Theoretical Models to Voltage Drop of a Single-Phase Copper Conductor at 120 Volts One Way Distance and Maximum Current Loading.

Olabimtan Olabode H*¹, Ngari Adamu. Z², Itoro Obot³, and Oduma Friday.O⁴.

¹National Research Institute for Chemical Technology, Department of Industrial and Environmental Pollution, Zaria Kaduna State,

Nigeria.

²Nigeria Army University, Department of Physics, Biu, Borno State, Nigeria.

^{3, 4} Nigeria Army University, Department of Electrical and Electronics, Biu, Borno State, Nigeria.

Corresponding email; <u>Olabode4angel@gmail.com</u>

Abstract: The theory of electrical voltage drop in electrical applications is a fundamental factor that critically requires a methodology that will technically prevent energy shortage and economy for maximum outputs. Models with direct parametric relationships were designed for the conductor (copper), maximum load current, net voltage, and the frequency (50Hz) at a maximum voltage of 230 volts single phase. The voltage drops were conceptualized with a constant maximum load current of 1 Ampere across a copper length from 10 to 55 meters, and at a constant copper wire distance of 10 meters from 1 to 10 Amperes. At 1 ampere maximum load current; the established relationship between the voltage drop (VD) and the distance of copper wire (CL) presents a polynomial model of $VDv = (7 \times 10^{-7})(CL)^2 + (9 \times 10^{-5})$; between the percentage voltage drop (VD%) and the copper wire length (CL) with a polynomial model of $VD\% = (-2 \times 10^{-7})(CL)^2 + (9 \times 10^{-6})$ and between the net voltage (NV) and the copper wire conductor, the interaction between the voltage drop (VD) and the maximum load current (LC) gives a linear model of $VD\psi = 0.008(LC) + (4 \times 10^{-5})$; between the percentage voltage drop (VD%) and the load current (LC) with a linear model of NV = -0.008 (LC) + 120 at standard conditions ($R^2 = 0.9990$).

Keywords: Voltage drop, single phase voltage, loads current, copper wire and net voltage.

1.0 INTRODUCTION

Globally, various electrical power systems are found with domestic and commercial purposes where their principal characterizations are by their current magnitudes, voltage, frequency, Plugs and attachments, power source, earthling systems, protection against over current harm electrical stuns, and hazards. Electrical voltages are by and large within the limit of 100-240 V as it is consistently communicated as root-mean-square voltage as the two normally adopted frequencies are 50 Hz and 60 Hz [1]. Single-stage or three-stage power module is most normally utilized today, despite the application of the two-stage frameworks in the twentieth century [2]. Unfamiliar territories, like enormous modern plants, may have an alternate standard voltage or recurrence from the neighboring regions. Numerous different mixes of voltage and utility recurrence were some time ago engaged, with frequencies between 25 Hz and 133 Hz and voltages from 100 V to 250 V [1]. Direct current (DC) has been dislodged by rotating current (AC) openly power system, yet DC was utilized particularly in some city regions to the furthest limit of the twentieth century [3]. The cutting edge mixes of 230 V/50 Hz and 120 V/60 Hz, recorded in IEC 60038, did not matter in the initial years of the twentieth century [3]. Modern plants with three-stage power will have extraordinary, higher voltages introduced for enormous electrical hardware with various attachments and fittings, however, the normal voltages recorded here would, in any case, be found for lighting and compact gear. Nonetheless, a

customer is needed to pay for the power provided at kilowatt-hour meter. Lamentably, part of that power between the meter and the end area where it is to be utilized will get lost because of a condition called voltage drop. Voltage reduction is considered as a squandered form of power with the distinction of the voltage estimation at the source and the voltage estimation at the point of application, thereby causing significant issues with the management of power especially with the consumers [4]. In other words, voltage drop induces with inappropriately measured circuit conductors, the working voltage at electrical hardware will be not exactly the yield voltage of the force supply. This will bring about inductive burdens working at voltages beneath its rating which thus can make them overheat bringing about a more limited hardware life span with expanded expense over time [5]. Under-voltage for delicate electronic hardware like PCs, laser printers, copiers, and so forth, can make the systems lock up and unexpectedly shut down with information lost, expanded expense, and conceivable hardware disappointment [6]. Resistive burdens such as radiators and glowing lighting that work under-voltages basically will not give the normal evaluated power demand [6]. It is unrealistic to have zero voltage drops since voltage failure will trigger normally from the obstruction with the actual conductors essentially as it requires the voltage exertion in migrating current through a conductor [7]. Notwithstanding, the objective will remain in preventing voltage drop as could reasonably be expected other than wasting off the power. There are practically three factors to downplay voltage drop with electrical connectivity. These include:

(1) System effectiveness. If a circuit has a very remarkable burden, a bigger conductor that permits less voltage drop will be preferable with energy management.

