Anti-Fuzzy Filters of ρ -algebra

Prof. Dr. Areej Tawfeeq Hameed¹, Prof. Dr. Ahmed Hamzah Dbed², Entessar Jaber Abed Noor³

 ¹Department of Mathematics, Faculty of education for Girls, University of Kufa, Najaf, Iraq. E-mail: <u>areej.tawfeeq@uokufa.edu.iq</u>
 ¹Department of Mathematics, Faculty of education for Girls, University of Kufa, Najaf, Iraq. E-mail: <u>ahmedh.abed@uokufa.edu.iq</u>
 ²Lecturer of Mathematics, Directorate General of Education in Karbala, Karbala, Iraq. E-mail: <u>entrssar.jaber75@gmail.com</u>

Abstract:- Here we introduce the concept of anti-fuzzy filter and prime anti-fuzzy filter on ρ -algebra. Also, we give some theorems and relevance between them. We study the spectrum of a prime anti-fuzzy filter on ρ -algebra.

Keyword: *ρ*-algebra, filter, prime filter, fuzzy filter, -antifuzzy filter, prime anti-fuzzy filter, spectrum of anti-fuzzy.

2010 Mathematics Subject Classification: 06F35, 03G25, 08A72.

INTRODUCTION

In 1996, J.Meng introduced BCK –filter,[12]. In 1999, J. Neggers and el ct, gave some results of d-algebra and introduced d-ideals in d-algebra,[14,15]. In 1999, W.K.Jeong gave Anti Fuzzy Prime Ideals in BCK-algebra,[8].

In 2006, Y.B. Junand and E.H. Row introduced Nil subset in BCH-algebra,[9].In 2002, Lele C.gave Fuzzy filter in BCI – algebra,[10]. In 2012, M.B. Ahamed and A. Ibrahim gave anti fuzzy implicative filter in lattice W –algebras,[4]. In 2013, S.M. Mostafa and A. T. Hameed studied Anti-fuzzy KUS-ideals of KUS-algebras,[13]. In 2015, A.T. Hameed introduced Fuzzy ideal of some algebras,[7]. In 2017, S. Khalil and M.Alradha studied Characterizations of ρ -algebra and Generation Permutation Topological ρ -algebra Using Permutation in Symmetric Group,[11]. In 2018, A.T. Hameed and B.H.Hadi introduced Anti-Fuzzy AT-Ideals on AT-algebras,[6]. In 2020, A.T. Hameed and N.J. Raheem and A.H. Abed gave Anti-Fuzzy SA-Ideals on SA -algebras,[5]. In 2020, H.K. Abdullah and A.K.Mohammad gave the Fuzzy ρ -filter and fuzzy c- ρ -filter in ρ -algebra and Some Types filter of ρ -algebra,[2,3]. In 2021, H.K. Abdullah and et cl, introduced the concept the Spectrum of Prime filter on ρ -algebra, also we study the relation between them.

1. PRELIMINARIES

Paraphrased text will appear here useful our result. We present some definitions and properties:

Definition 1.1 [11]: Let X non empty set and the constant $0 \in X$ with binary operation (*) satisfying the following:

 ρ_1) $\epsilon * \epsilon = 0$ $\forall \epsilon \in X;$ ρ_2) 0* $\varepsilon=0$ $\forall \epsilon \in X ;$ ρ_3) If $\varepsilon * \omega = 0 = \omega * \varepsilon$ imply $\varepsilon = \omega$, $\forall \varepsilon, \omega \in X$; ρ_4) For all $\varepsilon \neq \omega$ and $\varepsilon . \omega \in X - \{0\}$ imply $\varepsilon * \omega = \omega * \varepsilon \neq 0$. Then (X;*,0) is called ρ -algebra. **<u>Remark 1.2 [11]</u>**: In ρ -algebra if = \emptyset , then it called **trivial** ρ -algebra. **Definition 1.3 [3]:** Let (Y; *.0) is ρ -algebra, $\emptyset \neq A \subseteq Y$. Then A is a subalgebra of Y if $n * m \in A \forall n.m \in A$. **Lemma 1.4 [2]:** If (A; *.0) is a subalgebra of ρ -algebra (Y; *.0), then $0 \in A$. **Remark 1.5 [2]:** Let $(X_{i}^{*}, 0)$ is ρ -algebra and $b \in X$. b^{*} is denotes to (b * 0) and if $(b^{*})^{*} = b$, then b called **an involuntary** element of X. X is called an involuntary *ρ*-algebra, when all elements on X is involuntary. **Proposition 1.6 [2]:** In ρ -algebra (X;*.0) an constant element 0 is an involuntary element. **Definition 1.7 [11]:** The set X is supper commutative, if $\forall \theta. \delta \in X. \theta \neq \delta \neq 0, \ \theta * \delta = \delta * \theta \neq 0.$ **Definition 1.8 [11]**: Let (X;*.0) be ρ -algebra, we define the two binary operations \wedge and \vee as follow: 1. $h \wedge e = e * (e * h)$ and $e \wedge h = h * (h * e)$; 2. $h \lor e = (h^* \land e^*)^* = (e^* * (e^* * h^*)) * 0.$ **Remark 1.9 [1]:** In ρ -algebra (X;*.0), if we assume $\varphi \neq 0 = \varphi (\varphi^* = \varphi)$. $\forall \varphi \in X$, then we get: 1. $(q \lor y)^* = q \land y$; (since $((q^* \land y^*)^*) * 0 = ((q \land y) * 0) * 0 = (q \land y)$

2. $(g \land y)^* = (g \lor y)$; (since $(g^* \land y^*)^* = g \lor y$).

Definition 1.10 [1]: Impose (W;*.0) is ρ -algebra. An element $\mathcal{V}of W$ is said to be ρ - unit if

 $\mathcal{V} * W = W. where \ \mathcal{V} * W = \{\mathcal{V} * y \mid y \in W\} and \ U(W) = \{\mathcal{V} \in W: \mathcal{V} * W = W\}.$

Definition 1.11[2]: Let (B; *.0) be ρ -algebra and $\{\sigma_i : i \in I\}$ is a collection of fuzzy subsets of B, then 1- $\bigcap_{i \in I} \sigma_i(C) = inf \{\sigma_i(C) : i \in I\}$. $\forall C \in B$, and $\bigcup_{i \in I} \sigma_i(C) = sup \{\sigma_i(C) : i \in I\}$. $\forall C \in B$. Which are represented fuzzy subset of B.

