Roadblocks in Teaching Mathematics in the Modern World

Thelma V. Pagtalunan, Ph.D.

Professor II , Mathematics Department College of Science Bulacan State University, Philippines

Abstract: Mathematics in the Modern World (MMW) is one of the new subjects offered under the New General Education Curriculum, which is on its second year of implementation. As per CMO No. 20, series of 2013, The course begins with the nature of mathematics as an exploration of patterns (in nature and in the environment) and as an application of inductive and deductive reasoning. Moreover, MMW is not only based on theories but is actually connected to everyday living in terms of how to manage limited resources, personal finances, appreciating geometric designs, and even making social choices. The participants of the study were the faculty members of the Mathematics Department of the College of Science, Bulacan State University, Philippines, who were selected via purposive sampling. Data from the respondents were primarily gathered from the respondents through an interview guide formulated by the researcher. It consisted of open-ended questions relating to the participants' experiences in the teaching of Mathematics in the Modern World (MMW). The following recommendations are suggested: (1) provision of additional training and seminars for faculty members so that they would be more well-equipped in teaching MMW; (2) construction of a reference material (i.e. textbook) in MMW which could be done by faculty members handling the subject; (3) Make MMW more activity oriented so that the students will be more engaged and participative in class discussions; (4) conduct benchmarking activities to top college.

Keywords: mathematics learning, teaching

Introduction

The enactment of Republic Act No. 10533, otherwise known as the "Enhanced Basic Education Act of 2013", brought about a significant change in the educational system in the Philippines. One among them is the addition of two years in the Secondary Education (Grades 11 & 12). After a learner undergoes Junior High School (Grades 7-10), he/she will have to though an additional two years of Senior High School wherein there are several tracks to choose from, namely : Academic, Arts & Design, Sports, and Technical-Vocational Livelihood. Within these tracks are several strand such as Accountancy Business, & Management, General Academic Strand, Humanities and Social Sciences for the Academic Track and Information Communications Technology, Industrial Arts, and Home Economics for the TVL Track.

These changes necessitated some revisions and modifications in the curriculum, both in the Basic Education and Higher Education Levels. In particular, the Commission on Higher Education (CHEd) reorganized the subject offerings of colleges and universities in line with the K to 12 Program and devised the New General Education Curriculum which had its pilot implementation during the Academic Year 2018-2019. Some subjects which were previously offered were cascaded to the Senior High School and new subjects were introduced such as Understanding the Self, Readings in Philippine History, Ethics, Purposive Communication, and Mathematics in the Modern World or MMW. This is in line with CMO No. No. Series of 2013.

Relatively, MMW is still new, considering that the New GEC is only in its second year of implementation. According to the said CMO, The course begins with the nature of mathematics as an exploration of patterns (in nature and in the environment) and as an application of inductive and deductive reasoning. Moreover, MMW is not only based on theories but is actually connected to everyday living in terms of how to manage limited resources, personal finances, appreciating geometric designs, and even making social choices. As such Mathematics in the Modern World is like an amalgam of different mathematics subjects, there is algebra, geometry, statistics, and even mathematical logic. Unlike any other mathematics subject, it is not focused on one learning area alone, covers an array of related learning areas, following the spiral progression approach. However, according to the National Council of Teachers of Mathematics, new standards provide guidance and direction, and help focus and clarify common outcome, but these standards do not tell teachers, coaches, administrators, parents, or policymakers what do at the classroom.

Teaching a new course is really a challenge on the part of instructors and professors. Although there is a common course syllabi, certain innovations and adjustments have to be made in order to suit the needs of the learners. Another possible challenge is of course the time element needed to cover all the topics. MMW is not only limited to a particular topic in mathematics and the instructor or professor has to cover all the topics included in the syllabi in one semester only. Moreover, do the students already have the prerequisite knowledge of the other mathematics subjects, which they supposedly acquired in their senior high school?

