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1. Introduction 

Consider the multivariate regression model 

𝑦𝑖
𝑇 = 𝑐𝑖

𝑇 + 𝑥𝑖
𝑇𝑀 + 𝑒𝑖

𝑇 , 𝑖 = 1, 2,… , 𝑛,                                 (1.1) 

where 𝑥𝑖(𝑟 × 1) is a vector of dependent variables, 𝑦𝑖(𝑡 × 1) is the vector of dependent variables, 𝑀(𝑟 × 1) is a matrix whose columns 

are the individual unknown regression coefficients for each dependent variable on the best of the independent variables, 𝑒𝑖(𝑡 × 1) is 

a vector of unknown response specific constants and 𝑒𝑖(𝑡 × 1) is a vector of stochastic errors assumed to be independently distributed 

with zero mean and unit variance. 𝑇 indicates transpose of a matrix or a vector. In matrix form, Equation (1.1) can be written as 

𝑌 = 𝐶 + 𝑋𝑀 + 𝐸,   𝑤ℎ𝑒𝑟𝑒 𝐶 = 𝐼𝑒𝑖
𝑇 .                               (1.2) 

Suppose the rank of M is s, where 𝑠 ≤ 𝑡. The full rank regression coefficient matrix occurs when 𝑠 = 𝑡. The reduced rank 

regression coefficient matrix occurs (due to some linear restrictions on the regression coefficients) when 𝑠 < 𝑡. Such models have 

been studied by several authors. Izenman (1975) considered the problem of estimating the regression coefficient matrix having (known 

reduced) rank [6]. Alvarez et al. (2016) present a procedure for coefficient estimation in multivariate model for reduced rank in the 

presence of multicollinearity [2]. Davies et al. (1982) gave a method for estimating the coefficient matrix, which is justified by a least-

square analysis employing singular value decomposition and the Eckart-Young theorem [3]. Izenman (1975) showed that canonical 

variable and principal component are special cases of a reduced rank regression model [6]. 

One problem that arises in the estimation of the reduced rank regression coefficient matrix is the choice of 𝑠, the assumed maximum 

rank of M. Madhi (1981) employed cross validation criterion to determine the rank in reduced rank regression [8]. 

In this paper, we propose a method for determining the actual rank of the coefficient matrix in the reduced rank regression model 

(RRRM) employing the method of estimation proposed by Davies et al. (1982) [3] and the Akaike's information criterion (AIC) [1]. 

Some illustrative examples are also given. 

 

2. Preliminaries 

2.1.  Singular Value Decomposition of a Matrix (SVD) (Mandel 1982 [9]) 

If 𝐴 is a 𝑚 × 𝑛 matrix, of rank 𝑘, it can be expressed as 

𝐴 = 𝑈𝐷𝑊𝑇 ,                                (2.1) 

where 

𝑈 is an 𝑚 × 𝑛 orthogonal matrix, 

𝑊 is an 𝑛 × 𝑛 orthogonal matrix, 

𝐷 is a 𝑚 × 𝑛 diagonal matrix with non-negative elements, 𝐷 = 𝑑𝑖𝑎𝑔(𝜎1, … , 𝜎𝑘, 0, … , 0), 𝜎1 ≥ ⋯ ≥ 𝜎𝑘 > 0. 

 

If 𝑄 and 𝑉 consist of the first 𝑘 columns of 𝑈 and 𝑊 respectively, and Σ is a 𝑘 × 𝑘 diagonal matrix with positive diagonal elements, 

