Screening Of Different Mustard Varieties Against Sucking Insect Pests

Zamir Hussain Bhand¹, Imtiaz Ahmed Nizamani¹, Bhai Khan Solangi¹, Abdul Raoof Khan², Mitha Khan², Muhammad Aslam Alizai²

¹Department of Plant Protection, Entomology SAU Tandojam. ²Department of Agriculture and Cooperative ARI Quetta Baluchistan.

Abstract: The experiment was conducted at the Oilseeds Section, Agriculture Research Institute Tandojam during 2017-18 to monitor the population dynamics of sucking insect pests on mustard. Five mustard varieties i.e. P-23-R2, NMT-8, P-25, UCD-1202, ER-22 was screened to evaluate the relative resistance against sucking insect pests. The results showed that overall population of thrip (3.20 ± 0.780) was recorded for P-23-R2 followed by P-25 (3.08 ± 0.75), NMT-8 (2.97 ± 0.70), ER-22 (2.93 ± 0.6), (2.50 ± 0.57) was observed for UCD-1202. Overall mean highest population of whitefly (0.98 ± 0.29) was recorded for P-23-R2 followed by P-25 (0.92 ± 0.26), NMT-8 (0.89 ± 0.25), ER-22 (0.82 ± 0.22) and (0.77 ± 0.21) was observed for UCD-1202. Overall mean highest population aphid (21.80 ± 10.28) was recorded for P-23-R2 followed by P-25 (20.78 ± 10.10), NMT-8 (20.48 ± 9.64) and ER-22 (18.85 ± 9.07) and (18.27 ± 9.04) was observed for UCD-1202. Overall mean highest population of jassid (0.74 ± 0.20) was recorded for P-23-R2 followed by P-25 (0.60 ± 0.30), ER-22 (0.59 ± 0.15), NMT-8 (0.56 ± 0.16) and (0.19 ± 0.05) was observed for UCD-1202. The maximum crop yield (1937.9 kg ha⁻¹) was recorded for UCD-1202 followed by ER-22 (1659.6 kg ha⁻¹), NMT-8 (1639.9 kg ha⁻¹) and P-25 (1609.3 kg ha⁻¹). It is concluded that maximum infestation of thrip, whitefly, aphid and jassid was observed for variety 'P-23-R2' and minimum was observed for variety 'UCD-1202'. The peak infestation of thrip was observed on 15^{th} January, 2018 in all five mustard varieties. The population of thrips was linear decreased from 22^{nd} January, 2018 to 12^{th} March, 2018.

Keywords: sucking insect pests, cultivars, mustards

1. INTRODUCTION

Oilseeds claim highest share in the world's economy after food grain crops and are cultivated for obtaining oils used for edible and non-edible purposes (Wikipedia, 2015). Mustard, botanically known as Brassica junceaL., is traditionally grown important oilseed crop cultivated for centuries almost in all parts of the world (Perry, 1999). Pakistan hardly produces 20 percent of edible oil meanwhile 80 percent requirement of the local consumption is fulfilled by the imports.. The area under mustard cultivation during 2016-17 was 494 thousand tons with total production ofseed 190 thousand tons; while the oil production was thousand 61 tons, respectively (GOP, 2017). There was reduction in mustard production; and apart from the reduction in area under mustard cultivation, the lower production was also associated with the insect pest infestation, particularly the sucking complex (Perry, 1999).

Whitefly (BemisiatabaciGenn.) is minute insect which bears two consists of two pair of membranous wings. It has capacity to lay eggs throughout the year; which are mostly laid under beneath of leaves. Newly laid eggs are yellow or green colour and turns into dark tan gradually goes towards hatching, which takes 3-6 days to be hatched. Its oval and yellowish nymph lives in cluster under leaf surface. Crops are infested directly by both nymph and adults by sucking sap of plants which cause low strengthen as well low yield of crop; in order to indirectly damage nymph through producing secretions of honeydew which encourage growth of sooty mould(Jech and Husman, 2015). Mustard aphid, L. erysimi is one of the most destructive insect which is responsible for causing severe reduction in seed yield varying from 15.0 to 73.3% (Bakhetia and Sekhon, 1989; Rohilla et al., 1990; Gajanana et al., 2006). The earlier reports revealed that its incidence began from November and lasted till the end of February with peak period of its activity in January (Srivastava and Srivastava, 1972; Thakur, 1976; Saljoqi et al., 2006). The proposed study is mainly aimed at evaluating the varietal resistance of mustard against sucking insect pests under field conditions.