2- If $\sigma . \varepsilon$ be two fuzzy subsets of *B*, then $\sigma \le \varepsilon$. Mean $\sigma(C) \le \varepsilon(C)$. $\forall C \in B$.

Lemma 1.12 [3]: Let β : $(\mathcal{J}; *.0) \rightarrow (\mathcal{S}; \Delta.0)$ be mapping from ρ -algebra $(\mathcal{J}; *, 0)$ to another ρ -algebra $(\mathcal{S}; \Delta, 0)$ is homomorphism, then:

1. $\beta(0) = 0';$

2. $(\beta(f^*)) = (\beta(f))^*$;

3. $\forall f. y \in \mathcal{J} - \{0\}. f \neq y. \beta(f * y) = \beta(y) \Delta \beta(f);$

4. If $\leq y$, then $\beta(f) \leq \beta(y)$. $\forall f. y \in X$. **Definition 1** 13: Let $\beta(f) \neq \beta(y)$. $\forall f. y \in X$.

Definition 1.13: Let $\beta: (\mathcal{J};*.0) \to (\mathcal{J};*.0), \mathcal{J}$ is ρ -algebra. The set Ker (β) defined:

 $Ker (\beta) = \{ \mathcal{S} : \mathcal{S} \in \mathcal{J} : \beta(\mathcal{S}) = 0 \}.$

<u>Proposition 1.14 [2]</u>: Let β : $(\mathcal{J}; * .0) \rightarrow (\mathcal{S}; \Delta .0')$ be isomorphism ρ -algebras. Then $\forall j. y \in \mathcal{S}$:

1.
$$\beta^{-1}(j) = (\beta^{-1}(j))';$$

2. $\beta^{-1}(j\Delta y) = \beta^{-1}(j)\Delta\beta^{-1}(y).$

Definition 1.15 [11]: Let(X;*.0)be ρ -algebra and nonempty subset of X. Then \mathcal{K} called a filter in X if these conditions are met:

1. $\forall v.h \in \mathcal{K}.v \land h \in \mathcal{K} (\mathcal{K} \text{ be closed under } \land);$

2. If $(\mathbb{v}^* * \mathbb{h}^*)^* \in \mathcal{K}$. $\mathbb{h} \in \mathcal{K}$ imply $\mathbb{v} \in \mathcal{K}$.

<u>Proposition 1.16 [1]</u>: In an involuntary ρ -algebra (*G*;*.0), $\mathbb{m} \in \mathcal{K} \Leftrightarrow \mathbb{m}^* \in \mathcal{K}$.

<u>Proposition 1.17[1]</u>: Put (*X*;*.0) is ρ -algebra with $a^* = a$, \mathcal{K} a nonempty subset of *X*, then \mathcal{K} be a filter of *X* if and only if achieved :

1. For all $\mathbb{d}.\mathbb{g} \in \mathcal{K}, \mathbb{d} \vee \mathbb{g} \in \mathcal{K};$

2. If $(d * g) \in \mathcal{K}$, for all $g \in \mathcal{K}$ imply $d \in \mathcal{K}$.

Definition 1.18 [1]: Let (X; * .0) be ρ -algebra. **Prime filter of** X is proper filter \mathcal{K} subject to requirement for any $n.m \in X.n \lor m \in \mathcal{K}$ lead $n \in \mathcal{K}$ or $m \in \mathcal{K}$ and denoted

 $\mathcal{K} < \operatorname{pk} X.$

Definition 1.19 [2]: Let $f: (X; *.0) \rightarrow (Y; *', 0')$ be a mapping from a nonempty set *X* to anonempty set *Y*. If β is fuzzy subset of *X*, then the fuzzy subset μ of *Y* defined by:

 $f(\mu(x)) = \beta(y) = \begin{cases} inf_{x \in f^{-1}(y)}\mu(x) & if \ f^{-1}(y) = \{x \in X; f(x) = y\} \neq \emptyset \\ 0 & otherwise \end{cases}$

Is called to the image of μ under f.

Similarly, if μ is a fuzzy subset of *Y*.then the fuzzy subset $\mu = (\beta o f)$ in *X*(*i.e.*, the fuzzy subset defined by $\mu(x) = \beta(f(x))$, for all $x \in X$ is said the preimage of β under *f*.

Definition 1.20: Let $X \neq \emptyset$ a fuzzy set μ is anapping from X to [0,1], ($\mu: X \rightarrow [0.1]$).the value of $\mu(x)$ describes a degree of membership of x in μ .

Definition 1.21[1]: Let (X; *, 0) be ρ -algebra and μ fuzzy subset of X.We defined $L(\mu; r) = \{x \in X: \mu(x) \le r\}, r \in [0,1]$ is called a lower r-level cut of X, $U(\mu; k) = \{x \in X: \mu(x) \ge k\}, k \in [0,1]$ is called an upper k-level cut of X.

Definition 1.22: The complement of fuzzy set μ of X, denoted by $\overline{\mu}$, is fuzzy set in X giveb by

 $\overline{\mu}(\mathbf{x}) = 1 - \mu(\mathbf{x})$, for all $\mathbf{x} \in X$.

Definition 1.23[1]: Let(X;*,0)be ρ -algebra and $\emptyset \neq \Gamma \subseteq X$. Γ called a fuzzy subalgebra of X, if $\Gamma(\ell * k) \geq \min \{\Gamma(\ell), \Gamma(k)\}$, for all $\ell, k \in X$.

Definition 1.25[1]: fuzzy filter of ρ -algebra (*X*;*.0) is anon constant fuzzy subset ρ of *X* which checks conditions, $\forall e. d \in X$: $(FF_1) \rho(e \land d) \ge \min\{\rho(e), \rho(d)\};$

 $(FF_2)\varrho(\mathbb{e}) \ge \min\{\varrho((\mathbb{e}^* * \mathbb{d}^*)^*), \varrho(\mathbb{d})\}.$

Definition 1.25[1]: Let ζ non constant fuzzy filter of ρ -algebra (X;*.0) is called **prime fuzzy filter** if $\zeta_{P}(\eta \lor \gamma) \ge max \{ \zeta_{P}(\eta), \zeta_{P}(\gamma) \}$. for all $\eta, \gamma \in X$.