Generally speaking, not every student appreciate Mathematics, it is even considered as a difficult subject. In a study, it was pointed out that students lacked training in critical or logical thinking and problem-solving analysis and comprehension [1]. On the other hand, Mohd Rameli (2016) cited five main challenges in terms of learning Mathematics : 1) self-factors, which pertain to negative perception and lack of self-regulation ;2) teacher factors, citing behaviors, practices, and characteristics of the

teacher of Mathematics, 3) parents (lack of cognitive, emotional, and financial support; 4) friends (negative attitudes, behaviors); and 5) other factors which point out to the nature of Math itself and assessment pressure.

Similarly, another study stated the following key problems faced by Mathematics teachers : 1) classroom management ; 2) lack of student participation ; 3) lack of opportunity to join Mathematical conferences, seminars, and the like. As such, it could be said that learning Mathematics is more of the affective dimension, it involves attitude [2]. A study mentioned three factors towards mathematics achievement : perceived parental influences, teachers' affective support, and classroom instruction [3]. The key therefore is to engage the students so that they could learn Mathematics.

Most of the researches are about factors associated with learning Mathematics. However, there is a dearth of studies on problems encountered by the faculty members themselves in teaching mathematics subjects, particularly Mathematics in the Modern World. These, among others, motivated the researcher to conduct a study on the challenges and difficulties that a teacher of Mathematics in the Modern World experiences.

The study "Roadblocks in Teaching Mathematics in the Modern World" aims to explicate on the following questions : 1. What are the common difficulties a teacher encounters/experiences in teaching Mathematics in the Modern World? 2. What are possible ways of addressing these challenges?

Methodology

Design

This study is a qualitative study since it aims to gain insights in the prevailing trends and is interpretative and contextualized. Moreover, qualitative research is a type of educational research in which the researcher relies on the views of participants; asks broad, general questions; collects data consisting largely words (text) from participants; describes and analyzes these words for themes. Qualitative research aims to deepen the understanding of a certain phenomenon, which is in this case, the teaching of Mathematics in the Modern World, by focusing on the experiences of the faculty members who have taught the subject and gain significant insights from them. The study also employs the Survey as the main data gathering tool.

Respondents

The participants were asked open-ended questions relating to their experiences in the teaching of Mathematics in the Modern World. This kind of approach is able to provide the respondents the freedom to say what they feel about a topic, which provides the researcher with an exploratory data that may unleash important issues, opportunities, issues, or quotes.

Afterwards, the researcher explained to the respondents the purpose of the study. Participation in the study was primarily on a voluntary basis. Next, the respondents' consent were sought before administering the survey questionnaire. Also, the identities of the respondents were kept confidential and they were assured that all the data which will be gathered from the study will be strictly for academic purposes only.

The participants of the study were the faculty members of the Mathematics Department of the College of Science, Bulacan State University, Philippines, who were selected via purposive sampling. Mangaran & Garcia (2011) states that purposive sampling is done when the subject satisfies the criteria laid down by the researcher. Meanwhile, purposive sampling uses small sample sizes, its goal is to increase credibility, and not to encourage representativeness. From among the faculty members of the Mathematics Department, 14 who were teaching MMW were selected as participants in the study.

Data Gathering

Data from the respondents were primarily gathered from the respondents through an interview guide formulated by the researcher. It consisted of open-ended questions relating to the participants' experiences in the teaching of Mathematics in the Modern World (MMW). Moreover, the researcher employed a semi-structured interview in order to obtain relevant information from the participants. Semi-structured interview is used when the researcher prepares a specific set of questions but could ask follow-up questions to the participants for them to elaborate their answers, thus, it would be easy for the researcher to gather additional information and to have an in-depth perspective on the responses of the interviewee.

The following were the questions asked from the participants.

1.What is your view/perception about Mathematics in the Modern World? How similar/different is it from the other Mathematics subjects?

2.As a teacher, what were the challenges that you encountered in teaching the said subject?

