured in a specified period of time. Manufacturing Lot sizing 

problems are normally associated with proficient production planning of a given product. Each production plan has got the main 

problem of determining the manufacturing lot size for each product. In order to have efficient production planning lot allocation 

issues must be solved based on the demand that needs to be achieved and the availability of inventory stock minimizing production 

costs by determining the optimal production quantity[6]. 

The smaller the manufacturing lot size, the less the holding cost but raises the ordering cost whereas the larger the manufacturing lot 

size, the more the holding cost but reducing the ordering cost. Based on the concepts of lean production, it is preferable to have a 

small lot size as it prevents the accumulation of inventory which comes with management and holding costs. The lot size 

recommended by a mathematical manufacturing lot size model would be the best as it accounts for the tradeoff between the costs 

involved [5]. 

Optimization is the process of finding (activity of choosing [7]) the best possible solution to a given problem by examining several 

alternatives (assessed after a predefined criterion) [8] and can be done by adjusting the inputs to or characteristics of a device, 

mathematical process, or experiment to find the minimum or maximum output [9].  

The optimization problem contains three basic parameters needed to be considered, that is, the objective function, a set of variables 

and a set of constraints [10]. 

The objective of the optimization model depends on certain characteristics of the system, called variables or unknowns with the goal 

of finding the values of these variables that optimize the objective, although these variables are often restricted, or constrained in 

one way or the other. Brahimi et al. grouped optimization problems into four categories: process planning, layout design, 

reconfigurability and planning and scheduling.  
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Manufacturing lot size is in the category of planning and scheduling. Manufacturing companies must have the ability to adjust 

scalable production capacities and to respond rapidly to market demands making planning and scheduling become complex in such 

a dynamic environment [11].  

Stochastic analysis and goal programming are introduced into the framework to handle uncertainties in real-world manufacturing 

systems.  

Stochastic Goal Programming is a multi-criteria decision support model that gives “satisficing” solutions to a linear system under 

an uncertainty case from the normally expected utility viewpoint [12], [13]. Most real-world optimization problems consist of various 

inexact information estimates and goals, conflicting criteria. In such situations, the stochastic goal programming method suggests an 

analytical structure aid in modelling and solving such problems. Stochastic goal programming can deal with the inherent uncertainty 

and has been applied in different fields including Portfolio selection, project selection, resource allocation, Healthcare management, 

transportation, marketing [14], cash management [15], wealth management [16], economic development, energy consumption, 

workforce allocation, and greenhouse gas emissions[17], forest planning [18]. Not many applications are seen in production planning 

in manufacturing systems hence the need for manufacturing lot size optimization under demand uncertainty. This can be considered 

as a guideline for production planners and practitioners used to solve specific decision-making problems (optimal manufacturing lot 

size). Manufacturing companies will minimize on overproduction when demand is actually low or under-producing when demand 

is actually high. 

Due to the fluctuating and uncertainties in demand, manufacturing companies over and over again face the challenge of establishing 

optimal manufacturing lot sizes in production planning systems. Manufacturing companies are continuously looking for efficiency 

to overcome the challenges associated with the market dynamics. One of the common types of uncertainty that characterizes 

production environments is uncertainty in product demand. It is therefore important that these uncertain parameters be considered 

in the production planning process when developing a robust production plan because when neglected, production efficiency and 

system performance will be affected [19].  

Manufacturing industries establish their production plans based on external demands with the core aim of determining the quantity 

(lot size) to be produced given each period while satisfying the demands and minimizing total costs [20]. In production planning, 

making the right decisions about the lot size is very important as it directly affects the system performance and productivity [5] and 

this is key for any manufacturing firm that wants to compete on market. 

As this is complex as well as important, it has been highly studied although, there is still a gap about showing the contributions to 

clarify the suitability of those methods used concerning each kind of underlying manufacturing environment (regarding variations 

in demand and peaks of seasonality) [21].  

Therefore the present study aimed at developing an optimization model for the manufacturing lot size under demand uncertainty, 

establishing the over-achievement or underachievement of the manufacturing lot size priorities desired for aggregate production 

planning. 

 

2. Mathematical model formulation 

A manufacturing company producing products with fluctuations and uncertainties in demand was considered. The demand for these 

products during each time period over a finite fixed planning horizon was described as either favorable or unfavorable.  

The Markov chain approach ([22], [23], [24], [25], [26]) in conjunction with stochastic goal programming ([13], [27], [14], [28], 

[18], [15]) was adopted and the states of a Markov chain represent possible states of demand for the finished products with the 

notations shown in Table 1. 