2. Anti-Fuzzy Filters on ρ -algebra

In this section, we provide definitions of anti-fuzzy filter and prime anti-fuzzy filter on ρ -algebra, and study its relationship with them on ρ -algebra.

Definition 2.1: Let(*X*;*.0)be ρ -algebra and $\emptyset \neq \Gamma \subseteq X$. Γ called **an anti-fuzzy subalgebra of** *X*, if $\Gamma(\ell * k) \leq max \{\Gamma(\ell), \Gamma(k)\}$, for all $\ell, k \in X$.

Example 2.2: Let $X = \{0, q, m\}$ with (*) binary knowledge as :

*	0	Ф	m
0	0	0	0
Ф	Ф	0	Ф
m	m	q	0

Clear (X;*.0) is
$$\rho$$
-algebra, let Γ fuzzy subset of X defined as: $\Gamma(\ell) = \begin{cases} 0.2 & \ell = 0\\ 0.4 & \ell = q\\ 0.9 & \ell = m \end{cases}$.

Then Γ is an anti-fuzzy subalgebra of .

<u>Proposition 2.3</u>: Let (X; *.0) be ρ -algebra and Γ is anti-fuzzy subalgebra of X, then $\Gamma(0) \leq \Gamma(\mathfrak{u})$. $\forall \mathfrak{u} \in X$.

Proof:
$$\Gamma(0) = \Gamma(\mathfrak{u} * \mathfrak{u}) \leq max \{\Gamma(\mathfrak{u}), \Gamma(\mathfrak{u})\} = \Gamma(\mathfrak{u}), \forall \mathfrak{u} \in X.$$

Proposition 2.4: In an anti-fuzzy subalgebra μ of ρ -algebra X, then $\mu(x^*) \leq \mu(x), \forall x \in X$.

Proof: Let μ be an anti-fuzzy subalgebra of X, $\mu(0) \le \mu(x)$, for all $x \in X$, by Proposition (2.3). Then $\mu(x^*) = \mu(x * 0) \le \max\{\mu(x), \mu(0)\} = \mu(x)$. Thus $\mu(x^*) \le \mu(x)$.

Definition 2.5: Anti-fuzzy filter of ρ -algebra (X;*,0) is anon constant fuzzy subset ρ of X which checks conditions, $\forall e. d \in X$: $(AFF_1) \rho(e \land d) \leq max\{\rho(e), \rho(d)\};$

 $(AFF_2)\varrho(\mathbb{e}) \leq max\{\varrho((\mathbb{e}^* * \mathbb{d}^*)^*), \varrho(\mathbb{d})\}.$

Example 2.6: Impose $X = \{0, 1, 2, 3\}$, And (*) defined:

*	0	1	2	3
0	0	0	0	0
1	1	0	3	1
2	2	3	0	2
3	3	1	2	0

Then (X; *, 0) is a ρ -algebra

 $\mu: X \to [0,1] \text{ fuzzy subset defined as: } \mu(x) = \begin{cases} 0.2 & \text{if } x \in \{3\} \\ 0.5 & \text{if } x \in \{0.1.2\} \end{cases}$ Clear (X;*,0) is ρ -algebra and $\mu(x)$ is an anti fuzzy filter of X, since

$(x \land y)$	0	1	2	3
0	0	0	0	0
1	0	1	2	1
2	0	1	2	2
3	0	0	0	3

And (AFF_1) , $\mu(x \land y) \le \max \{\mu(x), \mu(y)\}, \forall x, y \in X$, as

$\mu(\mathbf{x} \wedge \mathbf{y})$	0	1	2	3
0	0.5	0.5	0.5	0.5
1	0.5	0.5	0.5	0.5
2	0.5	0.5	0.5	0.5
3	0.5	0.5	0.5	0.2

 (AFF_2) $\mu(0) = 0.5 \le max\{\mu(0^* * 3^*)^*, \mu(3)\} = 0.5;$ $\mu(1) = 0.5 \le max\{\mu(1^* * 3^*)^*, \mu(3)\} = 0.5;$ $\mu(2) = 0.5 \le max\{\mu(2^* * 3^*)^*, \mu(3)\} = 0.5.$ Then μ represented an anti-fuzzy filter.

<u>Remark 2.7</u>: not necessary all fuzzy subset of *X* is AFF as assume that $X = \{0, 1, 2, 3\}, (*)$ binary operation like in following table represented ρ -algebra:

*	0	1	2	3
0	0	0	0	0
1	1	0	1	1
2	2	1	0	2
3	3	1	2	0
			(05 if	$\gamma \in \{0\}$

Note that if we defined μ which is fuzzy subset of X as that: $\mu(x) = \begin{cases} 0.5 & \text{if } x \in \{0.1\} \\ 0.6 & \text{if } x \in \{2.3\} \end{cases}$ $\mu(2)=0.6 \le \max \{\mu(2^{**1^*})^*, \mu(1)\}=\max \{\mu(1), \mu(1)\}=0.5.$

<u>Proposition 2.8</u>: Let (X; *.0) be ρ -algebra, μ is AFF of X. then $\mu(x^*) \le \mu(x), \forall x \in X$. **Proof:** By Proposition $(x \land x) = x^*$ and since μ is AFF, then

 $\mu(x^*) = \mu(x \wedge x) \le \max\{\mu(x), \mu(x)\} = \mu(x).$

Proposition 2.9 : Let (*X*;*,0)be ρ -algebra with $x^* \leq y^*$ and μ be AFF of *X*, then either

 $\mu(\mathbf{x}) \le \mu(\mathbf{y}) \text{ or } \mu(\mathbf{x}) = \mu(0), \text{ for all } \mathbf{x}, \mathbf{y} \in X.$

<u>Proof:</u> Let μ be AFF of X, then

 $\mu(x) \le \max\{\mu(x^* * y^*)^*, \mu(y)\}$

 $\leq \max\{\mu(0), \mu(y)\} = \mu(0) \text{ or } \mu(y).$

that's mean $\mu(x) \le \mu(0)$ or $\mu(x) \le \mu(y), \forall x, y \in X$.