(2)System performance. As expressed previously, the extreme drop by voltage around a circuit can make lights flash or potentially consume faintly; warmers to warm ineffectively, and can cause overheating shortcoming and a more limited life expectancy of engines.

(3) Investigative troubleshooting. With the voltage drop code recommendation, the circuit investigation does not need to figure the drop in voltage with the field estimations demonstrating an issue that is systematically not represented [8]. As well, there are different reasons for the drop in voltage. However, the fundamental factor is simply the conductor that is being engaged.

The following accompanying four variables decide the opposition in a metallic conductor:

(a) Material status that made up the conductor - Copper conducts in a way that is enhanced compared to aluminum, inducing control voltage drop to aluminum with given dimensions.

(b). Distance across of the Conductor - Conductors with the bigger dimension will bring about a short voltage drop than the one with more modest measurements of a similar length.(c)The conductor length - Short conductors will define fewer drops in voltage to longer types of a similar nature.

(d)The temperature of the Conductor - when in doubt, most conductive materials will build their obstruction with an expansion in temperature.

(e). Current (Ampere) Load across the conductor - Voltage drop increments on a conductor with an increment in the current coursing through the conductor and

(f). Associations in the circuit - Poor connectivity while interfacing conductors to terminals add to voltage drop [5].

AMC	Diameter		Turns of wire		Area		Copper resistance		NEC copper wire ampacity with	Approx strd	
AWG	inch	mm	per inch	per cm	kcmil	mm ²	O/km	/km O/kFT 60/75/90 °C insulation (A)		metric equiv	
0000 (4/0)	0.4600	11.684	2.17	0.856	212	107	0.1608	0.04901	195 / 230 / 260		
000 (3/0)	0.4096	10.404	2.44	0.961	168	85.0	0.2028	0.06180	165 / 200 / 225		
00 (2/0)	0.3648	9.266	2.74	1.08	133	67.4	0.2557	0.07793	145 / 175 / 195		
0 (1/0)	0.3249	8.252	3.08	1.21	106	53.5	0.3224	0.09827	125 / 150 / 170		
1	0.2893	7.348	3.46	1.36	83.7	42.4	0.4066	0.1239	110 / 130 / 150		
2	0.2576	6.544	3.88	1.53	66.4	33.6	0.5127	0.1563	95 / 115 / 130		
3	0.2294	5.827	4.36	1.72	52.6	26.7	0.6465	0.1970	85 / 100 / 110	196/0.4	
4	0.2043	5.189	4.89	1.93	41.7	21.2	0.8152	0.2485	70 / 85 / 95		
5	0.1819	4.621	5.50	2.16	33.1	16.8	1.028	0.3133		126/0.4	
6	0.1620	4.115	6.17	2.43	26.3	13.3	1.296	0.3951	55 / 65 / 75		
7	0.1443	3.665	6.93	2.73	20.8	10.5	1.634	0.4982		80/0.4	
8	0.1285	3.264	7.78	3.06	16.5	8.37	2.061	0.6282	40 / 50 / 55		
9	0.1144	2.906	8.74	3.44	13.1	6.63	2.599	0.7921		04/0.2	
10	0.1019	2.588	9.81	3.86	10.4	5.26	3.277	0.9989	30 / 35 / 40	04/0.5	
11	0.0907	2.305	11.0	4.34	8.23	4.17	4.132	1.260		56/0.3	
12	0.0808	2.053	12.4	4.87	6.53	3.31	5.211	1.588	25 / 25 / 30 (20)		
13	0.0720	1.828	13.9	5.47	5.18	2.62	6.571	2.003		50/0.25	
14	0.0641	1.628	15.6	6.14	4.11	2.08	8.286	2.525	20 / 20 / 25 (15)		

Table1.	Typical	AWG	wire	sizes	[9]

International Journal of Engineering and Information Systems (IJEAIS) ISSN: 2643-640X Vol. 5 Issue 2, February - 2021, Pages: 139-144