2. MATERIALS AND METHODS

The experiment was conducted at Oilseeds Section, ARI Tandojam in a Randomized Complete Block Design (RCBD) having net plot size of 70 ft x 100 ft with three replications to monitor the population dynamics of sucking insect pests on mustard. Five mustard varieties i.e. P-23-R2, NMT-8, P-25, UCD-1202, ER-22 was screened to evaluate the relative resistance against sucking insect pests. The monitoring of the sucking insect pests was started right from 25th December 2017 to 12th March 2018. The population buildup of each sucking insect pest was monitored at weekly interval. The observations regarding the sucking insect pest population was recorded on the basis of randomly selected five plants from top, middle and bottom for each mustard variety. The sucking insect pests were identified and recorded their population in separate data recording sheets weekly. Data was analysed using descriptive statistics (Statistix ver. 8.1). The significance of the differences in population level of the insect pests was evaluated using analysis of variance and least significant difference test.

3. RESULTS

Thrips

Statistical analysis of the data showed significant difference in population flcutation of thrips among the mustard varieties. The data (Table-1) indicates that average highest infestation $(3.20\pm0.78 \text{ nymph per plant})$ was noted for P-23-R2 followed by P-25 $(3.08\pm0.75 \text{ nymph per plant})$, NMT-8 $(2.97\pm0.70 \text{ nymphs per plant})$ and ER-22 $(2.93\pm0.6 \text{ nymphs per plant})$, while lowest infestation $(2.50\pm0.57 \text{ nymph per plant})$ was observed for UCD-1202.

Whitefly

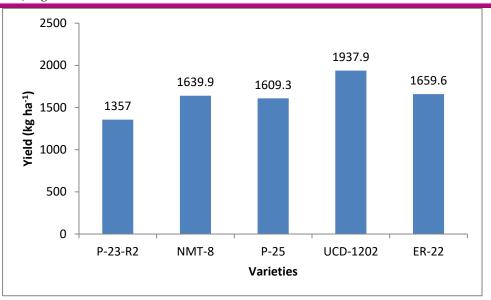
Statistical analysis of the data showed significant difference in population fluctation of whitefly among the mustard varieties. The data (Table-1) indicates that average highest infestation $(0.98\pm0.29 \text{ nymphs per plant})$ was noted for P-23-R2 followed by P-25 (0.92 ± 0.26 nymphs per plant), NMT-8 (0.89 ± 0.25 nymphs per plant) and ER-22 (0.82 ± 0.22 nymphs per plant), while lowest infestation (0.77 ± 0.21 nymphs per plant) was observed for UCD-1202.

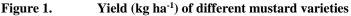
Aphids

Statistical analysis of the data showed significant difference in populationflcutation of aphids among the

mustard varieties. The data (Table-1) indicates that average highest infestation $(21.80\pm10.28$ nymphs per plant) was noted for P-23-R2 followed by P-25 (20.78±10.10 nymphs per plant), NMT-8 (20.48±9.64 nymphs per plant) and ER-22 (18.85±9.07nymphs per plant), while lowest infestation (18.27±9.04 nymphs per plant) was observed for UCD-1202.

Jassid


Statistical analysis of the data showed significant difference in populationfluctation of jassid among the mustard varieties. The data (Table-1) indicates that average highest infestation $(0.74\pm0.20$ nymphs per plant) was noted for P-23-R2 followed by P-25 (0.60 ± 0.30 nymphs per plant), ER-22 (0.59 ± 0.15 nymphs per plant) and NMT-8 (0.56 ± 0.16 nymphs per plant), while lowest infestation (0.19 ± 0.05 nymphs per plant) was observed for UCD-1202.


Crop Yield (kg ha⁻¹)

Results in regards to crop yield is presented in Figure-1. Statistical analysis of the obtained data indicated that there was significant difference in crop yield between all the five mustard varieties. On the basis of average, themaximum crop yield (1937.9 kg ha-1) was recorded for UCD-1202 followed by ER-22 (1659.6 kg ha-1), NMT-8 (1639.9 kg ha⁻¹) and P-25 (1609.3 kg ha⁻¹) and the minimum crop yield (1357 kg ha⁻¹) was noted for P-23-R2 mustard variety.