<u>Remark 2.9</u>: In ρ -algebra (X;*,0) since $0^* \le x^*$ for all $x \in X$. $\mu(0) \le \mu(x)$, where μ is an AFF of X.

Proposition 2.10: Assume that (*X*;*,0) be ρ -algebra with $x \le y$, for all $x, y \in X$ and μ be AFF of *X*, then μ is anti-fuzzy subalgebra of *X*.

<u>Proof:</u> Since $\mu(0) = \mu(x * y) \le \max\{\mu(x), \mu(y)\}.$

<u>Remark 2.11</u>: An anti-fuzzy subalgebra of ρ -algebra (*X*;*,0) need not be an AFF of *X*, in general.

<u>Proposition 2.12</u>: Let (*X*;*,0) be ρ -algebra with $y \le x$ and μ be AFF of *X*, then

 $\mu(y^*) \le \mu(x^*)$ or $\mu(y^*) \le \mu(y)$.

<u>Proof:</u> Since $y \le x$, μ is AFF of *X*, then

 $\mu(x \wedge y) = \mu(y^*)$

 $\leq \max\{\mu(\mathbf{x}), \mu(\mathbf{y})\}$, this indicates that $\mu(y^*) \leq \mu(x^*)$ or $\mu(y^*) \leq \mu(\mathbf{y})$.

<u>Proposition 2.13</u>: Let (X;*, 0) be ρ -algebra with $x=x^*$, and μ is AFF of X, then

$$\begin{split} \mu(\mathbf{0}) &\leq \mu(x), \text{ for all } x \in X. \\ \underline{\text{Proof:}} & \text{Since } 0^* = 0, \text{ and } 0 \leq x, \text{ for all } x \in X([by \rho_2] \text{ and } by \text{ Proposition } (2.12), \\ \mu(\mathbf{0}) &\leq \mu(x). \\ \underline{\text{Proposition } 2.14}: \text{ Let } (X;*,0) \text{ be } \rho \text{-algebra with } x^* = x \text{ for all } x \in X, \text{ and } \mu \text{ is an AFF of } X, \text{ then for all } x, y \in X, \mu(x) \leq \max\{\mu(x*y),(y)\}. \\ \underline{\text{Proof:}} & \text{Let } \mu \text{ be an AFF of } \rho \text{-filter } X \text{ and } by (AFF_2(\mu(x) \leq \max\{\mu(x^* * y^*)^*, \mu(y)\} \Rightarrow \mu(x) \leq \max\{\mu(x*y), \mu(y)\}. \\ \underline{\text{Proof:}} & \text{ Let } \mu \text{ be an AFF of } \rho \text{-filter } X \text{ and } by (AFF_2(\mu(x) \leq \max\{\mu(x^* * y^*)^*, \mu(y)\} \Rightarrow \mu(x) \leq \max\{\mu(x*y), \mu(y)\}. \\ \underline{\text{Theorem } 2.15:} \text{ Assume that } \{\mu_i, i \in I\} \text{ be collection of AFF of } \rho \text{-algebra } X, \text{ then } \cap \mu_i \text{ is AFF of } X. \\ \underline{\text{Proof:}} & \text{ since } \mu_{i\in I} \text{ is AFF } \forall i \in I, \text{ then } \\ \mu_i(x \land y) \leq \max\{\mu_i(x), \mu_i(y) \forall x, y \in X\}, \text{ then } \\ \inf\{\mu_{i\in I}(x \land y) \leq \inf\{\max\{\mu_{i\in I}(x), \mu_{i\in I}(y), \forall x, y \in X\}\}. \\ \leq \max\{\inf \mu_{i\in I}(x), \inf \mu_{i\in I}(x), \min\{\mu_{i\in I}(x), \bigcap_{i\in I}\mu_i(y)\}. \\ \mu_{i\in I}(x) \leq \max\{\mu_{i\in I}(x^* * y^*)^*, \mu_{i\in I}(y), \forall x, y \in X\}. \\ \text{That's mean } \bigcap_{i\in I}\mu_i(x^* * y^*)^*, \mu_{i\in I}(y), \forall x, y \in X\} \text{ , then } \end{split}$$

 $Inf\mu_{i \in I}(x) \le \inf\{\max\{\mu_{i \in I}(x^* * y^*)^*, \ \mu_{i \in I}(y), \forall x, y \in X\}$

 $\leq \max\{\inf \mu_{i\in I}(x^* * y^*)^*, \inf \mu_{i\in I}(y), \forall x, y \in X\}$

That's mean $\bigcap_{i \in I} \mu_i(x) \le \max\{\bigcap_{i \in I} \mu_i(x^* * y^*)^*, \bigcap_{i \in I} \mu_i(y)\}$. So $\bigcap_{i \in I} \mu_i$ is AFF.

Remark 2.16: clear union of two anti-fuzzy filters un necessary represented AFF of X as in this example: **Example 2.17**: Impose $X = \{0, a, b, c, \}$, with (*) defined as:

*	0	a	b	с
0	0	0	0	0
a	а	0	с	с
b	b	с	0	a
с	с	с	a	0

And let we put defined to $\mu(x)$. $\vartheta(x)$ which are anti-fuzzy filters of ρ -algebra (X;*,0)

$$\mu(x) = \begin{cases} 0.2 & \text{if } x \in \{0, a\} \\ 0.9 & \text{if } x \in \{b, c\} \\ 0.5 & \text{if } x \in \{0\} \\ 0.6 & \text{if } x \in \{0\} \\ 0.6 & \text{if } x \in \{a, c\} \\ 0.9 & \text{if } x \in \{b\} \end{cases} \text{ and } (x) = \begin{cases} 0.5 & \text{if } x \in \{0, b\} \\ 0.6 & \text{if } x \in \{a, c\} \\ 0.9 & \text{if } x \in \{b\} \end{cases}$$

 $(\mu \cup \vartheta)(b) = 0.9 \leq \sup\{(\mu \cup \vartheta)(b^* * a^*)^*, \mu \cup \vartheta(a)\}\} = \sup\{(\mu \cup \vartheta(c), (\mu \cup \vartheta)(a)\} = 0.6.$