15 0.057 1.450 1.7.5 6.90 3.26 1.65 10.45 3.184 /18 (10) 30/0.25 16 0.0508 1.291 197 7.75 2.58 1.31 13.17 4.016 -/-/18 (10) 32/0.2 18 0.0403 1.024 2.48 9.77 1.62 0.823 20.95 6.385 -/-/14 (7) 24/0.2 19 0.050 0.912 2.79 1.0 1.29 0.653 26.42 8.051 -/-/14 (7) 24/0.2 20 0.0320 0.812 31.3 1.20 0.518 33.31 10.15 -/-/14 (7) 24/0.2 21 0.0253 0.644 39.5 1.5.0 0.642 0.326 52.69 20.36 -/-/14 (7) 24/0.2 22 0.0253 0.644 39.5 1.5.0 0.642 0.326 52.67 20.36 -/-/-////////////////////////////////											
16 0.0508 1.291 19.7 7.75 2.58 1.31 13.17 4.016 -/-/18(10) 30/0.25 17 0.0453 1.150 22.1 8.70 2.05 1.04 16.61 5.064 32/0.2 18 0.0403 1.024 24.8 9.77 1.62 0.823 2.095 6.385 -/-/14(7) 24/0.2 19 0.0359 0.912 27.9 1.0 1.29 0.653 26.42 8.051 20 0.0286 0.723 35.1 1.38 0.810 0.410 42.00 12.80 1.317 1.02 1.02 21 0.0286 0.723 35.1 1.38 0.810 0.410 42.00 12.80 1.317 4.00 1.02 1.02 22 0.0286 0.573 44.3 17.4 0.509 0.258 66.79 2.036 1.02 3.001 24 0.0201 0.511 49.7 19.6 0.404 0.205	15	0.0571	1.450	17.5	6.90	3.26	1.65	10.45	3.184		20/0.25
17 0.0453 1.150 22.1 8.70 2.05 1.04 16.61 5.064 9.11 32/0.2 18 0.0403 1.024 24.8 9.77 1.62 0.823 2.095 6.385 -/-/14(7) 24/0.2 19 0.0350 0.912 27.9 11.0 1.29 0.653 26.42 8.051 24/0.2 20 0.0320 0.812 31.3 1.23 1.02 0.518 33.31 10.15 1.60.2 21 0.0265 0.723 35.1 1.38 0.810 0.410 42.00 12.80 1.004 130.2 22 0.0250 0.644 39.5 15.5 0.642 0.326 52.96 16.14 0.026 1.00.7 0.026 23 0.026 0.573 44.3 17.4 0.509 0.258 66.79 2.36 24 0.021 0.511 49.7 19.6 0.405 0.22 2.5.67 2.307	16	0.0508	1.291	19.7	7.75	2.58	1.31	13.17	4.016	- / - / 18 (10)	50/0.25
18 0.0403 1.02 2.48 9.77 1.62 0.823 2.0.95 6.385 -/-/14(7) 24/0.2 19 0.0359 0.912 27.9 11.0 1.29 0.653 26.42 8.051 24/0.2 20 0.0320 0.812 31.3 1.23 1.02 0.518 33.31 10.15 16/0.2 21 0.0265 0.723 35.1 13.8 0.810 0.410 42.00 12.80 130.2 22 0.0253 0.644 39.5 15.5 0.642 0.326 66.79 20.36 7/0.25 23 0.0260 0.573 44.3 17.4 0.509 0.256 66.79 20.36 1/0.5, 7/0.2, 30/0.13 24 0.0201 0.511 49.7 19.6 0.404 0.205 84.22 25.67 1/0.5, 7/0.1 30/0.1 25 0.0179 0.455 55.9 2.0 0.320 0.162 16.2 32.37 26	17	0.0453	1.150	22.1	8.70	2.05	1.04	16.61	5.064		32/0.2
19 0.0359 0.912 27.9 11.0 1.29 0.653 26.42 8.051 240.2 20 0.0320 0.812 31.3 12.3 1.02 0.518 33.31 10.15 16/0.2 21 0.0285 0.723 35.1 13.8 0.810 0.410 42.00 12.80 13/0.2 22 0.0253 0.644 39.5 15.5 0.642 0.326 52.96 16.14 7/0.25 23 0.0226 0.573 44.3 17.4 0.509 0.258 66.79 20.36 1/0.5, 7/0.2, 3/0/1 24 0.0201 0.511 49.7 19.6 0.404 0.205 84.22 25.67 1/0.5, 7/0.2, 3/0/1 25 0.0179 0.455 65.9 2.0 0.320 0.162 16.23 2.37 26 0.0150 0.455 67.7 0.202 0.102 168.9 51.47 28 0.0160 0.559 9.73 3.0	18	0.0403	1.024	24.8	9.77	1.62	0.823	20.95	6.385	- / - / 14 (7)	24/0.2