𝜎1 ≥ ⋯ ≥ 𝜎𝑘 > 0, then  

𝐴 = 𝑄Σ𝑉𝑇 ,                                         (2.2) 

where 𝑄𝑇𝑄 = 𝑉𝑇𝑉 = 𝐼𝑘 and Σ = 𝑑𝑖𝑎𝑔(𝜎1, 𝜎2, … , 𝜎𝑘) with 𝜎1 ≥ 𝜎2, … ≥  𝜎𝑘 > 0 is called basic diagonal (Green, 1976) [5]. 
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The basic diagonal part of the decomposition is always unique regardless of whether 𝐴 is of full rank, square, or rectangular. Each one 

of Equations (2.1) and (2.2) is equivalent to 

𝐴 = 𝜎1𝑞1𝑣1
𝑇 + 𝜎2𝑞2𝑣2

𝑇 + …+ 𝜎𝑘𝑞𝑘𝑣𝑘
𝑇 .                        (2.3) 

That is, the sum of 𝑘 matrices of rank 1. The column vectors {𝑞𝑖}𝑖=1
𝑘  of 𝑄 are orthonormal (orthogonal and each of length 1) and each 

has 𝑚 components. The row vectors {𝑣𝑖}𝑖=1
𝑘 of 𝑉𝑇 are orthonormal and each has 𝑛 components.  

The numbers 𝜎1, 𝜎2, … are the singular values of 𝐴. The vectors [𝑞1, 𝑞2, … ]𝑇 and [𝑣1, 𝑣2, … ]𝑇  are respectively the left and right 

singular vectors. When 𝐴 is square and symmetric the singular decomposition reduces to known spectral decomposition, where the 

left and right singular vectors are identical and reduce to eigenvectors. 

The orthogonal sets {𝑞1, 𝑞2, … , 𝑞𝑘} and {𝑣1, 𝑣2, … , 𝑣𝑘} can be completed to sets {𝑞1, 𝑞2, … , 𝑞𝑚} and {𝑣1, 𝑣2, … , 𝑣𝑚}. A complete 

decomposition of 𝐴 is then (if 𝑚 ≤ 𝑛 without loss of generality) 

∑ 𝜎𝑖𝑞𝑖𝑣𝑖
𝑇 ,𝑚

𝑖=1  with 𝜎𝑘+1 = ⋯ = 𝜎𝑚 = 0.                      (2.4) 

The singular decomposition (2.3) is of course equal in numerical value to the complete singular decomposition (2.1). The SVD is 

closely related to the eigenvalue decomposition, since 

𝐴𝐴𝑇 = 𝑄𝛴2𝑄𝑇 ,                          (2.5) 

where 𝛴2 = 𝑑𝑖𝑎𝑔(𝜎1
2, 𝜎2

2, … , 𝜎𝑘
2) and 𝜎1

2, 𝜎2
2, … , 𝜎𝑘

2 are the non-zero eigenvalues of the 𝑚 × 𝑛 matrix 𝐴𝐴𝑇 and the columns of 𝑄 are 

the corresponding eigenvectors of 𝐴𝐴𝑇. Furthermore,  

𝐴𝐴𝑇 = 𝑉𝛴2𝑉𝑇 ,                           (2.6) 

where 𝜎1
2, 𝜎2

2, … , 𝜎𝑘
2 are also the non-zero eigenvalues of the 𝑛 × 𝑛  matrix 𝐴𝐴𝑇and the columns of 𝑉 are the corresponding 

eigenvectors. Hence, the singular values of 𝐴 are the square roots of the common positive eigenvalues of the 𝑚 × 𝑚 matrix 𝐴𝐴𝑇  and 

the 𝑛 × 𝑛  matrix 𝐴𝐴𝑇 . 

 

Rank Determination 

If 𝐴 is a 𝑚 × 𝑛 matrix (𝑚 ≥ 𝑛), of rank 𝑘 < 𝑛, then the singular values of 𝐴 satisfy  

𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑘 > 𝜎𝑘+1 = ⋯ = 𝜎𝑛 = 0. 

Conversely, if 𝜎𝑘 ≠ 0  and 𝜎𝑘+1 = ⋯ = 𝜎𝑘 = 0 then 𝐴 is of rank 𝑘. Thus the singular value decomposition can be used to determine 

the rank of matrix. 