Table 1: Notations used in the Markov models 

𝑖, 𝑗  Set of states of demand 𝑀 Manufacturing lot-size 

𝐹 Favorable demand 𝑋𝑖𝑗 (𝑝, 𝑞) Quantity of product p to be 

manufactured in quarter q 

𝑈 Unfavorable demand  𝑁 Customer matrix 

𝑄 Demand transition matrix 𝐶𝑝 Unit production cost 

𝑝 Product 𝐶ℎ Unit holding cost 

𝑞 Quarter of the year 𝐶𝑠 Unit shortage cost 

𝐹𝐹, 𝐹𝑈, 𝑈𝐹, 𝑈𝑈 State transitions 𝐷 Demand matrix 

𝑍 Value of the objective function 𝑉 Inventory matrix 

𝑃𝑘 Preemptive priority of the kth goal 𝐶 Production-Inventory cost matrix 

𝑑𝑘
+ Over achievement of the kth goal 𝐵 Beginning Inventory 

𝑑𝑘
− Under achievement of the kth goal 𝐸 Ending Inventory 

 

Average on-hand inventory, 𝑉 = (𝐵 + 𝐸) 2⁄        (1)  

 

Consider the customer matrix: 
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𝑁(𝑝, 𝑞) = [
𝑁𝐹𝐹(𝑝, 𝑞) 𝑁𝐹𝑈(𝑝, 𝑞)

𝑁𝑈𝐹(𝑝, 𝑞) 𝑁𝑈𝑈(𝑝, 𝑞)
]        (2) 

2.1 Demand transition probability 

As demand changes from state i to state j for 𝑖, 𝑗 ∈ {𝐹, 𝑈}, the associated demand transition probabilities are calculated as: 

𝑄𝑖𝑗(𝑝, 𝑞) =
𝑁𝑖𝑗(𝑝,𝑞)

𝑁𝑖𝑓(𝑝,𝑞)+𝑁𝑖𝑢(𝑝,𝑞)
         (3) 

This yields the demand transition matrix: 

𝑄(𝑝, 𝑞) =
𝑭 𝑼

𝑭
𝑼

(
𝑄𝐹𝐹(𝑝, 𝑞) 𝑄𝐹𝑈(𝑝, 𝑞)

𝑄𝑈𝐹(𝑝, 𝑞) 𝑄𝑈𝑈(𝑝, 𝑞)
)
      (4) 

Then the demand matrix, the inventory matrix and the production-inventory cost matrix. 

Demand matrix; 

𝐷(𝐴, 1) =  
𝑭 𝑼

𝑭
𝑼

(
𝐷𝐹𝐹(𝐴, 1) 𝐷𝐹𝑈(𝐴, 1)

𝐷𝑈𝐹(𝐴, 1) 𝐷𝑈𝑈(𝐴, 1)
)
       (5) 

Inventory matrix; 

𝑉(𝐴, 1) =  
𝑭 𝑼

𝑭
𝑼

(
𝑉𝐹𝐹(𝐴, 1) 𝑉𝐹𝑈(𝐴, 1)

𝑉𝑈𝐹(𝐴, 1) 𝑉𝑈𝑈(𝐴, 1)
)
       (6) 

 

Production-inventory cost matrix; 

When demand outweighs the amount produced then, 

            𝐶(𝑝, 𝑞) =

[
 
 
 
 
𝐶𝑝

+
𝐶ℎ

+
𝐶𝑠 ]

 
 
 
 

[𝐷(𝑝, 𝑞) −  𝑉(𝑝, 𝑞)]       (7) 

Similarly, when the demand is less than the amount produced then, 

            𝐶(𝑝, 𝑞) = 𝐶ℎ[ 𝑉(𝑝, 𝑞) − 𝐷(𝑝, 𝑞)]       (8) 

Hence, as demand changes from state i to state j (𝑖, 𝑗 ∈ {𝐹, 𝑈}) 

            𝐶(𝑝, 𝑞) =  
𝑭 𝑼

𝑭
𝑼

(
𝐶𝐹𝐹(𝑝, 𝑞) 𝐶𝐹𝑈(𝑝, 𝑞)

𝐶𝑈𝐹(𝑝, 𝑞) 𝐶𝑈𝑈(𝑝, 𝑞)
)
       (9) 

where 𝐶(𝑝, 𝑞) = production-inventory cost matrix. 

 

2.2 Expected demand, inventory, production-inventory costs and manufacturing lot-size 

Expected demand 

Favorable Demand 𝐸[𝐷𝐹(𝑝, 𝑞)] = 𝑄𝐹𝐹(𝑝, 𝑞)𝐷𝐹𝐹(𝑝, 𝑞) + 𝑄𝐹𝑈(𝑝, 𝑞)𝐷𝐹𝑈(𝑝, 𝑞)  (10) 

Unfavorable Demand 𝐸[𝐷𝑈(𝑝, 𝑞)] = 𝑄𝑈𝐹(𝑝, 𝑞)𝐷𝑈𝐹(𝑝, 𝑞) + 𝑄𝑈𝑈(𝑝, 𝑞)𝐷𝑈𝑈(𝑝, 𝑞)  (11) 

 

Expected inventory 

Favorable Demand 𝐸[𝑉𝐹(𝑝, 𝑞)] = 𝑄𝐹𝐹(𝑝, 𝑞)𝑉𝐹𝐹(𝑝, 𝑞) + 𝑄𝐹𝑈(𝑝, 𝑞)𝑉𝐹𝑈(𝑝, 𝑞)  (12) 

Unfavorable Demand 𝐸[𝑉𝑈(𝑝, 𝑞)] = 𝑄𝐹𝑈(𝑝, 𝑞)𝑉𝑈𝐹(𝑝, 𝑞) + 𝑄𝑈𝑈(𝑝, 𝑞)𝑉𝑈𝑈(𝑝, 𝑞)  (13) 

 