20 0.0320 0.812 31.3 12.3 1.02 0.518 33.31 10.15 16/0.2 21 0.0285 0.723 35.1 13.8 0.810 0.410 42.00 12.80 13/0.2 22 0.0253 0.644 39.5 15.5 0.642 0.326 52.96 16.14 7/0.25 23 0.0226 0.573 44.3 17.4 0.509 0.258 66.79 20.36 24 0.0201 0.511 49.7 19.6 0.404 0.205 84.22 25.67 10.57/0.2, 30/0.1 25 0.0179 0.455 52.9 2.0 0.320 0.162 106.2 32.37 26 0.0159 0.405 62.7 2.47 0.254 0.129 13.39 40.81 7/0.15 27 0.0142 0.361 70.4 2.77 0.202 0.102 168.9 51.47 28 0.0100 0.555 9.7 31.1 0.160 <td>19</td> <td>0.0359</td> <td>0.912</td> <td>27.9</td> <td>11.0</td> <td>1.29</td> <td>0.653</td> <td>26.42</td> <td>8.051</td> <td></td> <td>24/0.2</td>	19	0.0359	0.912	27.9	11.0	1.29	0.653	26.42	8.051		24/0.2
21 0.0285 0.723 35.1 13.8 0.810 0.410 42.00 12.80 13.02 22 0.0253 0.644 39.5 15.5 0.642 0.326 52.96 16.14 7/0.25 23 0.0226 0.573 44.3 17.4 0.509 0.258 66.79 20.36 7/0.25 24 0.0201 0.511 49.7 19.6 0.404 0.205 84.22 25.67 1/0.5, 7/0.2, 30/0.1 25 0.0179 0.455 5.9 2.0 0.320 0.162 106.2 32.37 26 0.0159 0.405 62.7 2.4.7 0.254 0.129 133.9 40.81 7/0.15 27 0.0142 0.361 70.4 27.7 0.202 0.102 168.9 51.47 28 0.0160 0.255 99.7 33.0 0.110 0.0509 338.6 103.2 30 0.0100 0.255 99.7 33.0 0.0	20	0.0320	0.812	31.3	12.3	1.02	0.518	33.31	10.15		16/0.2
22 0.0253 0.644 39.5 15.5 0.642 0.326 52.96 16.14 770.25 23 0.0226 0.573 44.3 17.4 0.509 0.258 66.79 20.36 24 0.0201 0.511 49.7 19.6 0.404 0.205 84.22 25.67 110.5, 7/0.2, 30/0.1 25 0.0179 0.455 55.9 22.0 0.320 0.162 106.2 32.37 26 0.0159 0.405 62.7 24.7 0.254 0.129 13.9 40.81 770.15 27 0.0142 0.361 70.4 27.7 0.202 0.102 168.9 51.47 28 0.0126 0.321 79.1 31.1 0.160 0.810 21.9 64.90 29 0.0113 0.266 88.8 35.0 0.127 0.0642 268.5 81.84 30 0.0010 0.255 99.7 39.3 0.101 0.0509 38.6	21	0.0285	0.723	35.1	13.8	0.810	0.410	42.00	12.80		13/0.2
23 0.0226 0.573 44.3 17.4 0.509 0.258 66.79 20.36 24 0.0201 0.511 49.7 19.6 0.404 0.205 84.22 25.67 1/10.5, 7/0.2, 30/0.1 25 0.0179 0.455 55.9 22.0 0.320 0.162 106.2 32.37 26 0.0159 0.405 62.7 24.7 0.254 0.129 133.9 40.81 7/0.15 27 0.0142 0.361 70.4 27.7 0.202 0.102 168.9 51.47 28 0.0126 0.321 79.1 31.1 0.160 0.810 21.29 64.90 29 0.0113 0.266 88.8 35.0 0.127 0.0642 268.5 81.84 30 0.0100 0.255 99.7 39.3 0.101 0.0509 338.6 103.2 31 0.00833 0.227 112 44.1 0.0797 0.444 26.9 13	22	0.0253	0.644	39.5	15.5	0.642	0.326	52.96	16.14		7/0.25
24 0.0201 0.511 49.7 19.6 0.404 0.205 84.22 25.67 25 0.0179 0.455 55.9 22.0 0.320 0.162 106.2 32.37 26 0.0159 0.405 62.7 24.7 0.254 0.129 13.9 40.81 7/0.15 27 0.0142 0.361 70.4 27.7 0.202 0.102 168.9 51.47 28 0.0126 0.321 79.1 31.1 0.160 0.810 212.9 64.90 29 0.0113 0.268 88.8 35.0 0.127 0.0642 268.5 81.84 30 0.0100 0.255 99.7 39.3 0.101 0.0509 38.6 103.2 1/0.25,7/0.1 31 0.00893 0.227 112 44.1 0.0797 0.044 426.9 130.1 32 0.00795 0.202 126 49.5 0.0524 678.8 206.9	23	0.0226	0.573	44.3	17.4	0.509	0.258	66.79	20.36		
25 0.0179 0.455 55.9 22.0 0.320 0.162 106.2 32.37 26 0.0159 0.405 62.7 24.7 0.254 0.129 133.9 40.81 770.15 27 0.0142 0.361 70.4 27.7 0.202 0.102 168.9 51.47 28 0.0126 0.321 79.1 31.1 0.160 0.0810 212.9 64.90 29 0.0113 0.268 88.8 35.0 0.127 0.0642 268.5 81.84 30 0.0100 0.255 99.7 39.3 0.101 0.0509 33.86 103.2 40.00893 0.227 112 44.1 0.0797 0.0404 426.9 130.1 31 0.00795 0.202 126 49.5 0.0632 0.0320 53.3 164.1 34 0.00760 0.180 141 55.6 0.0501 0.0254 67.88 206.9 35	24	0.0201	0.511	49.7	19.6	0.404	0.205	84.22	25.67		1/0.5, 7/0.2, 30/0.1
