On Artin's characters table of the group $\left(\mathrm{Q}_{2 \mathrm{~m} \times} \mathrm{C}_{3}\right)$ When $\mathrm{m}=$ $2^{h} . p_{1}^{r_{1}} \cdot p_{2}^{r_{2}} \ldots . . p_{n}^{r_{n}}, \mathrm{~h}, \mathrm{r} \in \mathrm{Z}^{+}$and p is prime Number

Rajaa Hasan Abbas
University of Kufa, College of Education for Girls, Department of Mathematics
Email: rajaah.alabidy@uokufa.edu.iq

Abstract

The main purpose of this paper is to find the general form of Artin's characters table of the group $\left(Q_{2 m} \times C_{3}\right)$ When m is an even number where $Q_{2 m}$ is the Quaternion group of order $4 m$ and C_{3} is the Cyclic group of order3 this table depends on Artin's characters table of a quaternion group of order $4 m$ when m is an even number. which is denoted by $\operatorname{Ar}\left(Q_{2 m} \times C_{3}\right)$.

Keywords- Group; Quaternion group; Artin; Artin's characters table.

INTRODUCTION

Representation theory is a branch of the Mathematics that studies abstract algebraic structures by representing their elements as linear transformations of vector spaces and studies modules over these abstract algebraic structures .So that representation theory is a power full tool because it reduces problems in abstract algebra to problems in a linear algebra which is a very well understood theory. For a finite group G, let $\overline{\boldsymbol{R}}(\mathrm{G})$ denotes the abelian group generated by Z - valued characters of G under operation of point wise addition. Inside this group we have a subgroup generated by Artin characters (The characters induced form the principal characters of cyclic subgroups of G), which will be denoted by $T(G)$.The factor group $\overline{\boldsymbol{R}}(\mathrm{G}) / \mathrm{T}(\mathrm{G})$ is called the Artin Cokernel of G denoted by $A C(G)$.
A well known theorem dues to Artin asserted that $\mathrm{T}(\mathrm{G})$ has a finite index in $\overline{\boldsymbol{R}}(\mathrm{G})$ i.e, $[\overline{\boldsymbol{R}}(\mathrm{G}): \mathrm{T}(\mathrm{G})$] is finite so $\mathrm{AC}(\mathrm{G})$ is a finite abelian group.
The exponent of $\mathrm{AC}(\mathrm{G})$ is called Artin exponent of G and denoted by $\mathrm{A}(\mathrm{G})$. In 1967 T.Y. lam [9] proved a sharp form of Artin's theorem ,he determines the `least positive integer $\mathrm{A}(\mathrm{G})$ such that $[\overline{\boldsymbol{R}}(\mathrm{G}): \mathrm{T}(\mathrm{G})]=\mathrm{A}(\mathrm{G})$.In 1976 I. M.Isaacs[3] studied Character Theory of Finite Groups. In 1996 K.K Nwabuez [5] studied A(G) of p-groups. In 2009 S.J.Mahmood [8] studied the general from of Artin's characters table $\operatorname{Ar}\left(\mathrm{Q}_{2 \mathrm{~m}}\right)$ when m is an even number. The aim of this paper is to find the general from of the Artin's characters table of the group $\left(\mathrm{Q}_{2 \mathrm{~m}} \times \mathrm{C}_{3}\right)$ When $\mathrm{m}=2^{h} \cdot \boldsymbol{p}_{1}^{r_{1}} \cdot \boldsymbol{p}_{2}^{r_{2}} \ldots \ldots \boldsymbol{p}_{n}^{r_{n}}, \mathrm{~h}, \mathrm{r} \in \mathrm{Z}^{+}$and p is prime Number

1 Preliminaries

This section introduce some important definitions and basic concepts of the induced character, the Artin's characters tables, the Artin's characters table of $C_{p^{s}}$, the Artin's characters table of the Quaternion group $\mathrm{Q}_{2 \mathrm{~m}}$ when m is an even number and the Group $\left(\mathrm{Q}_{2 \mathrm{~m}} \times \mathrm{C}_{3}\right)$.