Expected production-inventory costs 

Favorable Demand 𝐸[𝐶𝐹(𝑝, 𝑞)] = 𝑄𝐹𝐹(𝑝, 𝑞)𝐶𝐹𝐹(𝑝, 𝑞) + 𝑄𝐹𝑈(𝑝, 𝑞)𝐶𝐹𝑈(𝑝, 𝑞)  (14) 

Unfavorable Demand 𝐸[𝐶𝑈(𝑝, 𝑞)] = 𝑄𝑈𝐹(𝑝, 𝑞)𝐶𝑈𝐹(𝑝, 𝑞) + 𝑄𝑈𝑈(𝑝, 𝑞)𝐶𝑈𝑈(𝑝, 𝑞)  (15) 

 

Expected manufacturing lot-size 

Favorable demand 

𝐸[𝑀𝐹(𝑝, 𝑞)] = {

   𝐸[𝐷𝐹(𝑝, 𝑞)] − 𝐸[𝑉𝐹(𝑝, 𝑞)]     𝑖𝑓 𝐸[𝐷𝐹(𝑝, 𝑞)] > 𝐸[𝑉𝐹(𝑝, 𝑞)]

0                                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (16) 

Unfavorable demand 



International Journal of Academic Engineering Research (IJAER) 

ISSN: 2643-9085 

Vol. 5 Issue 12, December - 2021, Pages:45-55 

www.ijeais.org/ijaer 

48 

𝐸[𝑀𝑈(𝑝, 𝑞)] = {

   𝐸[𝐷𝑈(𝑝, 𝑞)] − 𝐸[𝑉𝑈(𝑝, 𝑞)]     𝑖𝑓 𝐸[𝐷𝑈(𝑝, 𝑞)] > 𝐸[𝑉𝑈(𝑝, 𝑞)]

0                                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (17) 

  

2.3 Stochastic goal programming formulation 

The stochastic goal programming model was formulated by setting priorities, defining the objective function and formulating the 

goal constraints as follows: 

Set priorities 

P1: Produce a batch of  𝐸[𝑀𝐹(𝑝, 𝑞)] units when demand is favorable 

P2: Produce a batch of  𝐸[𝑀𝑈(𝑝, 𝑞)] units when demand is unfavorable 

P3: Total production-inventory cost must not exceed 𝐸[𝐶𝐹(𝑝, 𝑞)] when demand is favorable 

P4: Total production-inventory cost must not exceed 𝐸[𝐶𝑈(𝑝, 𝑞)] when demand is unfavorable 

 

Objective function 

𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒 𝑍 =  ∑4
𝑘=1 ∑3

𝑝=1 ∑ 𝑃𝑘(𝑝, 𝑞)3
𝑞=1 [𝑑𝑘

+ + 𝑑𝑘
−]     (18) 

Goal constraints 

P1: Manufacturing lot-size  𝐸[𝑀𝐹(𝑝, 𝑞)] -  favorable demand 

𝑋𝐹𝐹(𝑝, 𝑞) + 𝑋𝐹𝑈(𝑝, 𝑞) + 𝑑1
− − 𝑑1

+ = 𝐸[𝑀𝐹(𝑝, 𝑞)]      (18.1) 

P2: Manufacturing lot-size  𝐸[𝑀𝑈(𝑝, 𝑞)]  -   unfavorable demand 

𝑋𝑈𝐹(𝑝, 𝑞) + 𝑋𝑈𝑈(𝑝, 𝑞) + 𝑑2
− − 𝑑2

+ = 𝐸[𝑀𝑈(𝑝, 𝑞)]     (18.2) 

P3: Total production-inventory cost – favorable demand 

𝐶𝐹𝐹(𝑝, 𝑞)𝑋𝐹𝐹(𝑝, 𝑞) + 𝐶𝐹𝑈(𝑝, 𝑞) 𝑋𝐹𝑈(𝑝, 𝑞) − 𝑑3
+ = 𝐸[𝐶𝐹(𝑝, 𝑞)]    (18.3) 

P4: Total production-inventory cost – unfavorable demand 

𝐶𝑈𝐹(𝑝, 𝑞)𝑋𝑈𝐹(𝑝, 𝑞) + 𝐶𝑈𝑈(𝑝, 𝑞) 𝑋𝑈𝑈(𝑝, 𝑞) − 𝑑4
+ = 𝐸[𝐶𝑈(𝑝, 𝑞)]   (18.4) 

 

2.4 Stochastic goal programming model for manufacturing lot-size 

𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒 𝑍 =  ∑4
𝑘=1 ∑3

𝑝=1 ∑ 𝑃𝑘(𝑝, 𝑞)3
𝑞=1 [𝑑𝑘

+ + 𝑑𝑘
−]     (19) 

Subject to:  

𝑋𝐹𝐹(𝑝, 𝑞) + 𝑋𝐹𝑈(𝑝, 𝑞) + 𝑑1
− − 𝑑1

+ = 𝐸[𝑀𝐹(𝑝, 𝑞)]     (19.1) 

𝑋𝑈𝐹(𝑝, 𝑞) + 𝑋𝑈𝑈(𝑝, 𝑞) + 𝑑2
− − 𝑑2

+ = 𝐸[𝑀𝑈(𝑝, 𝑞)]     (19.2) 