Proposition 2.18: In ρ -algebra (X; *, 0), μ is AFF of X if and only if $\overline{\mu}$ is a fuzzy filter of X. **Proof:** Suppose μ is AFF of X, then we can see Since $\overline{\mu}(x \wedge y) = 1 - \mu(x \wedge y), \forall x, y \in X$, by Definition (2.5), but $\overline{\mu}(x \wedge y) = 1 - \mu(x \wedge y) \le 1 - \max\{\mu(x), \mu(y)\} \ge 1 - \max\{1 - \overline{\mu}(x), 1 - \overline{\mu}(y)\} = \min\{\overline{\mu}(x), \overline{\mu}(y)\}$. And we see $\overline{\mu}(x) = 1 - \mu(x) \ge 1 - \max\{\mu(x^* * y^*)^*, \mu(y)\} = \min\{1 - \mu(x^* * y^*)^*, 1 - \mu(y)\} = \min\{\overline{\mu}(x^* * y^*)^*, \overline{\mu}(y)\}.$ So $\overline{\mu}$ is a fuzzy filter of X. Conversely, assume that $\overline{\mu}$ is fuzzy filter of *X* and x, y $\in X$, then (FF_1) 1- $\mu(x \land y) \ge \overline{\mu}(x \land y) \ge \min(\overline{\mu}(x), \overline{\mu}(y)) \ge \min\{1-\mu(x), 1-\mu(y)\}=1-\max\{\mu(x), \mu(y), so\}$ $\mu(x \wedge y) \le max\{\mu(x), \mu(y)\}, and$ $(FF_2)\overline{\mu}(x) \ge \min\{\overline{\mu}(x^* * y^*)^*, \overline{\mu}(y)\},\$ $\mu(x) = 1 - \overline{\mu}(x) \le 1 - \min\{\overline{\mu}(x^* * y^*)^*, \overline{\mu}(y)\} = \max\{1 - \overline{\mu}(x^* * y^*)^*, 1 - \overline{\mu}(y)\},\$ $=\max\{\mu(x^* * y^*)^*, \mu(y)\}, \quad \operatorname{so}\mu(x) \le \max(x^* * y^*)^*, \mu(y)\}.$ Which mean μ is represented an AFF. <u>**Remark 2.19**</u>: Let \mathcal{F} be filter of ρ -algebra(X;*,0) and $\alpha, \beta \in [0,1]$ such that $\alpha > \beta$. The complement $\overline{\mu}_{\alpha}$ of μ is given by $\overline{\mu}_{\tau} =$ $(1 - \alpha)$ if $x \in \mathcal{F}$ l1 – β otherwise ' By Proposition (2.6), it is AFF of X. **Theorem 1.20:** Let μ be an AFF ρ -algebra (*X*;*, **0**), with $x^* = x$. Then the set defined as: $X_{\mu} = \{x \in X : \mu(x) = \mu(0)\}$ is a filter. **<u>Proof:</u>** Let x, $y \in X$ and $x, y \in X_{\mu}$. Then $\mu(x) = \mu(0), \mu(y) = \mu(0)$. Hence, by Definition (2.5),

 $(AFF_1) \ \mu(x \land y) \le \max\{\mu(x), \mu(y)\} = \mu(0), \text{ we get } \mu(x \land y) \ge \min\{\mu(x), \mu(y)\}.$

Now, x, y $\in X$, such that $(x^* * y^*)^*$. $y \in X_{\mu}$, then $\mu(x^* * y^*)^* = \mu(0)$. $\mu(y) = \mu(0)$.

Since μ is an AFF, then

 $\mu(x) \le \max\{\mu(x^* * y^*)^*, \mu(y)\} = \mu(0), \text{ since } \mu(0) \le \mu(x), \text{ so } \mu(0) = \mu(x).$

 $\mu(x) \ge \min\{\mu(x^* * y^*)^*, \mu(y)\}\$, then we concluding X_{μ} is a filter.

Remark 2.21: The conversely Theorem (2.20) does not true as in this example:

Example 2.22: Let (X; * .0) be ρ –algebra with $x^* = x, X = \{0, r, f, z, s\}$ a ... (*) binary operation as:

*	0	r	f	Z	S
0	0	0	0	0	0
r	r	0	r	S	S

f	f	r	0	Z	S
Z	Z	S	Z	0	S
S	S	S	S	S	0
$(0.7 \text{if } x \in \{0, \infty\})$					

 $K_1 = \{0, r, f\}$ is a filter and μ be fuzzy subset of X such that: $\mu(x) = \begin{cases} 0.7 & \text{if } x \in \{0, r, f\} \\ 0.3 & \text{if } x \in \{z, s\} \end{cases}$

 μ is not AFF since $\mu(f) = 0.7 \le \max\{\mu(f^* * z^*)^*, \mu(z)\} = 0.3$.

Theorem 2.23: Let (X; *, 0) be ρ -algebra with $x^*=x$, μ is fuzzy subset of X. Then μ is an AFF of if and only if for each $r \in [0,1]$, $L(\mu; r)$ is a filters of X or $L(\mu; r) = \emptyset$.

Proof: Assume that μ is an AFF of r, $k \in [0,1]$ such that $L(\mu; r), L(\mu; k)$ are nonempty sets and let x, $y \in L(\mu; r)$. Then $\mu(x) \le r$. and $\mu(y) \le r$. That mean

 $\mu(x \wedge y) \le \max\{\mu(x), \mu(y)\} \le r$. So by Definition (2.5), thus $(x \wedge y) \in L(\mu; r)$

Now, let we suppose that x, $y \in X$, such that $(x^* * y^*)^* \in L(\mu; k)$ and $y \in L(\mu; r)$, then

 $\mu(x^* * y^*)^* \le r$ and $\mu(y) \le r$, so $\mu(x) \le \max\{\mu(x^* * y^*)^*, \mu(y) \le r$, by Definition (2.5), so $x \in L(\mu; r)$, then $L(\mu; r)$ is filter in X.

Conversely, let $L(\mu; r)$ be a filter of X or $L(\mu; r)=\emptyset$, for any $r \in [0.1]$. Assume that (AFF_1) does not valied.