 

2.2 Generalized Inverse in Linear Statistical Model 

Generalized inverse can be very useful in the regression model, where inverses arise naturally. For example, computer solutions 

for models involving inverses can be simplified if generalized inverses are used in place of ordinary inverses. There are many types 

of generalized inverses, each obeying a particular set of properties (Green, 2014) [5]. Also, different ways have been developed to 

define these inverses. The basic types of generalized inverse are discussed here. 

 

G-Inverse  

Let 𝐴 be an 𝑚 × 𝑛 matrix of any rank, a generalised inverse (or a G-Inverse) of 𝐴 is an 𝑛 × 𝑚 denoted by𝐴−, such that  

𝐴𝐴−𝐴 = 𝐴. 

A generalized inverse always exists, but it is not necessarily unique. One way of illustrating the existence of 𝐴− and its non-

uniqueness is by using SVD. For 𝑚 × 𝑛 matrix, write 

𝐴 = 𝑈Σ𝑉𝑇 , 

then the general G-Inverse (Good, 1969) [4] is  

𝐴− = VΣ−𝑈𝑇 = 𝜎1
−𝑣1𝑢1

𝑇 + ⋯+ 𝜎𝑝
−𝑣𝑝𝑢𝑝

𝑇 , 
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where 𝑝 = min(𝑚, 𝑛), 𝜎1, 𝜎2, … , 𝜎𝑝 are all the singular values of 𝐴 (non-negative square roots of all the eigenvalues of 𝐴𝑇𝐴 if 𝑚 ≤ 𝑛, 

or 𝐴𝑇𝐴 if 𝑚 ≥ 𝑛), and 𝜎− means 𝜎−1if 𝜎 ≠ 0 and is otherwise arbitrary. Rao (1965, p.25) [10] shows that 𝐴− exists such that rank 

𝐴− = min (𝑚, 𝑛) irrespective of the value of rank 𝐴. This is obvious in terms of the SVD by taking all 𝜎𝑖
− ≠ 0.   

 

    Moore-Penrose Generalized Inverse  

Moore and Penrose (Good, 1969) [4] defined a particular generalized inverse often called (the pseudo inverse) as a matrix 𝐴+(𝑛,𝑚) 

to distinguish it from a general g-inverse 𝐴−, satisfying the properties: 

 𝐴𝐴+𝐴 = 𝐴 

 𝐴+𝐴𝐴+ = 𝐴+ 

 (𝐴𝐴+)𝑇 = 𝐴𝐴+  

 (𝐴+𝐴)𝑇 = 𝐴+𝐴  

Such an inverse always exists and is unique. For an arbitrary 𝑚 × 𝑛 matrix 𝐴, of rank 𝑘, write the SVD as  

𝐴 = 𝑈Σ𝑉𝑇 , 

then the Moore-Penrose inverse is 

𝐴+ = 𝑈Σ−1𝑈𝑇 = 𝜎1
−1𝑣1𝑢1

𝑇 + ⋯+ 𝜎𝑝
−1𝑣𝑝𝑢𝑝

𝑇 .                      (2.7) 

It is clear that 𝐴+ can be uniquely defined as the the g-inverse of minimum rank, since the rank of 𝐴+ is simply the number of 𝜎𝑗 's that 

do not vanish. 

 

2.3 Eckart-Young Theorem 

Given 𝑌(𝑚, 𝑛), of rank 𝑠 = min (𝑚, 𝑛), the matrix 𝐻+(𝑚, 𝑛) of rank at most (𝑟 < min(𝑚, 𝑛)) that best approximate 𝑌, i.e. 