1.1 Definition: [7]

Two elements of G are said to be Γ - conjugate if the cyclic subgroups they generate are conjugate in G, this defines an equivalence relation on G. It is classes are called Γ - classes.

1.2 Example:

Consider a cyclic group $\mathrm{C}_{3}=\langle\mathrm{x}\rangle$ such that:
1 is Γ-conjugate 1
Then the Γ-class [1] $=\{1\}$
$\langle x\rangle=\left\langle x^{2}\right\rangle$
Then x and x^{2} are Γ - conjugate, and $[x]=\left\{x, x^{2}\right\}$
So that there are two Γ - classes of $\mathrm{C}_{3}:[1]$ and $[\mathrm{x}]$
In general for $C_{p^{s}}$ where p is any prime number, so that are $s+1$ distinct
Γ - classes Which are [1], [x], [x $\left.{ }^{p}\right], \ldots,\left[\mathrm{x} p^{s-1}\right]$.

1.3Definition:[3]

Let H be a subgroup of G and let φ be a class function on H , the induced class function on \boldsymbol{G}, is given by :
$\varphi^{\prime}(\mathrm{g})=\frac{1}{|\boldsymbol{H}|} \sum_{\boldsymbol{h} \in \boldsymbol{G}} \varphi^{\circ}\left(\boldsymbol{h} \boldsymbol{g} \boldsymbol{h}^{-1}\right)$
where $\varphi{ }^{\circ}$ is defined by:

$$
\varphi^{\circ}(\mathrm{x})=\left\{\begin{array}{ccc}
\varphi(x) & \text { if } & x \in H \\
0 & \text { if } & x \notin H
\end{array}\right.
$$

1.4Proposition :[6]

Let H be a subgroup of G and φ be a character of H , then φ^{\prime} is a character of G .

1.5Definition:[4]

The character φ^{\prime} of G is called induced character on G.

1.6Example:

C_{3} is cyclic subgroup of D_{3},
the character φ on C_{3} is defined as follow :
where $\omega=\mathrm{e}^{2 \pi / 3}$

$$
\begin{aligned}
& \begin{aligned}
& \varphi^{\prime}(1)=\frac{1}{|H|} \sum_{h \in D_{3}} \varphi^{\circ}\left(h \cdot 1 \cdot h^{-1}\right)=\frac{1}{|H|} \sum_{h \in D_{3}} \varphi(1) \\
&=\frac{1}{3}(1+1+1+1+1+1)=\frac{1}{3} \cdot 6=2
\end{aligned} \\
& \begin{aligned}
\varphi^{\prime}(\mathrm{r})= & \frac{1}{|H|} \sum_{h \in D_{3}} \varphi^{\circ}\left(h \cdot r \cdot h^{-1}\right)=\frac{1}{|H|}(\varphi(\mathrm{r})+\varphi(\mathrm{r})+\varphi(\mathrm{r}))+\left(\varphi\left(\mathrm{r}^{2}\right)+\varphi\left(\mathrm{r}^{2}\right)+\varphi\left(\mathrm{r}^{2}\right)\right) \\
& =\frac{1}{3} \cdot 3\left(\varphi(\mathrm{r})+\varphi\left(\mathrm{r}^{2}\right)\right)=\omega+\omega^{2}
\end{aligned}
\end{aligned}
$$

Since $\quad \mathrm{S} \notin \mathrm{C}_{3}$ then $\varphi^{\prime}(\mathrm{S})=0$. and φ^{\prime} is a character of D_{3}.

1.7Theorem:[2]

Let H be a cyclic subgroup of G and $\mathrm{h}_{1}, \mathrm{~h}_{2}, \ldots, \mathrm{~h}_{m}$ are chosen representative for m-conjugate classes, then :
1- $\quad \varphi^{\prime}(g)=\frac{\left|C_{G}(g)\right|}{\left|C_{H}(g)\right|} \sum_{i=1}^{m} \varphi\left(h_{i}\right) \quad$ if $\quad \mathrm{h}_{i} \in \mathrm{H} \cap \mathrm{CL}(\mathrm{g})$
2- $\varphi^{\prime}(\mathrm{g})=0$
if $\quad \mathrm{H} \cap \mathrm{CL}(\mathrm{g})=\phi$.