Then there are c, $d \in X$ such that $\mu(c \wedge d) > \max\{\mu(c), \mu(d)\}$. Let us defined

 $n = \frac{1}{2}(\mu(c \wedge d) + \max\{\mu(c), \mu(d)\}.$

We get $\mu(c \wedge d) > n > \max\{\mu(c), \mu(d), n\mu(c) \text{ and } n > \mu(d).$ Hence

c, $d \in L(\mu; n)$ and $(c \land d) \notin L(\mu; n)$. This is a *contradiction* (AFF_1) of definition of a filter. Hence (AFF_1) holds.

Now, suppose $(c^* * d^*)^*, d \in X$, such that $(c^* * d^*)^* \le d$ and $\mu(c^* * d^*)^* \le \mu(d)$.

Taking $\varepsilon = \frac{1}{2}(\mu(c^* * d^*)^* + \mu(d)).$

We have $\mu(c^* * d^*)^* < \varepsilon < \mu(d)$, hence $(c^* * d^*)^* \in L(\mu; \varepsilon)$ and $y \notin L(\mu; \varepsilon)$. It contradiction with (AFF_2) of definition of a filter. Hence (AFF_1) holds.

Then μ is AFF of X.

Corollary 2.24: If μ is AFF of ρ -algebra (X;*,0), then the set $X_c = \{x \in X : \mu(x) \le \mu(c)\}$ is a filter of $X, \forall c \in X$. **Definition 2.25:** Let (X;*,0) be ρ -algebra and μ be an AFF of X, then the set $\langle \mu \rangle$ can be defined as $\langle \mu \rangle =$

 $\bigcap \{\delta : \delta \text{ is an } AFF \text{ of } X. \mu \subseteq \delta \}$ and it called **generated by** μ .

<u>Remark 2.26</u>: Suppose that (*X*;*,0) be ρ -algebra and μ be an AFF of *X*. Then

- 1. $\langle \mu \rangle$ is an AFF of *X* continuing μ .
- 2. If μ is AFF of *X*, then $\langle \mu \rangle = \mu$.
- 3. $\langle \mu \rangle$ is smallest AFF containing μ .

<u>Theorem 2.27</u>: Let $f : (X; *, 0) \to (Y; *, 0)$ be an epimophism from ρ -algebra X to another ρ -algebra Y, if α be an AFF of Y. Then the pre-image of α under $f(\mu)$ is also an AFF of X.

<u>Proof:</u> Let μ be pre-image of α under f. Then $\mu(x) = \alpha(f(x))$ for all $x \in X$. Since α is an AFF of , then

$$\begin{split} \mu(x \wedge y) &= f^{-1}(\alpha(x \wedge y) = \alpha(f(x \wedge y)) \\ &\leq \max\{\alpha(f(x)), \alpha(f(y))\} \\ &= \max\{f^{-1}(\alpha(x), f^{-1}(\alpha(y))\} \\ &= \max\{f^{-1}(\alpha(x), (f^{-1}(\alpha))(y)\} \\ &= \max\{\alpha(f(x)), \alpha(f(y))\} \\ &= \max\{\alpha(f(x), \mu(y)\}. \end{split}$$
That's mean $\mu(x \wedge y) \leq \max\{\mu(x), \mu(y)\}. \\ \mu(x) &= f^{-1}(\alpha(y)) = \alpha(f(y)) \\ &\leq \max\{\alpha(f((x^* * y^*)^*). \alpha(f(y))\} \\ &= \max\{\alpha(f^{-1}(\alpha))(x^* * y^*)^*. (f^{-1}(\alpha))(y)\} \\ &= \max\{f^{-1}(\alpha(x^* * y^*)^*. \mu(y)\}. \end{aligned}$
Then $\mu(x) \leq \max\{\mu(x^* * y^*)^*. \mu(y)\}.$
Therefor $\mu(x) \leq \max\{\mu(x^* * y^*)^*. \mu(y)\}.$
Therefor $\mu(x) \leq \max\{\mu(x^* * y^*)^*. \mu(y)\}$, since $f(x) \in Y$ is arbitrary and f is onto, $x \in X$, therefore $\mu(x) \leq \max\{\mu(x^* * y^*)^*. \mu(y)\}$. Hence $\mu = f^{-1}(\alpha)$ is an AFF of X .

Definition 2.28: An anti-fuzzy subset μ of a set *X* has inf property if for any subset T of X, there exist $t_0 \in T$ such that $\mu(t) = \inf_{t \in T} \mu(t)$.

<u>Theorem 2.29</u>: Let $f : (X; *, 0) \to (Y; *, 0)$ be a homomorphism between ρ -algebras X and Y respectively has inf property.

For every β an AFF μ of X, $f(\beta)$ is an AFF of Y.

<u>Proof:</u> By definition $\beta(y') = f(\mu)(y') = \inf_{x \in f^{-1}(y')} \mu(x)$, for all $y' \in Y$ and $\emptyset = 0$.

We have to prove that $\beta(x') \le \max{\{\beta((y'^* * x'^*)^*), \beta(y')\}}$, for all x', y' \in Y.

Let $f : X \to Y$ be an onto homomorphism of ρ -algebra, μ is an AFF of X with inf property and β the image of μ under f, since μ is an AFF of X,

For any x', y' \in Y, let $x_0 \in f^{-1}(x')$, $y_0 \in f^{-1}(y')$ be such that $\mu((y_0^* * x_0^*)^*) = inf_{t \in f^{-1}(x'*y')}) \mu(t), \mu(y_0) = inf_{t \in f^{-1}(y')} \mu(t)$ and

$$\begin{split} \mu(x \wedge y) &= \inf_{t \in f^{-1}(x' * y')} \mu(t) \\ &\leq \max\{\inf_{t \in f^{-1}(x')} \mu(t), \inf_{t \in f^{-1}(y')} \mu(t)\} \\ &= \max\{\mu(x), \mu(y)\}. \\ \text{That's mean } \mu(x \wedge y) \leq \max\{\mu(x), \mu(y)\}. \\ \mu(x_0) &= \inf_{t \in f^{-1}(x')} \mu(t). \text{ Then} \\ \beta(x') &= \inf_{t \in f^{-1}(x')} \mu(t) = \mu(x_0) \\ &\leq \max\{\mu((y_0^* * x_0^*)^*), \mu(y_0)\} \\ &= \max[\inf_{t \in f^{-1}(x' * y')} \mu(t), \inf_{t \in f^{-1}(y')} \mu(t)] \\ &= \max\{\beta(y'^* * x'^*)^*), \beta(y')\}. \\ \text{Hence } \beta \text{ is an AFF of Y. } \triangle \end{split}$$