𝐻+ satisfies 

min
𝐻 𝑟𝑎𝑛𝑘 𝐻≤𝑟

||𝑌 − 𝐻||2, 

is given by the partial sum of the first 𝑟 terms of the SVD of 𝑌. That is, if  

𝑌 = ∑ 𝜎𝑖𝑢𝑖𝑣𝑖
𝑇 ,

𝑠=min {𝑚,𝑛}

𝑖=1

 

then  

𝐻∗ = ∑ 𝜎𝑖𝑢𝑖𝑣𝑖
𝑇

𝑟

𝑖=1

 

2.4 Akaike’s Information Criterion (AIC) 

Akaike (1973) defined an information criterion (AIC) [1]. This is very general criterion based on information theoretic concepts 

and can be used in a wide range of contexts. Snipes and Taylor (2014) [11] utilized AIC to compare different models. Karagrigorious 

and others (2011) investigated the asymptotic properties of AIC with applications [7]. It is based in part on the likelihood function. 

When a model involving 𝑘 independently adjusted parameters is fitted to data, the AIC is defined by  

𝐴𝐼𝐶 = (−2)log (L(𝜃̂/data))+2𝑘, 

𝜃̂ is the estimated parameters, and 𝑘 is the number of parameters in model. 𝐿(𝜃̂, 𝑑𝑎𝑡𝑎), the likelihood at its maximum point of the 

model estimated, 𝑙𝑜𝑔, denotes the natural logarithm. When fitting models, it is possible to increase the likelihood by adding 

parameters, but doing so may result in overfitting. The AIC resolves this problem by interdicting the penalty term for the number of 



International Journal of Academic and Applied Research (IJAAR) 

ISSN: 2643-9603 

Vol. 5 Issue 8, August - 2021, Pages: 43-51 

www.ijeais.org/ijaar 

46 

parameters in the model. If we plot AIC(𝑘) against 𝑘 we can seek a minimum value of 𝑘 at which this minimum value is attained. 

This minimum value of AIC is called MAIC (minimum AIC). 

 

     3. Estimation of the Coefficient Matrix Rank in RRRM 

In this section, we discuss the method of estimation of the coefficient matrix which has been developed by Davies and Tso (1982). 

A solution employing matrix singular value decomposition was proposed and justified by the Eckart-Young theorem. This solution 

has the feature of generality as we can use it even when the regression coefficients are under determined. Generalized inverses have 

been used to achieve this generality. 

Consider the model (1.1). Suppose that there are 𝑠 < min (𝑟, 𝑡) linear combinations of the independent variables 𝑛1 =
𝑥𝑇𝛼1, … , 𝑛𝑠 = 𝑥𝑇𝛼𝑠 (i.e. 𝑛𝑇 = (𝑛1, … , 𝑛𝑠)) normalized such that 𝛼𝑖

𝑇𝛼𝑖 = 𝐽𝑖𝑗 , such that all the variation in 𝑦 is due to only linear 

combinations of 𝑥 plus stochastic error. This reduce the set of independent variables 𝑥1, 𝑥2, … , 𝑥𝑟  to a new set of independent variables 

𝑛1, … , 𝑛𝑠. Consequently, the rank of 𝑀 will be less than or equal to 𝑠. Again consider the model (1.2). We now center the data by 

subtracting the column means from each variables of 𝑋 and 𝑌 such that  

𝐼𝑇𝑋 = 𝑂𝑇 , 𝐼𝑇𝑌 = 0𝑇 . 

Hence, the model (1.2) can be written as  

𝑌 = 𝑋𝑀 + 𝐸, 

where 𝑋(𝑛 × 𝑟) and 𝑌(𝑛 × 𝑡) are matrices whose 𝑛 rows contain, respectively, independent and dependent data, and whose columns 

each sum to zero, 𝐸 is the matrix of stochastic errors which are assumed to be uncorrelated row-wise. We have lost, 𝑐 parameters but 

there is a corresponding loss in the data since quantities  

𝑦𝑖𝑗 − 𝑦̅𝑖𝑗 , 𝑖 = 1, 2, … , 𝑛; 𝑗 = 1, 2, … , 𝑡  

represents only (𝑛 − 1) × 𝑡 separate pieces of information to the fact that their sum to zero, whereas 