Table 1.	Population fluctuation of insect pests in different mustard varieties

Insect pests			Varieties		
	P-23-R2	NMT-8	P-25	UCD-1202	ER-22
Thrips	3.20±0.78	2.97±0.70	3.08±0.75	2.50 ± 0.57	2.93±0.69
Whitefly	0.98±0.29	0.89±0.25	0.92±0.26	0.77±0.21	0.82±0.22
Aphid	21.80±10.28	20.48±9.64	20.78±10.10	18.27±9.04	18.85±9.07
Jassid	0.74±0.20	0.56±0.16	0.60±0.30	0.19±0.05	0.59±0.15

The study showed that the thrips population was highest on variety P-23-R2 variety and lowest thrips population was observed on UCD-1202 variety. This indicates that variety 'UCD-1202' showed higher relative resistance to thrips when compared with rest of the varieties. The LSD test indicated that the differences in thrips population among mustard varieties were statistically significant (P<0.05). The validity of varietal resistance to insect pests in oilseeds has also been argued by Henriksen (1999); Hausammann (1996) and Shelton et al. (1995). Rangrezet al. (2003) reported that thrips population apart from the environmental factors varied significantly on mustard varieties of diversified origin. Verma, et al. (1993) found thrip, Thrip tabaci as the major insect pest of mustard. Panda and Khush (1995) found that varieties with thicker pods suppressed insect pest infestation and showed resistance in diseases transmitted by insects. Shelton et al. (1995) and Singh et al. (2006) found that thrip population on mustard varieties with thicker stems was lower than thin stemmed varieties. Verma et al. (1993) experienced a great variation in the thrip population among different mustard cultivars. Similar results have also been reported by Hausammann (1996);James et al. (1994) and Jessop et al. (1996). Malik et al. (2012) argued that mustard varieties with rsistance against sucking complex, particularly jassid is of great economic importance.

5. DISCUSSIONS

The results of the study show that maximum population of whitefly was reported on P-23-R2 variety and the minimum populations of whitefly reported on variety UCD-1202. By conducting LSD test it was suggested that variation in population of whitefly among varities of mustard were statistically significant (P<0.05). The findings arefurther supported by Rohilla*et al.* (1990) who reported that whitefly

population varied significantly among mustard varieties; while Bhatti and Soomro (1996) showed that mustard varieties with tricons showed resistance to whitefly; while varieties having leaves without tricons suffered with more infestation of sucking insect pests. In another study, Panda and Khush(1995) observed that development of mustard varieties resistant to sucking complex could increase the seed yield manifold; while Rangrez *et al.* (2003) reported varied response of mustard varieties to whitefly infestation.

Those varieties of crops which are favorite for insect pests; causes serious economic losses to farmers as the varieties of crop are most important to attract and allow pests for infestation. In this regard cultivation of crop varieties which are highly resistant against insect pests may play vital role to suppress infestation and diseases caused or transmitted by insects. If there are persistent viruses, plant resistance to their transmitters usually reduce virus-spread by slowing down their replication (Panda and Khush, 1995).By encouraging pest resistance varieties; the issues related to chemical control as well as expenditure regarding inputs can be minimized; in result nature friendly and polluted free atmosphere will also be augmented. There are some factors which may enhance capacity of resistance of plants against major insect pest species (Samih, 2005). Plant age, different parts of plants and the leaves with hairy characteristics (Bethke and Henneberry, 1984) found effective regarding survival and reproduction of insect pests in aspect of selection and changes in the B.tabaci populations on rapeseed-mustard (Fekri et al., 2013). Hairs and furs may be acts as physical barrier (Duffy, 1986), and responsible to provide micro climate for vegetarians (Willmer, 1986). There are many protections measures which play vital role against pests i.e. the quantity and kind of trichoms(Toscano et al., 2002; Snyder et al., 1998) and chemical substances as well as the thickness of pod (Leidl et al., 1995).