260.01590.40562.724.70.2540.129133.940.81770.15270.01420.36170.427.70.2020.102168.951.47280.01260.32179.131.10.1600.0810212.964.90290.01130.26688.835.00.1270.0642268.581.84300.01000.25599.739.30.1010.050933.6103.21/0.25, 7/0.1310.008930.22711244.10.07970.040442.9130.11/0.25, 7/0.1320.007950.20212649.50.06320.0320538.3164.11/0.2, 7/0.08330.007080.18014155.60.05010.025467.8206.91/0.2340.006300.16115962.40.0380.201856.0260.91/0.2350.05010.14317870.10.01601079329.01/0.21/0.2360.05000.12720078.70.02500.01271361414.81/0.21/0.2370.004450.11322598.40.01001716523.11/0.21/0.2380.003970.11125299.30.01570.06322729831.81/0.4400.03140.07993181250.00890.05013411049 <td>25</td> <td>0.0179</td> <td>0.455</td> <td>55.9</td> <td>22.0</td> <td>0.320</td> <td>0.162</td> <td>106.2</td> <td>32.37</td> <td></td> <td></td>	25	0.0179	0.455	55.9	22.0	0.320	0.162	106.2	32.37		
270.01420.36170.427.70.2020.102168.951.47280.01260.32179.131.10.1600.0810212.964.90290.01130.28688.835.00.1270.0642268.581.84300.01000.25599.739.30.1010.050933.6103.21/0.25, 7/0.1310.008930.22711244.10.07970.0404426.9130.11/0.2, 7/0.08320.007950.20212649.50.06320.032053.3164.11/0.2, 7/0.08330.007080.18014155.60.05010.025467.8206.9340.006300.16015962.40.03150.01601079329.0350.05040.14317870.10.03150.01601079329.0360.005000.12720078.70.02500.01271361414.8370.004450.11322588.40.01980.01091716523.1380.003970.1125299.30.01570.007972164659.6390.03330.08972831110.01250.00622729831.8400.003410.0793181250.0089	26	0.0159	0.405	62.7	24.7	0.254	0.129	133.9	40.81		7/0.15
28 0.0126 0.321 79.1 31.1 0.160 0.0810 212.9 64.90 29 0.0113 0.286 88.8 35.0 0.127 0.0642 268.5 81.84 30 0.0100 0.255 99.7 39.3 0.101 0.0509 338.6 103.2 1/0.25, 7/0.1 31 0.00893 0.227 112 44.1 0.077 0.0404 426.9 130.1 32 0.00795 0.202 126 49.5 0.0632 0.0320 538.3 164.1 33 0.00708 0.180 141 55.6 0.0501 0.0254 678.8 206.9 34 0.00630 0.160 159 62.4 0.038 0.021 856.0 260.9 35 0.00561 0.143 178 70.1 0.0160 1079 329.0 36 0.00500 0.127 200 78.7 0.0250 0.017 1361 <	27	0.0142	0.361	70.4	27.7	0.202	0.102	168.9	51.47		
29 0.0113 0.286 88.8 35.0 0.127 0.0642 268.5 81.84 1000000000000000000000000000000000000	28	0.0126	0.321	79.1	31.1	0.160	0.0810	212.9	64.90		
30 0.0100 0.255 99.7 39.3 0.101 0.0509 33.6 103.2 1025, 7/0.1 31 0.00893 0.227 112 44.1 0.0797 0.0404 426.9 130.1 32 0.00795 0.202 126 49.5 0.0320 538.3 164.1 1/0.2, 7/0.08 33 0.00708 0.180 141 55.6 0.0501 0.0254 678.8 206.9 34 0.00630 0.160 159 62.4 0.039 0.010 260.9 35 0.00501 0.143 178 70.1 0.0315 0.0160 1079 329.0 36 0.00500 0.127 200 78.7 0.0250 0.0127 1361 414.8 37 0.00445 0.113 225 88.4 0.0197 2164 659.6 38 0.00397 0.101 252 99.3 0.0157 0.00632 2729 831.8	29	0.0113	0.286	88.8	35.0	0.127	0.0642	268.5	81.84		