𝑦𝑖𝑗 , 𝑖 = 1, 2,… , 𝑛; 𝑗 = 1, 2, … , 𝑡 

represent 𝑛 × 𝑡 separate pieces of information. Effectively, the lost pieces of information have been used to enable the proper 

adjustments to be made to the model so that the 𝐶 term can be removed. This transformation of the origin data to corrected data is 

consistent with least-square estimation of the vector of response constants 𝑐. The problem now is to estimate the unknown matrix of 

regression coefficients 𝑀(𝑟 × 𝑡) subject to the rank constraint  

𝑟𝑎𝑛𝑘(𝑀) ≤ 𝑠 ≤ min(𝑟, 𝑡). 

The first step is to determine the unconstrained least-squares estimate of 𝑀̂  by minimizing  

||𝑌 − 𝑋𝑀||2                                                         (3.1) 

The unique least-squares solution can be written in generalized matrix form as  

𝑀̂ = 𝑋+𝑌, 

when 𝑋 is of full column rank, this is equivalent to the ordinary least-squares estimator,  

𝑀̂ = (𝑋𝑇𝑋)−1𝑋𝑇𝑌 

Hence, the corresponding unconstrained fitted of 𝑌 are obtained by 

𝑌̂ = 𝑋𝑀̂ 

The next step is to consider the estimation of the matrix 𝑀 when it is constrained to have rank at most 𝑠. First of all, let us 

decompose (3.1) as 

 

||𝑌 − 𝑋𝑀||2 = ||𝑌 − 𝑌̂||2 + ||𝑌̂ − 𝑋𝑀||2.                            (3.2) 
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The second term only, in the above decomposition, varies as 𝑀 varies. We may choose 𝑀 to satisfy 𝑋𝑀 = (𝑌̂)𝑠, where 𝑌̂, is the 

partial sum to the 𝑠 terms of the SVD of 𝑌̂. By the Eckart-Young theorem 𝑀 must minimise the second term in (3.2) and therefore 

must minimise the least-squares criterion (3.1).  

Finding 𝑌̂, perform the singular value decomposition of 𝑌̅ as follows: 

𝑌̂ = 𝑄Σ𝑉𝑇 , 

where 𝑄 = (𝑞1, … , 𝑞𝑡); Σ = 𝑑𝑖𝑎𝑔(𝜎1, … , 𝜎𝑡); 𝑉𝑇 = (𝑣1, … , 𝑣𝑡)
𝑇. 

Now, let 𝑀𝑠
∗ denote the optimal reduced rank regression coefficient matrix of rank 𝑠; then 𝑀𝑠

∗ can be computed by one of the 

following two methods: 

 

Method 1 

Evaluate the reduced-rank fitted values 𝑌𝑠
∗ = (𝑌̂𝑠) by taking the partial sum to the 𝑠 terms of the SVD of  𝑌̂, and then premultiplying 

it by 𝑋+, the generalized inverse of 𝑋, we get 

𝑀𝑠
∗ = 𝑋+𝑌∗ = 𝑋𝑇(𝑌̂)𝑠. 

 

Method 2 

We construct the 𝑡 × 𝑠 matrix 𝑉𝑠 by taking the first 𝑠 columns of the matrix 𝑉, i.e.  

𝑉𝑠 = (𝑣1, … , 𝑣𝑠) 

then evaluate 𝑀𝑠
∗ by  

𝑀𝑠
∗ = 𝑀̂𝑉𝑠𝑉𝑠

𝑇 . 

The corresponding reduced-rank fitted values of 𝑌 will be given by 

𝑌𝑠
∗ = 𝑌̂𝑠 = 𝑋𝑀𝑠

∗. 

Confirming that both method 1 and method 2 are equivalent numerically. The residual sum of squares resulting from a rank 𝑠 fit 

is then 

||𝑌 − 𝑌̂||2 + 𝜎𝑠+1
2 + ⋯+ 𝜎𝑡

2 

i.e. then residual resulting from an unconstrained fit plus the contribution from the least significant singular values of 𝑌̂. 