𝐶𝐹𝐹(𝑝, 𝑞)𝑋𝐹𝐹(𝑝, 𝑞) + 𝐶𝐹𝑈(𝑝, 𝑞) 𝑋𝐹𝑈(𝑝, 𝑞) − 𝑑3
+ = 𝐸[𝐶𝐹(𝑝, 𝑞)]   (19.3) 

𝐶𝑈𝐹(𝑝, 𝑞)𝑋𝑈𝐹(𝑝, 𝑞) + 𝐶𝑈𝑈(𝑝, 𝑞) 𝑋𝑈𝑈(𝑝, 𝑞) − 𝑑4
+ = 𝐸[𝐶𝑈(𝑝, 𝑞)]   (19.4) 

𝑋𝐹𝐹(𝑝, 𝑞), 𝑋𝐹𝑈(𝑝, 𝑞), 𝑋𝑈𝐹(𝑝, 𝑞), 𝑋𝑈𝑈(𝑝, 𝑞), 𝑑1
−, 𝑑1

+, 𝑑2
−, 𝑑2

+, 𝑑3
+, 𝑑4

+ ≥ 0  (19.5 

3. Case study 

In this section, a real case application from Movit Products Uganda limited was used to demonstrate the applicability of the proposed 

mathematical models. The manufacturing industry manufactures, distributes and sells skincare, hair & nail care products. The 

numerical illustration contains real data for the first quarter of the year, which was collected and then reduced to usable dimensions 

as shown in Table 2. Data classification by state of demand was made, analyzed and used in the proposed mathematical model.  

 

Considering a product A, for a given week, demand is favorable (state F) if Nij > 12 otherwise demand is unfavorable (state U) if Nij 

≤ 12 as shown in Table 2. 

 

Table 2: Data classification by state of demand for product A 

Month Week Customers 

(N) 

Demand (D) 

(x103) 

On hand inventory (V)  

(x103) 

State of 

demand (i) 

1 

1 9 3937 6076 U 

2 12 4668 4687 U 

3 8 2485 6306 U 

4 17 7955 10160 F 

2 

1 1 110 4525 U 

2 15 3832 5681 F 

3 7 2870 4363 U 

4 20 3824 6028 F 
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3 

1 4 758 2018 U 

2 16 6125 4149 F 

3 14 2625 4163 F 

4 17 3685 6279 F 

 

Table 3a, 3b and 3c shows the over stocking or under stocking of product A with the corresponding holding or shortage costs in the 

first quarter of the year. 

 

Table 3a: Overstocking and understocking with holding and shortage costs for 1st month 

Week Demand (D) (x103) 
On hand inventory (V)  

(x103) 
over/under stocking 

Holding/shortage 

costs 

1 3937 6076 2139 231.6537 

2 4668 4687 19 2.0577 

3 2485 6306 3821 413.8143 

4 7955 10160 2205 238.8015 

 

 

Table 3b: Overstocking and understocking with holding and shortage costs for 2nd month 

Week Demand (D) (x103) 
On hand inventory (V)  

(x103) 
over/under stocking 

Holding/shortage 

costs 

1 110 4525 4415 478.1445 

2 3832 5681 1849 200.2467 

3 2870 4363 1493 161.6919 

4 3824 6028 2204 238.6932 

 

 

Table 3c: Overstocking and understocking with holding and shortage costs for 3rd month 

Week Demand (D) (x103) 
On hand inventory (V)  

(x103) 
over/under stocking 

Holding/shortage 

costs 

1 758 2018 1260 136.458 

2 6125 4149 -1976 1569.734 

3 2625 4163 1538 166.5654 

4 3685 6279 2594 280.9302 

 

Figure 1: Over stocking and under stocking of product A  Figure 2: Holding and Shortage costs  
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3.1 State transitions and on-hand inventory 

For a particular state transition, given the beginning and ending inventory, the average on-hand inventory was calculated as presented 

in Table 4. 

 

Table 4: Average on-hand inventory for product A 

State transitions 

(𝒊, 𝒋) 

Beginning inventory (B) Ending inventory (E) Average on-hand 

inventory  
𝑽 = (𝑩 + 𝑬) 𝟐⁄  

FF 4163 6279 5221 

FU 4525 2018 3271.5 

UF 10160 4149 7154.5 

UU 4687 6306 5496.5 

From Equation (1) section 2, the average on-hand inventory was calculated giving; 

𝑉𝐹𝐹(𝐴, 1) = 5221         𝑉𝐹𝑈(𝐴, 1) = 3271.5          𝑉𝑈𝐹(𝐴, 1) = 7154.5         𝑉𝑈𝑈(𝐴, 1) = 5496.5 

 

Figure 3: Average on-hand inventory and state transitions 

 
3.2 Demand transition probabilities 

Data classification by state-transition was done as illustrated in Table 5 and then used to calculate the demand transition probabilities 

for the product 

 

Table 5: Data classification by state-transition for product A 

Month 

State transition 

(𝒊, 𝒋) 

Number of customers 

𝑵𝒊𝒋(𝑨, 𝟏) 

Demand 

𝑫𝒊𝒋(𝑨, 𝟏) 

1 

FF 0 0 

FU 0 0 

UF 25 10440 

UU 41 15758 

2 

FF 0 0 

FU 22 6702 

UF 43 10636 

UU 0 0 

3 

FF 61 15060 

FU 0 0 

UF 20 6883 

UU 0 0 

 