3. From among these challenges, which do you think is/are the most prevalent?

4. How would you possibly address these challenges so that there would be a meaningful teaching-learning process?

Data were analyzed using narrative analysis. This approach in analyzing data is used to analyze text that may come from variety of sources including transcripts from interviews, diaries, field notes, surveys and other written forms. Narrative analysis often involves reformulating stories presented by people in different context and based on their different experiences. In the present study, the researcher prepared a set of questions wherein the participants were free to give their answers/insights to the

same. The participants were also given the freedom to expound/explain their answers. Afterwards, common themes from their responses were coded and analyzed accordingly.

Results

Table 1-a. Summary of Responses for Item No.1

Item No.	P1	P2	P3	P4	P5	P6	P7
1. What is your	Has a very	Appreciate	Involves	Activity-	Combination	Intended to	does not really
view/perception	broad	that Math is	application	oriented	of selected	help students	emphasize
about MMW?	coverage	not only	of		topics	appreciate	computation
How		numbers but	Mathematics	Different		and apply	
similar/different	Involves	also in		sequencing of	interesting	what they	majorly about
is it from other	calculation	nature	About the	topics	_	have learned	the extent of
Mathematics			appreciation		also involves		application of
subjects	Involves	More	of Math		computation	not that	Math to the
	technology	simple than				technical	world
		Pre-					
		Calculus				focused on	aims to promote
		(old				how we utilize	critical thinking
		curriculum)				Math in	
						everyday	
						scenarios	

Table 1-b. Summary of Responses for Item No.1

Item No.	P8	P9	P10	P11	P12	P13	P14	Common
								Theme/s
1. What is	requires	science of	Wide array	More	Nature of	Interesting	Helps	Practicality
your	familiarizati	patterns	of topics	general	math as	to discuss	students	of
view/percepti	on on the				math itself		understand	Mathemati
on about	subject	Math	Overview	Overview		Students	patterns,	cs
MMW? How	matter	appreciatio	of higher		Uses in the	appreciate	relationshi	
similar/differe		n	level	Needs	lives of	the beauty	ps	
nt is it from			Mathemati	improveme	humans	of		
other	different due	Nature	CS	nt		Mathemati	Appreciatio	
Mathematics	to non-	appreciatio		(content)	Being	CS	n of Math	
subjects	presence of	n			discussed			
	pure				according	Similar to	Focus	
	computation	Logic and			to the use	other Math	connecting	
	S	reasoning			of	subjects in	to real life	
					Mathemati	terms of		
		Foundation			cs in life	logic,	No serious	
		More on				reasoning	computatio	
		math					ns	
		appreciatio						
		<i>n</i> ,						
		mathematic						
		al ability,						
		logical						
		reasoning						

It could be surmised from the preceding tables that from among the responses, what emerged as their common response was about how MMW teaches the students how to *appreciate Mathematics* and see its *practical application* to a person's day-to-day life. Since it was noted that MMW does not really emphasize computations and is not that technical compared to other

International Journal of Academic Multidisciplinary Research (IJAMR) ISSN: 2643-9670 Vol. 5 Issue 2, February - 2021, Pages: 37-43

mathematics subjects. The focus of MMW is really on the more practical side of Mathematics, i.e. the presence of patterns, relationships, in our surroundings.

Table 2-a. Summary of Responses for Item No.2

Item No.	P1	P2	P3	P4	P5	P6	P7
2. As a	Use of	Hard to	Lack of	Use of	Study topics	Students lack	Lack of
teacher,	technology	teach the	instructional	technology	that are	pre-requisite	reference
what were		non-Math	materials		new/unfamiliar	knowledge	materials
the	Attitude of	majors		Content/lessons			
challenges	students			("a little bit of	Lesson	Lack of	Coverage of
that you				everything")	Organization	resources	the topics
encountered	Lack of					/materials	
in teaching	instructional			Learning			
the said	materials			competencies		Lack of	
subject?				of students		trainings and	
	Inadequacy					seminars	
	of trainings			Attitudes of			
	for faculty			students		Loaded	
	members					curriculum	