 

4. Determination of the Actual Rank of the Coefficient Matrix in the RRRM  

Akaike's Information Criterion (AIC) may be extended to the case of order determination for the multivariate linear model. Here, 

we try to find a formula, using AIC, that can help us to determine the actual rank of the coefficient matrix in the reduced-rank regression 

model. 

 

Let us consider the model: 

𝑌 = 𝑋𝑀 + 𝐸 with 𝐼𝑇𝑋 = 0𝑇 and 𝐼𝑇𝑌 = 0𝑇 

 

then the likelihood function can be given by 

𝐿(𝑀) = (2𝜋)−𝑛𝑡/2𝑒𝑥𝑝 {
−1

2
𝑡𝑟(𝑌 − 𝑋𝑀)(𝑌 − 𝑋𝑀)𝑇}, 

and the 𝑙𝑜𝑔-likelihood function is  

log 𝐿 = 𝐼(𝑀) =
−𝑛𝑡

2
𝑙𝑜𝑔2𝜋 −

1

2
𝑡𝑟{(𝑌 − 𝑋𝑀)(𝑌 − 𝑋𝑀)𝑇},                   (4.1) 
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when 𝑀𝑠
∗ is the rank 𝑠 maximum likelihood estimator of 𝑀, (4.1) becomes  

𝐼(𝑀𝑠
∗) =

−𝑛𝑡

2
𝑙𝑜𝑔2𝜋 −

1

2
𝑡𝑟(𝑌 − 𝑌𝑀𝑠

∗)(𝑌 − 𝑌𝑀𝑠
∗)𝑇 ,                        (4.2) 

letting 𝑌𝑠
∗ = 𝑋𝑀𝑠

∗, (4.2) can be written as  

𝐼(𝑀𝑠
∗) =

−𝑛𝑡

2
𝑙𝑜𝑔2𝜋 −

1

2
𝑡𝑟{(𝑌 − 𝑌𝑠

∗)(𝑌 − 𝑌𝑠
∗)𝑇} 

=
−𝑛𝑡

2
𝑙𝑜𝑔2𝜋 −

1

2
{𝑡𝑟𝑌𝑌𝑇 − 𝑡𝑟𝑌𝑠

∗𝑌𝑠
∗𝑇} 

=
−𝑛𝑡

2
𝑙𝑜𝑔2𝜋 −

1

2
𝑡𝑟𝑌𝑌𝑇 +

1

2
𝑡𝑟𝑌𝑠

∗𝑌𝑠
∗𝑇 

=
−𝑛𝑡

2
𝑙𝑜𝑔2𝜋 −

1

2
𝑡𝑟𝑌𝑌𝑇 +

1

2
∑ 𝜆𝑖

𝑠

𝑖=1

, 

where {𝜆𝑖| 𝑖 = 1, 2, … , 𝑡}are the eigenvalues of 𝑌̂𝑌̂𝑇 . The number of independently adjusted parameters within the model can be 

obtained as follows: 

The matrix 𝑀(𝑟 × 𝑡) has 𝑠 linearly independent columns. The remaining columns are linear combinations of these columns. Thus 

the total number of independently adjustable parameters is 

𝑟𝑠 + (𝑡 − 𝑠)𝑠 = 𝑠(𝑟 + 𝑡 − 𝑠). 

Therefore, the AIC for our model can be given by 

𝐴𝐼𝐶(𝑠) =
−2

𝑀𝑠
∗
+ 2𝑠(𝑟 + 𝑡 − 𝑠) 

= −2 {
−𝑛𝑡

2
𝑙𝑜𝑔2𝜋 −

1

2
𝑡𝑟𝑌𝑌𝑇 +

1

2
∑𝜆𝑖

𝑠

𝑖=1

} + 2𝑠(𝑟 + 𝑡 − 𝑠), 

we drop the constant and take the criterion to be 

𝐴𝐼𝐶(𝑠) = −∑ 𝜆𝑖 + 2𝑠(𝑟 + 𝑡 − 𝑠),                            (4.3)

𝑠

𝑖=1

 

where 𝑠 is the rank of the coefficient matrix. 