31 0.00893 0.227 112 44.1 0.0797 0.0404 426.9 130.1 32 0.00795 0.202 126 49.5 0.0632 0.0320 538.3 164.1 33 0.00708 0.180 141 55.6 0.0501 0.0254 678.8 206.9 34 0.00630 0.160 159 62.4 0.0316 0.0160 260.9 35 0.00561 0.143 178 70.1 0.0315 0.0160 1079 329.0 36 0.00500 0.127 200 78.7 0.0250 0.0127 1361 414.8 37 0.00445 0.113 225 88.4 0.0100 1716 523.1 38 0.00397 0.101 252 99.3 0.0157 0.00797 2164 659.6 39 0.00333 0.0897 283 111 0.0125 0.00632 2729 831.8 40 0.00314	30	0.0100	0.255	99.7	39.3	0.101	0.0509	338.6	103.2		1/0.25, 7/0.1
32 0.00795 0.202 126 49.5 0.0632 0.0320 538.3 164.1 1/0.2, 7/0.08 33 0.00708 0.180 141 55.6 0.0501 0.0254 678.8 206.9 34 0.00630 0.160 159 62.4 0.039 0.0201 856.0 260.9	31	0.00893	0.227	112	44.1	0.0797	0.0404	426.9	130.1		
33 0.00708 0.180 141 55.6 0.0501 0.0254 678.8 206.9 34 0.00630 0.160 159 62.4 0.0398 0.0201 856.0 260.9 35 0.00561 0.143 178 70.1 0.0315 0.0160 1079 329.0 36 0.00500 0.127 200 78.7 0.0250 0.0127 1361 414.8 37 0.00445 0.113 225 88.4 0.0198 0.0100 1716 523.1 38 0.00397 0.101 252 9.3 0.0157 0.00797 2164 659.6 39 0.00353 0.0897 283 111 0.0125 0.00632 2729 831.8 400 0.00314 0.0799 318 125 0.00890 0.00501 3441 1049	32	0.00795	0.202	126	49.5	0.0632	0.0320	538.3	164.1		1/0.2, 7/0.08
34 0.00630 0.160 159 62.4 0.0398 0.0201 856.0 260.9 35 0.00561 0.143 178 70.1 0.0315 0.0160 1079 329.0 36 0.00500 0.127 200 78.7 0.0250 0.0127 1361 414.8 37 0.00445 0.113 225 88.4 0.0198 0.0100 1716 523.1 38 0.00397 0.101 252 99.3 0.0157 0.00797 2164 659.6 39 0.00333 0.0897 283 111 0.0125 0.00632 2729 831.8 400 0.00314 0.0799 318 125 0.00989 0.00501 3441 1049	33	0.00708	0.180	141	55.6	0.0501	0.0254	678.8	206.9		
35 0.00561 0.143 178 70.1 0.0315 0.0160 1079 329.0 36 0.00500 0.127 200 78.7 0.0250 0.0127 1361 414.8 37 0.00445 0.113 225 88.4 0.0198 0.0100 1716 523.1 38 0.00397 0.101 252 99.3 0.0157 0.00797 2164 659.6 39 0.00353 0.0897 283 111 0.0125 0.00632 2729 831.8 400 0.00314 0.0799 318 125 0.0089 0.00501 3441 1049	34	0.00630	0.160	159	62.4	0.0398	0.0201	856.0	260.9		
36 0.00500 0.127 200 78.7 0.0250 0.0127 1361 414.8 37 0.00445 0.113 225 88.4 0.0198 0.0100 1716 523.1 38 0.00397 0.101 252 99.3 0.0157 0.00797 2164 659.6 39 0.00353 0.0897 283 111 0.0125 0.00632 2729 831.8 40 0.00314 0.0799 318 125 0.00899 0.00501 3441 1049	35	0.00561	0.143	178	70.1	0.0315	0.0160	1079	329.0		
37 0.00445 0.113 225 88.4 0.0198 0.0100 1716 523.1 38 0.00397 0.101 252 99.3 0.0157 0.00797 2164 659.6 39 0.00353 0.0897 283 111 0.0125 0.00632 2729 831.8 40 0.00314 0.0799 318 125 0.0089 0.00501 3441 1049	36	0.00500	0.127	200	78.7	0.0250	0.0127	1361	414.8		
38 0.00397 0.101 252 99.3 0.0157 0.00797 2164 659.6 39 0.00353 0.0897 283 111 0.0125 0.00632 2729 831.8 40 0.00314 0.0799 318 125 0.00989 0.00501 3441 1049	37	0.00445	0.113	225	88.4	0.0198	0.0100	1716	523.1		
39 0.00353 0.0897 283 111 0.0125 0.00632 2729 831.8 40 0.00314 0.0799 318 125 0.00989 0.00501 3441 1049	38	0.00397	0.101	252	99.3	0.0157	0.00797	2164	659.6		
40 0.00314 0.0799 318 125 0.00989 0.00501 3441 1049	39	0.00353	0.0897	283	111	0.0125	0.00632	2729	831.8		
	40	0.00314	0.0799	318	125	0.00989	0.00501	3441	1049		