International Journal of Academic and Applied Research (IJAAR) ISSN: 2643-9603 Vol. 5 Issue 7, July - 2021, Pages: 69-74

Bhatiet al. (2015) examined varietal resistance in rape-seed mustard and reported that mustard aphid, mustard sawfly, painted bug and cabbage butterfly were found attacking the mustard crop; while varieties BSH-1 and YST-151 showed higher susceptibility to mustard aphids as compared with brassica varieties Narendra Rai, GSC-6 and T-27. Singh et al. (2015) reported that on variety YST-151 the aphid population was 2.9 larvae/10 plants showing susceptibility to sawfly. Sahitoet al. (2010) indicated that Bemisiatabaci, (Genn). was one of themajor mustard insect pests and showed that higher (6.71+0.98/leaf) population of B. tabaci was recorded on Yellow sarsoon than Dark green leaves (6.30 + 0.61), Brown sarsoon (6.19 + 0.63), Raya Anmol (5.40 + 0.55), Torya Early (5.38+0.57) and Rai S-9 (3.79+0.50). Das et al. (2013) showed that relative humidity and rainfall had negative influence on pests and natural enemies during the study period.

The findings of the study indicated that highest aphid population was recorded on P-23-R2 variety and the lowest aphid population was recorded on variety UCD-1202. The LSD test suggested that the differences in whitefly population among mustard varieties were statistically significant (P<0.05). The sucking insect pest resistance trend suggested that UCD-1202 may preferably be cultivated having some resistance to sucking insect pests. These results are in accordance with those of Rohilla et al. (1990) who reported that L. ervsimi is most destructive insect causing severe reduction in seed yield varying from 15.0 to 73.3%; while Verma, et al. (1993) found mustard aphid, Lipaphiserysimi (Kalt.), as the major insect pest of mustard. Panda and Khush (1995) found that varieties with thicker pods suppressed insect pest infestation and showed resistance in diseases transmitted by insects; while Karmakar (2003) compared mustard cultivars B-9, NC-1, RW-351 and PGS-1004 for resistance to Lipaphiserysimi and found that lowest aphid population was recorded on PGS-1004 and this cultivar also showed higher yield than rest of the cultivars. Singhet al. (2006) reported that Indian mustard (cv. Pusa Jai Kisan) showed relative resistance to Lipaphiserysimi; while Saljoqiet al. (2006) reported that most of the hybrid mustard cultivars with thicker stems were resistant to Lipaphiserysimi and mustard sawfly. Sahitoet al. (2010) indicated that Lipaphiserysimi (Kalt) was the major mustard insect pest and showed that higher aphid population was recorded on Yellow sarsoon than Dark green leaves, Brown sarsoon, Raya Anmol, Torya Early and Rai S-9. Das et al. (2013) showed that environmental factors had also significant impact on the insect pest population.

6. CONCLUSIONS

It is concluded that maximum infestation of thrip, whitefly, aphid and jassid was observed for variety 'P-23-R2' and minimum was observed for variety 'UCD-1202'. The peak infestation of thrip, whitefly and aphid was observed on 15th

January, 2018 in all five mustard varieties. The population was linear decreased from 22nd January, 2018 to 12th March, 2018. Peak population of jassid was recorded on 12th March 2018.

REFERENCES

Ahmad, M., M. Naeem and I. A. Khan. 2013. Relative abundance of aphids population on different brassica genotypes. Sarhad Journal of Agriculture, 29 (1): 133-138.

Arshad, A. and P.Q. Rizvi. 2011. Screening of different cultivars of rapeseed-mustard against mustard aphid, Lipaphiserysimi, Kaltenbach with respect to sowing dates. Asian Journal of Plant Sciences, 10 (2): 383-392.

Bakhetia, D.R.C. and B.S. Sekhon. 1989. Insect-pests and their management in rapeseed-mustard. Journal of Oilseeds Research, 6 (2): 147-151.

Begum, S. 1995. Observations on the economic threshold level of the mustard aphid, *Lipaphiserysimi*(Kaltenbach) on mustard in Bangladesh. Bangladesh Journal of Zoology, 23 (1): 13-16.

Bethke, J.A. and J.J. Henneberry. 1984. *Bemisiatabaci*: effect of cotton leaf pubescence on abundance. Journal of Southwest Entomology, 9 (1): 91–94.

Bhati, R., R.C. Sharma and R. Singh. 2015. Studies on occurrence of insect-pests of different *Brassica* species. International Journal of Current Science, 14 (1): 125-132.

Biswas, G.C. 2013. Comparative effectiveness of neem extracts and synthetic organic insecticide against mustard aphid. Bangladesh Journal of Agriculture Research, 38 (2): 181-187.

Das, B., S. Patra, S.F. Alam and M.L. Chaterjee. 2013. Population dynamics of major insect pests and their natural enemies on cabbage under new alluvial zone of West Bengal. The Journal of Plant Protection Sciences, 5 (1): 42-49.