 Table 2-b. Summary of Responses for Item No.2

Item No.	P8	P9	P10	P11	P12	P13	P14	Common
								Theme/s
2. As a	Lack of	Lack of	Visualizatio	Topics aren't	Most of	Challenge in	Need to	Inadequac
teacher,	preparation	materials	n of topics	interconnecte	the topics	terms of	use LCD	y of
what were	(concept	reference		d	are new	discussing the		materials
the	explanation	books	Difficulty on			first part (less	More	and
challenges)		the students	Vague content	Doesn't	on	research	resources
that you		Insufficien	on the use of		cover	computations		
encountere	Need to	t	fractals,	Students are	only one	but stories	Think of	
d in	read	knowledge	golden ratio,	often confused	topic	about	many	
teaching	different	(scope of	etc.			Mathematician	activitie	
the said	reference s	the			Lack of	s and their	S	
subject?		subject)			resource	contributions)		
	Personally				S			
	appreciate							
	the subject							
	matter							

The preceding tables (Table 2-a and 2-b) depict the responses of the participants on the question pertaining to the challenges that they had encountered in teaching MMW. It could be gleaned that most of the participants opined that *lack of materials and resources* is the common challenge that they encountered in terms of delivering the lessons in MMW. Since it was noted that the said subject covers a wide array of topics, if there is no common textbook or reference material used, there is a tendency that each teacher may cover less or cover more of a certain topic or lesson. Thus, there could be discrepancies in terms of lesson content and coverage. Another, since the topics in MMW are quite new, teachers should be more creative in presenting them, thus, the use of LCD projectors, audio and video materials become inevitable.

Table 3-a. Summary of Responses for Item No.3

Item No.	P1	P2	P3	P4	P5	P6	P7
3. From	Lack of	Teaching	Lack of	Learning	Learning	Lack of	Lack of
among	instruction	students to	instruction	competenci	topics not	pre-	common
these	al	understand	al	es of	familiar	requisite	reference
challenges,	materials	the process	materials	students		knowledge	materials
which do		of solving		(some are		of the	
you think		mathemati		non-STEM)		subject	
is the most		cs					
prevalent?		problems					

Table 3-b. Summary of Responses for Item No.3

Item No.	P8	P9	P10	P11	P12	P13	P14	Common Theme/s
3. From among these challenges, which do you think is the most prevalent?	Need to be more creative in introduci ng Math No particula r reference materials approved for use Coverage is diverse	Insufficie nt knowledg e in the scope of the subject	Make them (students) understand the association of Fibonacci numbers to the application of golden ratio in nature	Vague content	Most of the topics are new We do not have enough resources	No Response	Creating challengi ng activities Use of visual aids	Lack of instructio nal materials Lack of pre- requisite knowledg e of the subject matter

Tables 3-a and 3-b presents the responses of the participants when they were asked the question regarding the most prevalent challenge that they encountered in teaching MMW. A further perusal of the table reveals that *lack of instructional materials and lack of pre-requisite knowledge of the subject matter* emerged as the common themes. According to the participants, the topics in MMW is not confined to a specific discipline in Math like Algebra, Trigonometry, Statistics, and the like. Hence, this demands pre-requisite knowledge of the subject matter for both the teacher and the student.

Table 4-a. Summary of Responses for Item No.4

Item No.	P1	P2	P3	P4	P5	P6	P7
4. How	Construct a	There	Constructi	Additional	Trainings/	Let	Sourcing
would you	module or	should be	on of a	trainings	Seminar	students	out lessons
possibly	any	an	learning		Workshop	have	from other
address	instructional	effective	material/			review	references
these	material	strategy	module			lessons,	
challenges		that the				independen	
so that	Seminars	teacher				t study	
there	and	can use					
would be a	conferences					Motivation	
meaningful	must be					and	
teaching-	given to the					initiative	
learning	faculty					(students)	
process ?	members						