From Table 5, the Totals for customers and demand as it changes from one state to another are; 

Customers: 𝑁𝐹𝐹(𝐴, 1) = 0 + 0 + 61 = 61                           𝑁𝐹𝑈(𝐴, 1) = 0 + 22 + 0 = 22       
        𝑁𝑈𝐹(𝐴, 1) = 25 + 43 + 20 = 88                     𝑁𝑈𝑈(𝐴, 1) = 41 + 0 + 0 = 41  
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Demand: 𝐷𝐹𝐹(𝐴, 1) = 0 + 0 + 15060 = 15060                𝐷𝐹𝑈(𝐴, 1) = 0 + 6702 + 0 = 6702     
   𝐷𝑈𝐹(𝐴, 1) = 10440 + 10636 + 6883 = 27959        
   𝐷𝑈𝑈(𝐴, 1) = 15758 + 0 + 0 = 15758  

From Equation (3) in section 2, the demand transition probabilities are; 

𝑄𝐹𝐹(𝐴, 1) =
𝑁𝐹𝐹(𝐴,1)

𝑁𝐹𝐹(𝐴,1)+𝑁𝐹𝑈(𝐴,1)
=

61

61+22
= 0.7349  

𝑄𝐹𝑈(𝐴, 1) =
𝑁𝐹𝑈(𝐴,1)

𝑁𝐹𝐹(𝐴,1)+𝑁𝐹𝑈(𝐴,1)
=

22

61+22
= 0.2651  

𝑄𝑈𝐹(𝐴, 1) =
𝑁𝑈𝐹(𝐴,1)

𝑁𝑈𝐹(𝐴,1)+𝑁𝑈𝑈(𝐴,1)
=

88

88+41
= 0.6822  

𝑄𝑈𝑈(𝐴, 1) =
𝑁𝑈𝑈(𝐴,1)

𝑁𝑈𝐹(𝐴,1)+𝑁𝑈𝑈(𝐴,1)
=

41

88+41
= 0.3178  

Hence the demand transition matrix as from equation (4), 

 𝑄(𝐴, 1) =  
𝑭 𝑼

𝑭
𝑼

(
0.7349 0.2651
0.6822 0.3178

)
 

3.3 Demand matrix, inventory matrix and production-inventory cost matrix 

The demand matrix, the inventory matrix and the production-inventory cost matrix were developed as follows. 

From Equation (5), the demand matrix becomes; 

                       𝐷(𝐴, 1) =  
𝑭 𝑼

𝑭
𝑼

(
15060 6702
27959 15758

)
 

From Equation (6), the Inventory matrix becomes; 

𝑉(𝐴, 1) =  
𝑭 𝑼

𝑭
𝑼

(
5221 3271.5

7154.5 5496.5
)
  

Production-inventory cost matrix 

The production-inventory cost matrix is then computed for the product From Equations (7), (8) and (9). 

 Unit production cost, 𝐶𝑝(𝐴) = $ 7.2222 

 Unit holding cost, 𝐶ℎ(𝐴) = $ 0.1083 

 Unit shortage cost, 𝐶𝑠(𝐴) = $ 0.7944 

𝐶𝐹𝐹(𝐴, 1) =  (𝐶𝑝(𝐴) + 𝐶ℎ(𝐴) + 𝐶𝑠(𝐴)) (𝐷𝐹𝐹(𝐴, 1) − 𝑉𝐹𝐹(𝐴, 1))  

𝐶𝐹𝐹(𝐴, 1) =  (7.2222 + 0.1083 + 0.7944)(15060 − 5221) = 79940.9  

𝐶𝐹𝑈(𝐴, 1) =  (𝐶𝑝(𝐴) + 𝐶ℎ(𝐴) + 𝐶𝑠(𝐴)) (𝐷𝐹𝑈(𝐴, 1) − 𝑉𝐹𝑈(𝐴, 1))  

𝐶𝐹𝑈(𝐴, 1) =  (7.2222 + 0.1083 + 0.7944)(6702 − 3271.5) = 27872.5  

𝐶𝑈𝐹(𝐴, 1) =  (𝐶𝑝(𝐴) + 𝐶ℎ(𝐴) + 𝐶𝑠(𝐴)) (𝐷𝑈𝐹(𝐴, 1) − 𝑉𝑈𝐹(𝐴, 1))  

𝐶𝑈𝐹(𝐴, 1) =  (7.2222 + 0.1083 + 0.7944)(27959 − 7154.5) = 169034.5  

𝐶𝑈𝑈(𝐴, 1) =  (𝐶ℎ(𝐴))(𝐷𝑈𝑈(𝐴, 1) − 𝑉𝑈𝑈(𝐴, 1))  

𝐶𝑈𝑈(𝐴, 1) =  (0.1083)(15758 − 5496.5) = 1111.3  
Hence, 

  𝐶(𝐴, 1) =  
𝑭 𝑼

𝑭
𝑼

(
𝐶𝐹𝐹(𝐴, 1) 𝐶𝐹𝑈(𝐴, 1)

𝐶𝑈𝐹(𝐴, 1) 𝐶𝑈𝑈(𝐴, 1)
)

 

 𝐶(𝐴, 1) =  
𝑭 𝑼

𝑭
𝑼

(
79940.9 27872.5
169034.5 1111.3

)
 