3. Prime Anti-fuzzy Filter of ρ -algebra.

In this part, we study prime anti-fuzzy filter of ρ -algebra (X;*.0). Having been thought about it

Definition 3.1: Let ζ non constant fuzzy filter of ρ -algebra (X;*.0) is called **prime anti-fuzzy filter** if $\zeta_{P}(\eta \lor \gamma) \leq \min \{ \zeta_{P}(\eta), \zeta_{P}(\gamma) \}$, for all $\eta, \gamma \in X$, denoted by (PAFF).

Example 3.2: Let (*X*;*,0) be ρ –algebra, F is prime filter of *X* and $\beta \in (0,1]$ and defined a fuzzy subset μ by :

 $\mu(x) = \begin{cases} 0 & \text{if } x \in F \\ \beta & \text{otherwise} \end{cases}$

We show that μ is an PAFF of X, by Remark, μ is an AFF. Let $x, y \in X$ such that $x \lor y \in F$. Then $x \in F$ or $y \in F$, by Definition (3.1), then $\mu(x \lor y) = 0 = \min\{\mu(x), \mu(y)\}$ Now, suppose that $x \lor y \notin F$, $(x \lor y) = (x \land y)$, since F is AFF, $\mu(x) \le \min\{\mu(x^* * y^*)^*, \mu(y)\} = \beta$. Imply $\mu(x \lor y) = \min\{\mu(x), \mu(y)\} = \beta$. **Proposition 3.3:** Every AFPF μ of ρ - algebra (X; *.0) is an AFF of X.

Proof: Direct by Definition (3.1).

Theorem 3.4: Let (*X*;*.0) be ρ -algebra , μ a nonconstant AFF of *X*. Then the following are equivalents:

(1) μ is an PAFF of X.

(2) For all x, $y \in X$, if $\mu(x \lor y) = \mu(0)$, then $\mu(x) = \mu(0)$ or $\mu(y) = (0)$.

(3) For all $x, y \in X, \mu(y^*) = \mu(0)$ or $\mu(y^* * x^*) = \mu(y^*)$.

(4) For all $x, y \in X$, if $x^* = x$ and $y^* = y$. then $\mu(y) = \mu(0)$ or $\mu(y * x) = \mu(0)$.

(5) For all $x, y \in X$, if $x = x^*$ and $y = y^*$, then $\mu(x \wedge y) = \mu(0)$.

Proof:

(1) \Rightarrow (2) Let μ be an AFPF of X and $x, y \in X$ such that $\mu(x \lor y) = \mu(0)$, then $\mu(x \lor y) = \min\{\mu(x), \mu(y)\} = \mu(0)$ and hence $\mu(x) = \mu(0)$ or $\mu(y) = \mu(0)$. (2) \Rightarrow (3) Let $x, y \in X$. Suppose that $x \lor y=0$, then by proposition ($y^* = y^* * x^*$) or ($y^* = 0$). So $\mu(y^*) = \mu(y^* * x^*)$ or $\mu(y^*) = \mu(0)$. (3) \Rightarrow (4) Direct by Definition (3.1). (5) \Rightarrow (1) Since $\mu(0) \le \mu(x)$ and $(x \lor y) = (x \land y) \le \min\{\mu(x), \mu(y)\}$. Therefore $\mu(x \lor y) = \min\{\mu(x), \mu(y)\}$, hence μ is a PAFF.

Theorem 3.5: Let μ be AFF of ρ -algebra (X;*.0) with $x^* = x$. Then μ is a PAFF of X if and only if $X_{\mu} = \{x \in X; \mu(x) = \mu(0)\}$ is prime filter.

Proof: Let μ be AFF of ρ –algebra *X*. By Theorem (), X_{μ} is filter of *X*, to prove X_{μ} is prime. Let $x \lor y \in X_{\mu}$. Then by hypothesis and Definition)

 $\mu(0) = \mu(x \forall y) = \min \{\mu(x), \mu(y)\}.$

Therefore $\mu(0) = \mu(x)$ or $\mu(0) = \mu(y)$ that's represented $x \in X_{\mu}$ or $y \in X_{\mu}$. So X_{μ} is prime filter.

Conversely, let X_{μ} be a prime filter of X. And $x, y \in X - \{0\}$. $x \neq y$. Then

 $(x * y) \lor (y * x) = 0 \in X_{\mu}$ and by Definition (), $(x * y) \in X_{\mu}$ or $(y * x) \in X_{\mu}$.

Hence $\mu(x * y) = \mu(0)$ or $(y * x) = \mu(0)$. By Theorem (), μ is PAFF.

Corollary 3.6: Let μ be an PAFF of ρ -algebra (X;*, 0), then $F = \{x \in X : \mu(x) = 0\}$ is either empty set or a prime filter. **Proof:** Direct by Theorem ().

Theorem 3.7: Let μ be a non-constant AFF of ρ -algebra (*X*;*,0), with $x^* = x$. Then the following are equivalent:

(i) μ is a PAFF of *X*.

(ii) For every $\alpha \in [0,1]$, if $L(\mu, \alpha) \neq \emptyset$ and $L(\mu, \alpha) \neq X$.then $L(\mu, \alpha)$ is prime filter of X.

Proof:

(i) \Rightarrow (ii) Suppose that μ is a PAFF of X and let $L(\mu, \alpha) \notin \emptyset, X$. From Theorem (), $L(\mu, \emptyset)$ is a filter.

Now, let show $L(\mu, \alpha)$ is prime .Since $L(\mu, \alpha) \neq X$, it is proper. Let $x \forall y \in L(\mu, \alpha)$, then $\mu(x \forall y) = \min\{\mu(x), \mu(y)\} \leq \alpha$.