2.0 METHODOLOGY

Drop-in voltage is a simulation for the assessment of voltage drop with dependence on the wire distance, size, and load flow. It expects the circuit to operate in a standard condition at room temperature with typical frequency. The genuine voltage drop can differ upon the state of the conducting wire, circuit nature, temperature, frequency, and the entire circuit. It is suggested that the voltage drop must be less to 5% with the completely stacked condition of ohms

law. The constant load current of 1A was simulated by varying the copper conductor distance (10 to 55 in meters) with the final estimations of the drop in voltage, the percentage voltage drop, and the final net voltage across the circuit. Similarly, at the constant point of 10 meters in the distance of the copper conductor, variation in the load current (1 to 10 Ampere) is expected to yield results in terms of the voltage drop, percentage voltage drop, and the net voltage across the circuit at 120 volts.

For single-phase circuits:

Wire Circular Mils = (Conductor Resistivity)(2)(Amps)(One Way Distance in Feet) Allowable Voltage Drop

3.0 RESULTS AND DISCUSSION

The accompanying outcomes are an assessment dependent on ordinary conditions. The real voltage drop can differ upon the state of the wire, the course being utilized, the temperature, the connector, and the recurrence.

Table 2. Estimated drop, percentage and net voltages

1A	Distance(m)	Voltage Drop	%Voltage Drop	Net Voltage
	10	0.0081	0.0068	119.9919
	15	0.0120	0.0100	119.9880
	20	0.0160	0.0140	119.9840
	25	0.0200	0.0170	119.9800
	30	0.0240	0.0200	119.9760
	35	0.0280	0.0240	119.9720
	40	0.0330	0.0270	119.9670
	45	0.0370	0.0300	119.9630
	50	0.0410	0.0340	119.9590
10m	Load Current(A)	Voltage Drop	%Voltage Drop	Net Voltage
	1	0.0081	0.0068	119.9919
	2	0.0160	0.0140	119.9840
	3	0.0240	0.0200	119.9760
	4	0.0330	0.0270	119.9670
	5	0.0410	0.0340	119.9590
	6	0.0490	0.0410	119.9510
	7	0.0570	0.0470	119.9430
	8	0.0650	0.0540	119.9350
	9	0.0730	0.0610	119.9270
	10	0.0810	0.0680	119.9190

Figure 1. The interactions of voltage drop in volts, in percentage and the net against the copper conductor distances in meters at 1 ampere constant current load.