1.8Definition:[3]

Let G be a finite group, all characters of G induced from a principal character of cyclic subgroups of G are called Artin's characters of G.

1.9Example:

To find the Artin's character of C_{3},
there are two cyclic subgroups of C_{3}, which are $\{1\}$ and $\mathrm{C}_{3}=\langle\mathrm{x}\rangle$ and let φ be principal character, then :
by using theorem (1.7)

$$
\begin{aligned}
& \varphi^{\prime}(g)=\frac{\left|C_{G}(g)\right|}{\left|C_{H}(g)\right|} \sum_{i=1}^{m} \varphi\left(h_{i}\right) \quad \text { if } \quad \mathrm{h}_{i} \in \mathrm{H} \cap \mathrm{CL}(\mathrm{~g}) \\
& \varphi^{\prime}(\mathrm{g})=0 \quad \text { if } \quad \mathrm{H} \cap \mathrm{CL}(\mathrm{~g})=\phi .
\end{aligned}
$$

if $\mathrm{H}=\{1\}$ and $\mathrm{G}=\mathrm{C}_{3}$
since $\mathrm{H} \cap \mathrm{CL}(1)=\{1\}$, then

$$
\varphi_{1}^{\prime}(1)=\frac{3}{1} \cdot \varphi(1)=3 \cdot 1=3
$$

since $\mathrm{H} \cap \mathrm{CL}(\mathrm{x})=\phi$, then

$$
\varphi_{1}^{\prime}(\mathrm{x})=0
$$

since $\mathrm{H} \cap \mathrm{CL}\left(\mathrm{x}^{2}\right)=\phi$, then

$$
\varphi_{1}^{\prime}\left(\mathrm{x}^{2}\right)=0
$$

if $\mathrm{H}=\mathrm{C}_{3}$
since $\mathrm{H} \cap \mathrm{CL}(1)=\{1\}$, then

$$
\varphi_{2}^{\prime}(1)=\frac{3}{3} \cdot \varphi(1)=1
$$

since $H \cap C L(x)=\{x\}$, then

$$
\varphi_{2}^{\prime}(\mathrm{x})=\frac{3}{3} \cdot \varphi(\mathrm{x})=\frac{3}{3} \cdot 1=1
$$

since $H \cap C L\left(x^{2}\right)=\left\{x^{2}\right\}$, then

$$
\varphi_{2}^{\prime}\left(x^{2}\right)=\frac{3}{3} \cdot \varphi\left(x^{2}\right)=\frac{3}{3} \cdot 1=1
$$

then we get the two Artin's characters $\varphi^{\prime}{ }_{1}$ and $\varphi^{\prime}{ }_{2}$.

1.10Proposition:[2]

The number of all distinct Artin's characters on a group G is equal to the number of
Γ-classes on G. furthermore, Artin's characters are constant on each Γ-classes.

1.11Definition:[1]

Artin's characters of finite group G can be displayed in table called Artin's characters table of \boldsymbol{G} which is denoted by $\operatorname{Ar}(\mathrm{G})$.

The first row is the Γ-conjugate classes, the second row is the number of elements in each conjugate classes, the third row is the size of the centralize $\left|C_{G}\left(C L_{\alpha}\right)\right|$ and the rest row contain the values of Artin's characters.

1.12Example:

In the Artin's character table of C_{3} there are two Γ - classes, [1], $[\mathrm{x}]$ then, from proposition (1.10) they obtain two distinct Artin's characters and From example (1.9) we obtain the values of Artin's characters, then the table of it as follows:
$\operatorname{Ar}\left(\mathrm{C}_{3}\right)=$

Γ-classes	$[1]$	$[\mathrm{x}]$
$\left\|C L_{\alpha}\right\|$	1	1
$\left\|C_{C_{3}}\left(C L_{\alpha}\right)\right\|$	3	3
φ_{1}^{\prime}	3	0
φ_{2}^{\prime}	1	1

Table (1)

The general form of Artin's character table of $\mathrm{C} p^{s}$ when p is a prime number and n is an integer number is given by:

$\operatorname{Ar}\left(\mathrm{C}_{p^{s}}\right)=$	Γ-classes	[1]	$\left[x^{p^{s-1}}\right]$	$\left[x^{p^{s-2}}\right]$	$\left[x^{p^{s-3}}\right]$		$\left[x^{p}\right]$	$[x]$
	$\left\|C L_{\alpha}\right\|$	1	1	1	1	\ldots	1	1
	$\left\|C_{p^{s}}\left(C L_{\alpha}\right)\right\|$	P^{s}	$\mathrm{p}^{\boldsymbol{S}}$	P^{s}	$\mathrm{p}^{\boldsymbol{S}}$	\ldots	$\mathrm{p}^{\boldsymbol{S}}$	P^{s}
	φ_{1}^{\prime}	p^{s}	0	0	0	\ldots	0	0
	φ_{2}^{\prime}	P^{s-1}	P^{s-1}	0	0	\ldots	0	0
	φ_{3}^{\prime}	P^{s-2}	P^{s-2}	P^{s-2}	0	\ldots	0	0
	;	!	!	!	;	\ddots	;	;
	φ_{s}^{\prime}	P	P	P	P	\ldots	P	0
	φ_{s+1}^{\prime}	1	1	1	1	\ldots	1	1

Table (2)

1.14Example:

Consider the cyclic group C_{8},
To find the Artin's character table we use theorem (1.13) as follows:
The group $\mathrm{C}_{8}=\mathrm{C}_{2^{3}}$ then:

Γ-classes	$[1]$	$\left[\mathrm{x}^{2^{2}}\right]$	$\left[\mathrm{x}^{2}\right]$	$[\mathrm{x}]$
$\left\|C L_{\alpha}\right\|$	1	1	1	1
$\left\|C_{2^{3}}\left(C L_{\alpha}\right)\right\|$	2^{3}	2^{3}	2^{3}	2^{3}
φ_{1}^{\prime}	$\left.\mathrm{C}_{2^{3}}\right)=$	2^{3}	0	0
φ_{2}^{\prime}	2^{2}	2^{2}	0	0
φ_{3}^{\prime}	2	1	1	1
φ_{4}^{\prime}	1	2	0	

Table (3)
1.15 Theorem: [8]

The Artin's characters table of the Quaternion group $Q_{2 m}$ when m is an even number is given as follows :

Ar	Γ - classes	Γ - classes of $\mathrm{C}_{2 \mathrm{~m}}$								$\left(\mathrm{Q}_{2 \mathrm{~m}}\right)=$
		[1]	[x^{m}]					[y]	[xy]	
	$\left\|C L_{\alpha}\right\|$	1	1	2	2		2	m	m	
	$\left\|C_{Q_{2 m}}\left(C L_{\alpha}\right)\right\|$	4 m	4 m	2 m	2 m	\ldots	2 m	4	4	
	Φ_{1}	$2 \mathrm{Ar}\left(\mathrm{C}_{2 \mathrm{~m}}\right)$						0	0	
	Φ_{2}							0	0	
	!							;	!	
Table(4)	Φ_{l}							0	0	
	Φ_{l+1}	m	m	0	0	..	0	2	0	
	Φ_{l+2}	m	m	0	0	...	0	0	2	

where l is the number of Γ - classes of $\mathrm{C}_{2 \mathrm{~m}}$ and $\Phi_{j} ; 1 \leq \mathrm{j} \leq l+2$ are the Artin characters of the Quaternion group $\mathrm{Q}_{2 \mathrm{~m}}$.

1.16 Example:

To construct $\operatorname{Ar}\left(\mathrm{Q}_{8}\right)$ by using theorem (1.15) we get the following table :