Hence $\mu(x) \le \alpha$ or $\mu(y) \le \alpha$, then $x \in L(\mu, \alpha)$ or $y \in L(\mu, \alpha)$. So $L(\mu, \alpha)$ is prime.

(ii) \Rightarrow (i) Suppose that μ is not a PAFF. Then

 $\mu(x \lor y) < \min\{\mu(x), \mu(y)\}, \text{ for some } x, y \in X.$ Let we defined

 $\beta = \frac{1}{2}(\mu(x \lor y) + (\min\{\mu(x), \mu(y)\})$. Then we have $\mu(x \lor y) < \beta < \min\{\mu(x), \mu(y)\}$.

Then we get $x \lor y \in L(\mu, \beta)$ and $x \notin L(\mu, \beta)$ and $y \notin L(\mu, \beta)$. Hence $L(\mu, \beta) \neq \emptyset$, but $L(\mu, \beta)$ is not prime. It contradicts an assumption. Then μ is a PAFF of X.

Theorem 3.8: Let $f : (X; *, 0) \to (Y; *, 0)$ be an epimophism from ρ -algebra X to another ρ -algebra Y, if α be a PAFF of Y. Then the pre-image of α under $f(\mu)$ is also a PAFF of X.

Proof: Let μ be pre-image of α under f. Then $\mu(x) = \alpha(f(x))$ for all $x \in X$. Since α is an AFF of , then

 $\mu(x \lor y) = f^{-1}(\alpha(x \lor y) = \alpha(f(x \lor y))$ $\leq \min\{\alpha(f(x)), \alpha(f(y))\}$ $= \min\{f^{-1}(\alpha(x), f^{-1}(\alpha(y))\}$ $= \min\{(f^{-1}(\alpha))(x), (f^{-1}(\alpha))(y)\}$ $= \min\{\alpha(f((x)), \alpha(f(y))\}$ $= \min\{\mu(x), \mu(y)\}.$ That's mean $\mu(x \lor y) \leq \min\{\mu(x), \mu(y)\}.$

Hence
$$\mu = f^{-1}(\alpha)$$
 is a PAFF of X.

Theorem 3.9: Let $f:(X; *, 0) \to (Y; *, 0)$ be a homomorphism between ρ -algebras X and Y respectively has inf property. For every β a PAFF μ of X, $f(\beta)$ is a PAFF of Y.

Proof: By definition $\beta(y') = f(\mu)(y') = \inf_{x \in f^{-1}(y')} \mu(x)$, for all $y' \in Y$ and $\emptyset = 0$.

We have to prove that $\beta(x') \le \max{\{\beta((y'^* * x'^*)^*), \beta(y')\}}, \text{ for all } x', y' \in Y.$

Let $f: X \to Y$ be an onto homomorphism of ρ -algebra, μ is a PAFF of X with inf property and β the image of μ under f

For any x', y' \in Y, let $x_0 \in f^{-1}(x')$, $y_0 \in f^{-1}(y')$ be such that $\mu((y_0^* * x_0^*)^*) = inf_{t \in f^{-1}(x'*y')}) \mu(t), \mu(y_0) = inf_{t \in f^{-1}(y')} \mu(t)$ and

and $\mu(y \lor y) = \beta(f(x \lor y)) \le \min\{\beta(f(x)), \beta(f(y))\} = \min\{\mu(x), \mu(y)\}.$ Hence β is a PAFF of Y. \triangle

References

- Abdullah H.K., Hameed A.T. and Abed Noor E. J., (2021), Spectrum of Prime filter on *ρ*-algebra, Journal of Physics: Conference Series (IOP), to appear.
- [2] Abdullah H.K. and Mohammad A.K., (2020), Fuzzy ρ-filter and fuzzy c-ρ-filter in ρ-algebra, International Journal of Engineering and Information Systems (IJEAIS), vol. 4, Issue 1, pp: 32-41.

- [3] Abdullah H.K. and Mohammad A.K., (2020), Some Types filter of *ρ*-algebra, Journal of Discrete Mathematical Sciences and Cryptography, vol.4, pp:1391-1394.
- [4] Ahamed M.B. and Ibrahim A. (2012), Anti Fuzzy Implicative Filter in Lattice W –Algebras" International Journal of Computational Science and Mathematics ISSN 0974-3189, vol. 4, no.1, pp.49-56.
- [5] Hameed A.T. and Raheem N.J. and Abed A.H., (2020), Anti-Fuzzy SA-Ideals on SA -algebras, Journal of Physics: Conference Series (IOP), vol.1530, pp: 1-15.
- [6] Hameed A.T. and Hadi B.H., (2018), Anti-Fuzzy AT-Ideals on AT-algebras, Journal of Al-Qadisyah for Computer Science and Mathematics, vol.10, no.3, pp:63-74.
- [7] Hameed A.T., 2015, Fuzzy ideal of some algebras, PH.D.SC. Thesis, Faculty of Science, Ain Shams University, Egypt.
- [8] Jeong W.K., (1999)," **On Anti Fuzzy Prime Ideals in BCK-algebra**," Journal of The Chungcheong Mathematical Society, vol.12, pp:15-21.
- [9] Junand Y.B. and Row E.H., (2006), Nil subset in BCH-algebra, East Asian Math, J., vol.22, no.2, pp:207-213.
- [10] Lele C., (2002), Fuzzy filter in BCI algebra, Article in International Journal of Mathematical Sciences .January 2002.
- [11] Khalil S. and Alradha M., (2017), Characterizations of ρ-algebra and Generation Permutation Topological ρ-algebra Using Permutation in Symmetric Group, American Journal of Mathematics and Statistics, vol.7, no.4, pp:152-159.
- [12] Meng J., (1996), BCK -filter, Math. Japonica, vol.44, no.1, pp:119-129 .
- [13] Mostafa S.M. and Hameed A. T., (2013), Anti-fuzzy KUS-ideals of KUS-algebras, International Journal of Computer Applications (0975 – 8887) vol. 70, no.9, pp:24-28.
- [14] Neggers J. and Kim H. S., (1999), On d-algebra, Mathematica Slovaca, vol.49, no.1, pp:19-26.
- [15] Neggers J., Jun Y. B., and Kim H. S, (1999), On d-ideals in d-algebra, Mathematica Slovaca, vol.49, no.3, pp:243-251.