5. Applications 

In this section, we present two examples illustrating the application of the formula (4.3). A program was written to compute the 

singular values of the fitted values of 𝑌, needed in the computation of the reduced rank regression coefficients matrix, and AIC values. 

In addition, it computes 𝑀𝑠
∗ and the residual sum of squares resulting from a rank 𝑠 fit is also computed. 

 

1. Example 1 

Let  

𝑋 =

[
 
 
 
 
 
 
1
2
4

2
1
5

3 4 5
4 5 3
3 2 1

2 3 1 4 5
5
4
2

4
5
4

3 2 1
6 3 1
5 4 4]

 
 
 
 
 
 

,    𝑀 =

[
 
 
 
 

1 2 3 4
3 6 9 12
4

−1
8

3
3
6

2 1
7 11
4 2 ]

 
 
 
 

,    𝐶 =

[
 
 
 
 
 
1 −2 3 −4
1 −2 3 −4
1
1
1
1
1

−2
−2
−2
−2
−2

3 −4
3 −4
3 −4
3 −4
3 −4]
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The second row in 𝑀 is equal to three times the first row. Row four is equal to the difference of rows two and three, and row five 

is twice the third row. The only linearly independent rows are the first and third, and these from a basis for the five vectors. Thus the 

rank of 𝑀 is 2.  

The singular values of 𝑌̂ are:  

[46.14312 24.54751 2.39542 1.45948] 

and coefficient matrices 𝑀𝑠
∗ are 

𝑀1
∗ =

[
 
 
 
 
2.18694 2.57638 2.94694 3.48654
6.44121 7.58823 8.67965 10.26894
1.64044
4.83434
3.48694

1.93256
5.69522
4.10788

2.21052 2.61528
6.51436 7.70718
4.69872 5.55907 ]

 
 
 
 

,         𝑀2
∗ =

[
 
 
 
 
−1.25697 1.01572 3.76999 6.10432
4.03679 6.49863 9.25428 12.09658
3.54042

−0.93804
6.71487

2.79357
3.07937
5.57067

1.75645 1.17106
7.89389 12.09487
3.92728 3.10546 ]

 
 
 
 

 

 

𝑀3
∗ =

[
 
 
 
 
−0.86736 0.22906 4.32260 5.97416
3.63478 7.31032 8.68408 12.23089
3.93039

−1.44702
7.11446

2.00620
4.10706
4.76386

2.30955 1.04077
7.17197 12.26492
4.49404 2.97196 ]

 
 
 
 

,         𝑀4
∗ =

[
 
 
 
 
−0.28343 −0.25499 3.40292 6.74292
3.61149 7.32962 8.72077 12.20023
3.94275

−1.15959
7.43854

1.99595
3.86878
4.49521

2.29008 1.05705
6.71926 12.64334
3.98363 3.39862 ]

 
 
 
 

 

 

The values of 𝑠 and its AIC values 

 

 

Minimum AIC value (MAIC) is attained with 𝑠 = 2. We conclude that the rank of 𝑀 is 2. 

  

2. Example 2 

Let   

 

The largest minor that can be formed from 𝑀 is of order 3. There is at least one minor which is not equal to zero. Thus, the rank 

of 𝑀 is 3. 

The singular values of 𝑌̂ are: 

[95.00338 16.02472 8.21635] 

and coefficient matrices 𝑀𝑠
∗ are 
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The values of 𝑠 and its AIC values 

 

Here, MAIC occurs with 𝑠 = 3. Hence, the rank of 𝑀 is 3. 

 

 

 

 

6. Conclusion 

The numerical examples show that AIC is effective in determining the actual rank in the reduced rank regression model. 
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