3.4 Expected demand, inventory, production-inventory costs and manufacturing lot-size 

Expected demand 

After generating the demand transition matrix and formulating the production-inventory cost matrix, the expected demand, expected 

inventory and expected production-inventory costs are computed for the product considering both favorable and unfavorable demand 

as shown below; 

Favorable demand (F) was computed from equation (10)  

 𝐸[𝐷𝐹(𝐴, 1)] = 𝑄𝐹𝐹(𝐴, 1) ∗ 𝐷𝐹𝐹(𝐴, 1) + 𝑄𝐹𝑈(𝐴, 1) ∗ 𝐷𝐹𝑈(𝐴, 1)  

𝐸[𝐷𝐹(𝐴, 1)] = (0.7349 ∗ 15,060) + (0.2651 ∗ 6,702)  

𝐸[𝐷𝐹(𝐴, 1)] = 12,844.3 𝑢𝑛𝑖𝑡𝑠  

Unfavorable demand (U) was computed from equation (11) 
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 𝐸[𝐷𝑈(𝐴, 1)] = 𝑄𝑈𝐹(𝐴, 1) ∗ 𝐷𝑈𝐹(𝐴, 1) + 𝑄𝑈𝑈(𝐴, 1) ∗ 𝐷𝑈𝑈(𝐴, 1)  

𝐸[𝐷𝑈(𝐴, 1)] = (0.6822 ∗ 27,959) + (0.3178 ∗ 15,758)  

𝐸[𝐷𝑈(𝐴, 1)] = 24,081.5 𝑢𝑛𝑖𝑡𝑠  

Expected Inventory 

Computation of the expected inventory considering both favorable and unfavorable demand for the product was computed From 

equation (12) as follows: 

Favorable demand (F) 

 𝐸[𝑉𝐹(𝐴, 1)] = 𝑄𝐹𝐹(𝐴, 1) ∗ 𝑉𝐹𝐹(𝐴, 1) + 𝑄𝐹𝑈(𝐴, 1) ∗ 𝑉𝐹𝑈(𝐴, 1)  

 𝐸[𝑉𝐹(𝐴, 1)] =  (0.7349 ∗ 5221) + (0.2651 ∗ 3271.5)  

𝐸[𝑉𝐹(𝐴, 1)] = 4,704.2 𝑢𝑛𝑖𝑡𝑠  

Unfavorable demand (U) was computed from equation (13) as follows 

 𝐸[𝑉𝑈(𝐴, 1)] = 𝑄𝑈𝐹(𝐴, 1) ∗ 𝑉𝑈𝐹(𝐴, 1) + 𝑄𝑈𝑈(𝐴, 1) ∗ 𝑉𝑈𝑈(𝐴, 1)  

𝐸[𝑉𝑈(𝐴, 1)] =  (0.6822 ∗ 7154.5) + (0.3178 ∗ 5496.5)  

𝐸[𝑉𝑈(𝐴, 1)] = 6,627.6 𝑢𝑛𝑖𝑡𝑠  

 

Expected production-Inventory costs 

The expected production-Inventory costs are then computed for the product considering both favorable and unfavorable demand 

results were computed from equations (14) and (15) as follows; 

Favorable demand (F) 

 𝐸[𝐶𝐹(𝐴, 1)] = 𝑄𝐹𝐹(𝐴, 1) ∗ 𝐶𝐹𝐹(𝐴, 1) + 𝑄𝐹𝑈(𝐴, 1) ∗ 𝐶𝐹𝑈(𝐴, 1)  

 𝐸[𝐶𝐹(𝐴, 1)] =  (0.7349 ∗ 79940.9) + (0.2651 ∗ 27872.5)  

 𝐸[𝐶𝐹(𝐴, 1)] = $ 66,137.6   

Unfavorable demand (U) 

𝐸[𝐶𝑈(𝐴, 1)] = 𝑄𝑈𝐹(𝐴, 1) ∗ 𝐶𝑈𝐹(𝐴, 1) + 𝑄𝑈𝑈(𝐴, 1) ∗ 𝐶𝑈𝑈(𝐴, 1)  

𝐸[𝐶𝑈(𝐴, 1)] =  (0.6822 ∗ 169034.5) + (0.3178 ∗ 1111.3 )  

𝐸[𝐶𝑈(𝐴, 1)] = $ 115,668.5  

 

Expected manufacturing lot size 

Computation of the expected manufacturing lot size considering both favorable and unfavorable demand for the product yields was 

computed from equations (16) and (17) as follows: 

Favorable demand (F) 

𝐸[𝑀𝐹(𝐴, 1)] =  (
𝐸[𝐷𝐹(𝐴, 1)] − 𝐸[𝑉𝐹(𝐴, 1)] 𝑖𝑓 𝐸[𝐷𝐹(𝐴, 1)] > 𝐸[𝑉𝐹(𝐴, 1)] 

0                                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
) 

𝐸[𝑀𝐹(𝐴, 1)] =  𝐸[𝐷𝐹(𝐴, 1)] − 𝐸[𝑉𝐹(𝐴, 1)] 
𝐸[𝑀𝐹(𝐴, 1)] = 12,844.3 −  4,704.2 = 8,140.1 𝑢𝑛𝑖𝑡𝑠 