Figure 2. The interactions of the voltage drop in volts, percentage and the net against the load currents in ampere at constant distance with the copper conductor

Table 3.	Voltage	drop e	stimation a	t constant	load	current a	and	distance	with	copper	conductor
		· · · · ·								· · F F · ·	

Constant	Parametric interaction	Model	Model type	Correlation
parameter				factor (R ²)
1A	VDv and CL	$VDv = (7 \times 10^{-7})(CL)^2 + (9 \times 10^{-5})$	Polynomial	0.9990
	VD% and CL	$VD\% = (-2 \times 10^{-7})(CL)^2 + (9 \times 10^{-6})$	Polynomial	0.9990
	NV and CL	$NV = (-7 \times 10^{-7})(CL)^2 + 120$	Polynomial	0.9990
10m	VDv and LC	$VDv = 0.008(LC) + (4 \times 10^{-5})$	Linear	0.9990
	VD% and LC	$VD\% = 0.006 (LC) + (5 \times 10^{-5})$	Linear	0.9990
	NV and LC	NV = -0.008 (LC) + 120	Linear	0.9990

Where, Voltage drop (volts) = VDv, Voltage drop in % (%) = VD%, Net voltage (volts) = NV, Copper wire distance/ length (meters) = CL

Load current (ampere) = LC

The respective models revealed the interface between the defined parameters. At a constant load current of 1A, the model is declared to be polynomial by function for the length of the copper conductor and at 10meter length of the conductor to be linear for the available load current(Figure 1, 2; Table 2 and 3). The basis for the variations of the distance and the load current practically incorporate the dimension factors for copper conductors (Table 1), as the calculator automatically recognized copper as a case study. It is very apparent that the loss in voltage of 120 volts ranges with 1A covers from 119.9919 to 119.9590 and at 10m copper length covers from 119.9919 to 119.9190 net voltages (Table 2).

4.0 CONCLUSION

An unreasonable drop in voltage can bring about electrical hardware on the circuit running inadmissibly. In more outrageous cases, an excess of voltage drop can bring about huge harm to electrical devices and systems. Hence, there are various approaches to alleviate voltage drop in circuits, with the simplest being to build the conductor's distance between the wellspring of electrical flow and the circuit load which brings about generally decreased obstruction. In most domestic systems, there are no sufficient current or distance to actuate a huge voltage drop as consumers unconsciously experience issues with voltage drops when they interface a different structure on their current load properties. Therefore, the size of the conductors in the circuit must be expanded over the circuit's entire base as most circuit systems require an expansion in the general link size to meet construction standard prerequisites. The exorbitant voltage drop might be a marker of improperly measured wiring or different issues in wiring arrangements. Two regular methods of forestalling a voltage drop are the development of electrical circuits with a bigger conductor or overhauling the circuit to utilize a higher voltage. Along these lines, with the proposals from this paper, mathematical models to be applied in assessing the normal voltage shortage according to the essential electrical conditions.

5.0 REFERENCES

- 1. Your Student Gemini Wiki. (2021). Mains electricity. https://yourstudent gemini.fandom.com/wiki/Mains electricity
- Infogalactic.com. (2015). Mains electricity -Infogalactic: the planetary knowledge core.https://infogalactic.com/info/Mains_electricity
- **3**. Tony R. Kuphaldt (2007). Book for basics of alternating current.

https://www.academia.edu/5491114/book_for_basi cs_of_alternating_current

- 4. Adamselectric.coop. (2021) Voltage Drop .http://www.adamselectric.coop/wpcontent/uploads/2015/02/Voltage-Drop.pdf
- Rather, Z., (2014). Automatic Power Factor Detection and Correction System (Passive PF Correction). Academia.edu.https://www.academia.edu/1338064 7/Automatic_Power_Factor_Detection_and_Correc tion_System_Passive_PF_Correction_
- 6. Mikeholt.com. (2021). Voltage Drop Calculations Mike Holt Enterprises - the leader in electrical training. :https://www.mikeholt.com/technnicalvoltage-drop-calculations-part-one.php
- Batteryuniversity.com. (2019). Charging Information For Lead Acid Batteries – Battery University. https://batteryuniversity.com/index.php/learn/article /charging_the_lead_acid_battery/subscribe_thx
- Siyavula.com. (2021). Factors that affect resistors | Resistance | Siyavula. https://www.siyavula.com/read/science/grade-9/resistance/17-resistance?id=toc-id-3
- Voltage drop calculator (2021).https://www.calculator.net/voltage-dropcalculator.html