Fekri, M.S., M.A. Samih, S. Imani and M. Zarabi. 2013. Study of host preference and the comparison of some biological characteristics of *Bemisiatabasi* (Genn.) on mustard varieties. Journal of Plant Protection Research, 53 (2): 47-52.

Gajanana, T.M., P.N. Krishna Moorthy, H.L. Anupama, R. Raghunatha and G.T. Prasanna Kumar. 2006. Integrated pest and disease management in mustard : an economic analysis. Agricultural Economics Research Review, 26 (2): 269-280.

GOP. 2015. Area and production of other major kharif and rabi crops. Economic survey of Pakistan (2014-15), Ministry of Food and Agriculture; Federal Bureau of Statistics, Government of Pakistan, Islamabad, Pp.22.

Goswami, V. and M.S. Khan. 2014. Impact of honey bee pollination on pod set of mustard (*Brassica juncea* L.

International Journal of Academic and Applied Research (IJAAR) ISSN: 2643-9603 Vol. 5 Issue 7, July - 2021, Pages: 69-74

Cruciferae) at pantnagar. International Quarterly Journal of Life Science, 9 (1): 75-78.

Jagdev, K., S. Kular and S. Kumar. 2011. Quantification of avoidable yield losses in oilseed *Brassica* caused by insect pests. Journal of Plant Protection Research, 51 (2): 211-220.

Jech, L.E. and S.H. Husman. 2015. Improved areawide whitefly management through industry and extension partnership. Proceeding of Beltwide Cotton Conference San Diego, California, USA, 5-9 (2): 1081-1083.

Jha, L.K. 1987. Applied agriculture entomology new central book agency Calcutta. Pp 258.

Karmakar, K. 2003. Effect of date of sowing on the incidence of insect pests of rape and mustard. Journal of Interacademicia, 7 (4): 420-425.

Krishna Moorthy, P.N., N.K. Krishna Kumar, S. Prabhu Kumar, R. Raghunatha and G.T. Prasanna Kumar. 2003. Validation of IPM of mustard fruit borer using NPV sprays and marigold as trap crop. In: Proceedings of the Symposium on Biological Control of Lepidopteran Pests, Eds: P.L. Tandon, C.R. Ballal, S.K. Jalali and R.J. Rabindra, Bangalore, Pp. 261-265.

Liedl, B.E., D.M. Lawsonn, K.K. White, J.A. Shpirp, D.E. Cohen, W.G. Carson, J.T. Trumble and M.A. Mutschler. 1995. Acylsugars of wild mustard *Lycopersiconpennellii* alters settling and reduces oviposition of *Bemisiaargentifolii* (Homoptera: Aleyrodidae). Journal of Economic and Entomology, 88 (3): 742–748.

Malik, K.P., M. Hussain, A.I. Khan, M.A. Haq and M.M. Iqbal. 2012. Influence of plant age, whitefly population and cultivar resistance on infection of cotton plants by cotton leaf curl virus (CLCuV) in Pakistan. Field Crops Research, 86 (1): 15-21.

Mamun, M.S.A., M.H. Ali, M.M. Ferdous, M.A. Rahman and M.A. Hossain. 2010. Assessment of several mustard varieties resistance to mustard aphid, *Lipaphiserysimi* (Kalt.). Journal of Soil Nature, 4 (1): 34-38.

Mandal, D., P. Bhowmik and M.L. Chatterjee. 2012. Evaluation of new and conventional insecticides for the management of mustard aphid, *Lipaphiserysimi*Kalt. (Homoptera: Aphididae) on rapeseed (*Brassicajuncea* L.). The Journal of Plant Protection Sciences, 4 (2): 37-42.

Muhammad, R., A. Muhammad, M. Amer and S.A. Shad. 2015. Insect pest status of aphids on oilseed *Brassica* crops and need for chemical control. Journal of Plant Science, 59 (2): 748-755.

Panda, N. and G.S. Khush. 1995. Host plant resistance to insects. Wallingford, CAB International, UK, Pp. 431.

Perry, L.M. 1999. Medicinal plants of east and southeast Asia. MIT Press, Cambridge.

Pradhan, T.S. 1990. Status of insect pests of cruciferous in U.P. India. Indian Journal of Agriculture Research, 12 (2): 45-50.