Unfavorable demand (U) 

𝐸[𝑀𝑈(𝐴, 1)] =  (
𝐸[𝐷𝑈(𝐴, 1)] − 𝐸[𝑉𝑈(𝐴, 1)] 𝑖𝑓 𝐸[𝐷𝑈(𝐴, 1)] > 𝐸[𝑉𝑈(𝐴, 1)] 

0                                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
) 

𝐸[𝑀𝑈(𝐴, 1)] =  𝐸[𝐷𝑈(𝐴, 1)] − 𝐸[𝑉𝑈(𝐴, 1)] 
𝐸[𝑀𝑈(𝐴, 1)] =  24,081.5 −  6,627.6 = 17,453.9 𝑢𝑛𝑖𝑡𝑠 

 

3.5 Stochastic goal programming model  

The stochastic goal programming model for the product was formulated by setting priorities, defining the objective function and 

formulating the goal constraints as follows: 

Priorities set 

𝑃1: 𝑃𝑟𝑜𝑑𝑢𝑐𝑒 𝑎 𝑏𝑎𝑡𝑐ℎ 𝑜𝑓 8,140.1 𝑢𝑛𝑖𝑡𝑠 𝑤ℎ𝑒𝑛 𝑑𝑒𝑚𝑎𝑛𝑑 𝑖𝑠 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑙𝑦 𝑓𝑎𝑣𝑜𝑟𝑎𝑏𝑙𝑒  

𝑃2: 𝑃𝑟𝑜𝑑𝑢𝑐𝑒 𝑎 𝑏𝑎𝑡𝑐ℎ 𝑜𝑓 17,453.9 𝑢𝑛𝑖𝑡𝑠 𝑤ℎ𝑒𝑛 𝑑𝑒𝑚𝑎𝑛𝑑 𝑖𝑠 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑙𝑦 𝑢𝑛𝑓𝑎𝑣𝑜𝑟𝑎𝑏𝑙𝑒 

𝑃3: 𝑇𝑜𝑡𝑎𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛_𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑐𝑜𝑠𝑡𝑠 𝑚𝑢𝑠𝑡 𝑛𝑜𝑡 𝑒𝑥𝑐𝑒𝑒𝑑 $ 66,137.6 𝑤ℎ𝑒𝑛 𝑑𝑒𝑚𝑎𝑛𝑑  
           𝑖𝑠 𝑓𝑎𝑣𝑜𝑟𝑎𝑏𝑙𝑒  𝑃4: 𝑇𝑜𝑡𝑎𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛_𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑐𝑜𝑠𝑡𝑠 𝑚𝑢𝑠𝑡 𝑛𝑜𝑡 𝑒𝑥𝑐𝑒𝑒𝑑 $ 115,668.5 𝑤ℎ𝑒𝑛 𝑑𝑒𝑚𝑎𝑛𝑑  
          𝑖𝑠 𝑢𝑛𝑓𝑎𝑣𝑜𝑟𝑎𝑏𝑙𝑒  

Objective function 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 =  ∑ [𝑃𝐾(𝐴, 1)𝑑𝑘
+ + 𝑃𝐾(𝐴, 1)𝑑𝑘

−]4
𝑘=1   

Goal constraints 

 Manufacturing lot size 

  𝑋𝐹𝐹(𝐴, 1) + 𝑋𝐹𝑈(𝐴, 1) + 𝑑1
− =  8,140.1 (𝐹𝑎𝑣𝑜𝑟𝑎𝑏𝑙𝑒 𝑑𝑒𝑚𝑎𝑛𝑑)  
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  𝑋𝑈𝐹(𝐴, 1) + 𝑋𝑈𝑈(𝐴, 1) + 𝑑2
− =  17,453.9 (𝑈𝑛𝑓𝑎𝑣𝑜𝑟𝑎𝑏𝑙𝑒 𝑑𝑒𝑚𝑎𝑛𝑑)  

 Total production-Inventory costs 

         79940.9𝑋𝐹𝐹(𝐴, 1) + 27872.5𝑋𝐹𝑈(𝐴, 1) − 𝑑3
+ =  66,137.6 (𝐹𝑎𝑣𝑜𝑟𝑎𝑏𝑙𝑒 𝑑𝑒𝑚𝑎𝑛𝑑)  

  169034.5𝑋𝑈𝐹(𝐴, 1) + 1111.3𝑋𝑈𝑈(𝐴, 1) − 𝑑4
+ =  115,668.5 (𝑈𝑛𝑓𝑎𝑣𝑜𝑟𝑎𝑏𝑙𝑒 𝑑𝑒𝑚𝑎𝑛𝑑)  

 Non negativity 

  𝑋𝐹𝐹(𝐴, 1), 𝑋𝐹𝑈(𝐴, 1), 𝑋𝑈𝐹(𝐴, 1), 𝑋𝑈𝑈(𝐴, 1), 𝑑1
−, 𝑑2

−, 𝑑3
+, 𝑑4

+  ≥ 0  

 

3.6 Stochastic goal programming model for manufacturing lot size  

The stochastic goal programming model for manufacturing lot size was then developed for the product as below. This determines 

the quantity of the product to manufacture in the first quarter of the year when demand changes from state i to state j for 𝑖, 𝑗 ∈ {𝐹, 𝑈}, 
establishing the over-achievement or under achievement of the manufacturing lot size priorities desired. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 =  ∑ [𝑃𝐾(𝐴, 1)𝑑𝑘
+ + 𝑃𝐾(𝐴, 1)𝑑𝑘