Table 4-b. Summary of Responses for Item No.4

Item No.	P8	P9	P10	P11	P12	P13	P14	Common
								Theme/s
4. How	Continue	Complete	Use of	Expand	Research	Attend	Give	Retoolin
would you	the	training	technology	the	on the	trainings	some	g of
possibly	training	and	(audio-	syllabus	internet	_	research	Faculty
address	of faculty	materials	video	-	and	Provide	about the	Members
these		to be	materials)	Have an	watched	manual to	topic	
challenges	Localized	used		online	video	the students	_	
so that	reference			class	clips		Group	
there	S						report	
would be a								
meaningful							Manipula	
teaching-							tive or	
learning							hands-on	
process ?							demonstr	
-							ation	

The preceding tables (4-a and 4-b) convey the responses pertaining to how the faculty members would possibly address the difficulties that they had encountered in teaching MMW. It could be surmised that the participants mostly responded the provision of trainings and seminars for faculty members and construction of a module or learning material to be used for the subject. Thus, it was collectively coded as *retooling of faculty members*. Attendance to seminars and conferences would keep the faculty members abreast with the current trends in MMW, including content and pedagogical strategies and methodologies.

Discussion

Several studies aim to address the problems encountered by Mathematics teachers [4] [5]. The use of technology computer-assisted instruction, alternative modes of delivery, and differentiated instruction are some suggestions on how to improve mathematics education and make mathematics teaching and learning easier, so to speak. Furthermore, teachers should integrate in their lessons the value and practicality of Mathematics not only in solving mathematics-related problems but also in real-life situations [6][7][8].

Conclusions

The following were the conclusions derived from the study :

1.Teacher-participants perceive MMW as a subject that deals with the practical application of Mathematics to everyday life;

2. The common problems that the faculty members encountered in teaching MMW were lack of a common instructional materials and inadequacy of trainings for the faculty members handling the said subject ;

3.That for the faculty members retooling the faculty will be the most effective way of addressing the challenges in teaching the subject.

Recommendations

In line with that, the following recommendations are suggested for possible adoption/implementation :

1.Provision of additional training and seminars for faculty members so that they would be more well-equipped in teaching MMW.

2.Construction of a reference material (i.e. textbook) in MMW which could be done by faculty members handling the subject.

3.Make MMW more activity oriented so that the students will be more engaged and participative in class discussions.

4. Conduct benchmarking activities to top colleges and universities so that their best practices might be adapted.

References

[1] Acula D. & Suasiso O. (2007). Factors related to students' learning difficulties in mathematics. TECHNOLOGICAL INSTITUTE OF THE PHILIPPINES RESEARCH JOURNAL, Vol. 4 No 11. Quezon City.

[2] Poudel, M. (2015). Problem faced by mathematics teacher at higher secondary. level. Tribhuvan University, Kathmandu, Nepal;

[3] Pagtalunan, T. (2019). Determinants of students learning in mathematics in the modern world. APPLIED SCIENCES EDUCATION E-journal.

[4] Mohd Rameli, M.R. (2016). Challenges in mathematics learning : a study from school students' perspective.

[5] Magayon, V. & Tan E. (2016). Learning mathematics and differentiated instruction in the Philippines : a phenomenographical study on struggles and successes of grade 7 learners. INTERNATIONAL JOURNAL OF EDUCATION STUDIES IN MATHEMATICS, 3 (3) 1-14.

[6] Devadas, S.D. & Yoon Fah Lay. (2017). Factors affecting students' attitudes towards mathematics : a structural equation modelling approach. EURASIA JOURNAL OF MATHEMATICS, SCIENCE. AND TECHNOLOGY EDUCATION. ISSN : 1305-8223 (online). DOI : 101.12973/ejemster/80356. Accessed on January 23, 2019.

[7] Asio, J.M.R., & Riego de Dios, E.E. (2018). 21st century attributes and skills of a teacher in the perspective of college students. *Zenodo*. <u>http://doi.org/10.5281/zenodo.3961838</u>

[8] Francisco, C.DC., & Celon, L.C. (2020). Teachers' instructional practices and its effects on students' academic performance. *International Journal of Scientific Research in Multidisciplinary Studies*, *6*(7), 64-71. <u>http://dx.doi.org/10.21474/IJAR01/987</u>.