Pradhan, T.S. 2012. Status of insect pests of cruciferous in U.P. India. Indian Journal of Agriculture Research, 12: 45-50.

Rohilla, H.R., H. Singh and P.R. Kumar. 1990. Preliminary screening of national varieties of *Brassica juncea*(L.) (Czern and Coss) against mustard aphid, *Lipaphiserysimi*(Kalt.). Journal of Oilseeds Research, 7 (2): 81-83.

Sahito, H.A., A.G. Lanjar and B. Mal. 2010. Studies on population dynamics of sucking insect pests of mustard crop (*Brassica campestris*). Pakistan Journal of Agriculture Engineering and Veterinary Sciences, 26 (1): 66-74.

Saljoqi, A.U., R. Sadur-Rehman, N. Hussain and A.K. Shah. 2006. Insect pests of canola crop (other than aphid). Journal of Agriculture and Biology and Sciences, 1 (4): 19-21.

Samih, M.A. 2005. Comparative study on biological parameters of *Bemisiatabaci* (Genn.) collected on four host plants from Varamin Iran. Community Agriculture Applied Biology Sciences, 70 (4): 663–670.

Sarkate, R.S., B.V. Bhede and S.R. Shinde. 2015. Varietal screening of mustard genotypes against aphid *Lipaphiserysimi* and leaf webber*Crocidolomiabinotalis* in Maharashtra. Ecology, Environment and Conservation Paper, 21 (1): 233-236.

Sarker, P.K., M. Rahman and B.C. Das. 2017. Varietal preference of *Lipaphiserysimi* (Kaltenbach) on three species of *Brassica*. Journal of Biological Science, 17 (1): 145-148.

Singh, A.P., P.P. Singh and Y.P. Singh. 2006. Pest complex of Indian mustard, *Brassica juncea*, in eastern Rajasthan. Indian Journal of Entomology, 68 (2): 48-149.

Singh, R.K. Pal and R.A. Katiyar. 2011. Effect of some pesticides on foraging activities of different species of honey bees in mustard (*Brassicajuncea* L.). International Journal of Agriculture Sciences, 7 (1): 167-168.

Singh, S.P., D.K.S. Kumar, C.S. Shekhawat and D. Kumar. 2015. Seasonal abundance of insect-pests on mustard varieties (*Brassica* spp.) and relation to abiotic factors. Annals of Biology, 31 (1): 109-112.

Snyder, J.C., A.M. Simmons and R.R. Tracker. 1998. Attractancy and oviposition response of type IV trichome density on leaves of *Lycopersiconesculentum* grown in three day-lenght regimes. Journal of Entomology Sciences, 33 (3): 270–281.

Srivastava, A.S. and J.L. Srivastava. 1972. Ecological studies on aphid, painted bug and sawfly attacking mustard and

International Journal of Academic and Applied Research (IJAAR) ISSN: 2643-9603 Vol. 5 Issue 7, July - 2021, Pages: 69-74

rapeseed in India. F.A.O. P.L. Protection Bulletin, 20 (6): 136-140.

Thakur, D.K. 1976. Pest complex of mustard crop and relative efficacy of some important insecticides against important insect-pests of mustard crop. Journal of Entomology, 2 (2): 119.

Toscano, L.C., A.L. Boica and W.I. Maruyama. 2002. Non preference of whitefly for oviposition in mustard genotypes. Journal of Sciences Agriculture, 59 (4): 112-117.

Umrao, R., R.K. Pal and D.K. Singh. 2012. Studies of some insecticides and bio pesticides on foraging behaviour of honey bees in mustard (*Brassicajuncea* L.). Asian Journal of Biology Sciences, 7 (2): 214-215.

Verma, A. K., S. K. Patyal, O. P. Bhalla and K. C. Sharma. 2013. Bioecology of painted bug (*Bagradacruciferarum*) (Hemiptera:Pentatomidae) on seed crop of cauliflower (*Brassica oleracea*).Indian J. Agri. Sci., 63 (10): 676-678.

Wikipedia, 2015. Mustard from USDA Nutrient Database in Wikipedia: a component of Wikimedia foundation, Inc. USA.

Willmer, P. 1986. Microclimatic effects on insects at the plant surface. In: "Insects and the Plant Surface" (B. Juniper, R. Southwood, eds.). Edward Arnold, London, Pp. 360. p. 65–80.