−]4
𝑘=1   

Subject to: 

 𝑋𝐹𝐹(𝐴, 1) + 𝑋𝐹𝑈(𝐴, 1) + 𝑑1
− =  8,140.1  

 𝑋𝑈𝐹(𝐴, 1) + 𝑋𝑈𝑈(𝐴, 1) + 𝑑2
− =  17,453.9   

 79940.9𝑋𝐹𝐹(𝐴, 1) + 27872.5𝑋𝐹𝑈(𝐴, 1) − 𝑑3
+ =  66,137.6   

 169034.5𝑋𝑈𝐹(𝐴, 1) + 1111.3𝑋𝑈𝑈(𝐴, 1) − 𝑑4
+ =  115,668.5   

 𝑋𝐹𝐹(𝐴, 1), 𝑋𝐹𝑈(𝐴, 1), 𝑋𝑈𝐹(𝐴, 1), 𝑋𝑈𝑈(𝐴, 1), 𝑑1
−, 𝑑2

−, 𝑑3
+, 𝑑4

+  ≥ 0  

Where: 

𝑑1
−, 𝑑2

− = slack variables 

𝑑3
+, 𝑑4

+ = surplus variables 

𝑋𝐹𝐹(𝐴, 1) – manufacturing lot size of product A when initially favorable demand remains favorable 

𝑋𝐹𝑈(𝐴, 1) - manufacturing lot size of product A when initially favorable demand becomes unfavorable 

XUF(A, 1) - manufacturing lot size of product A when initially unfavorable demand becomes favorable 

𝑋𝑈𝑈(𝐴, 1) - manufacturing lot size of product A when initially unfavorable demand remains unfavorable 

4. Results and Discussions 

In this study, the stochastic goal programming model for the product was solved using the using the linear programming (linprog) 

solver in MATLABTM ([29], [30])., an optimal solution was obtained with the values as shown in Table 6: 

Table 6: Optimal solution from MATLAB 

Variables  XFF (A,1) XFU (A,1) XUF (A,1) XUU (A,1) d1
- d2

- d3
+ d4

+ 

values  0 2.3729 0 104.0840 8137.7 17350 0 0 

The results highlight the optimal values of the manufacturing lot size of product A in the first quarter of the year as demand changes 

from one state to another. The results were analyzed and discussed based on the priorities set and the optimal values achieved as 

seen from Table 6.  

The improvement of the solution from the case is establishing the over-achievement and under achievement of the manufacturing 

lot size priorities desired during production planning. An expansion in this case is incorporating in Markov chains which considers 

changes form one state to another.  

As seen from Table 6, for cases where initially demand is favorable and unfavorable, more products shouldn’t be manufactured but 

use what is already in stock as it is enough to meet the demand since the model predicts 0 manufacturing lot size of product A in the 

first quarter of the year. 

The model also predicts the manufacturing lot size of product A of 2.3729 units and 104.0840 units when initially favorable demand 

becomes unfavorable and unfavorable demand remains unfavorable respectively. Meaning these number of products should be 

produced to meet demand. 

 

Table 7: Expected goal values and actual stochastic solution with over and under achievement 

Goals/ 

priorities 

Expected value 

from Goal 

Value of the 

stochastic solution 

Deviation Over-achievement Under-achievement 

1 8140.1 8140.07 0.03  8137.7 

2 17453.9 17454.08 0.18  17350 

3 66137.6 66138.66 1.06 0  

4 115668.5 115668.55 0.05 0  

 

With the set priorities and expected values from each goal, the results from Table 7 show the importance of utilizing the available 

sources of information when generating a plan. 

As observed from Table 7, Priority 1 and 2 can be fully achieved however, an underachievement of 8137.7 units 17350 units 

respectively is realized in the first quarter when demand is initially favorable (state F) and unfavorable (state U) respectively. 
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Priority 3 is partially achieved as the actual stochastic solution is slightly higher than the expected goal value targeted production-

inventory costs in the first quarter when demand is initially favorable (state F). And priority 4 is fully achieved in the first quarter 

when demand is initially unfavorable (state U). Both priority 3 and 4 have no over-achievement. 

 

5. Conclusion 

A stochastic goal programming model that optimizes the manufacturing lot size under demand uncertainty was presented in this 

paper. The model determines the quantity of the product (with demand uncertainty) to be produced in the first quarter of the year 

when demand changes from state i to state j for 𝑖, 𝑗 ∈ {𝐹, 𝑈}, establishing the over-achievement or underachievement of the 

manufacturing lot size priorities desired. The decision of whether or not to produce more units is modelled using Markov chains in 

conjunction with stochastic goal programming. The model was solved with the help of MATLAB software environment and the 

results indicate the optimal manufacturing lot sizes as demand changes from one state to another, establishing the over-achievement 

or underachievement of the manufacturing lot size priorities desired. 

Further research is sought to extend the proposed model in order to handle multiple products under demand and price uncertainty. 

In addition, weighted goal programming can be introduced to improve computational efficiency while handling pre-emptive 

priorities of the product. 
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