$\operatorname{Ar}\left(\mathrm{Q}_{8}\right)=\operatorname{Ar}\left(\mathrm{Q}_{2^{3}}\right)=$| Γ - classes | $[1]$ | $\left[\mathrm{x}^{4}\right]$ | $\left[\mathrm{x}^{2}\right]$ | $[\mathrm{x}]$ | $[\mathrm{y}]$ | $[\mathrm{xy}]$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\left\|C L_{\alpha}\right\|$ | 1 | 1 | 2 | 2 | 4 | 4 |
| $\mid C_{Q_{2^{3}}}\left(C L_{\alpha}\right)$ | 16 | 16 | 8 | 8 | 4 | 4 |
| Φ_{1} | 2^{4} | 0 | 0 | 0 | 0 | 0 |
| Φ_{2} | 2^{3} | 2^{3} | 0 | 0 | 0 | 0 |
| Φ_{3} | 2^{2} | 2^{2} | 2^{2} | 0 | 0 | 0 |
| Φ_{4} | 2 | 2 | 2 | 2 | 0 | 0 |
| Φ_{5} | 2^{2} | 2^{2} | 0 | 0 | 2 | 0 |
| Φ_{6} | 2^{2} | 2^{2} | 0 | 0 | 0 | 2 |

Table (5)

1.17The Group ($\mathrm{Q}_{2 \mathrm{~m}} \times \mathrm{C}_{3}$)

The direct product group $\left(\mathrm{Q}_{2 \mathrm{~m}} \times \mathrm{C}_{3}\right)$ where $\mathrm{Q}_{2 \mathrm{~m}}$ is Quaternion group of order 4 m with tow generators x and y is denoted by

$$
Q_{2 m}=\left\{x^{k} y^{j}: x^{2 m}=y^{4}=1, y x^{m} y^{-1}=x^{-m}, 0 \leq k \leq 2 m-1, j=0,1\right\}
$$

and C_{3} is acyclic group of order 3 consisting of elements $\left\{I, z, z^{2}\right\}$.the generalized the group $\left(Q_{2 m} \times C_{3}\right)$ is denoted by

$$
\left(\mathrm{Q}_{2 \mathrm{~m}} \times \mathrm{X}_{3}\right)=\left\{(\mathrm{q}, \mathrm{c}): \mathrm{q}_{\mathrm{Q}} \in_{2 \mathrm{~m}}, \mathrm{c} \in \mathrm{C}_{3}\right\} \text { and }\left|\mathrm{Q}_{2 \mathrm{~m}} \times \mathrm{C}_{3}\right|=\left|\mathrm{Q}_{2 \mathrm{~m}}\right| \cdot\left|\mathrm{C}_{3}\right|=4 \mathrm{~m} \cdot 3=12 \mathrm{~m}
$$

2. The main results

In this section is to find the general form of Artin's characters table of the group ($Q_{2 m} \times C_{3}$) When m is an even number
2.1Proposition:

The general form of the Artin's characters table of the group $\left(Q_{2 m} \times C_{3}\right)$ when m is an even number is given as follows: $\operatorname{Ar}\left(\mathrm{Q}_{2 \mathrm{~m}} \times \mathrm{C}_{3}\right)=$

$\overline{\text { - classes of }\left(\mathrm{Q}_{2 \mathrm{~m}}\right) \times\{\mathrm{I}\}}$							Γ - classes of $\left(\mathrm{Q}_{2 \mathrm{~m}}\right) \times\{\mathrm{z}\}$					
$\begin{gathered} \Gamma \\ \text { classes } \end{gathered}$	[1, I]	$\left[x^{m}, I\right]$	\cdots	$[x, I]$	$[y, I]$	$[x y, I]$	$[1, z]$	$\left[x^{m}, z\right]$	\cdots	[x, z]	$[y, z]$	$[x y, z]$
$\left\|C L_{\alpha}\right\|$	1	1	\cdots	2	m	m	1	1	\ldots	2	m	m
$\left\|C_{Q_{2 m} \times \times_{3}}\left(C L_{\alpha}\right)\right\|$	12m	12m	\cdots	6m	12	12	12m	12m	\cdots	6m	12	12
$\Phi_{(l, l)}$	$3 \mathrm{Ar}\left(\mathrm{Q}_{2} \mathrm{~m}\right)$						0					
$\Phi_{(2, I)}$												
!												
$\Phi_{(l, l)}$												
$\Phi_{(l+1, l)}$												
$\Phi_{(l+2, l)}$												
$\Phi_{(1,2)}$	$\operatorname{Ar}\left(\mathrm{Q}_{2} \mathrm{~m}\right)$						$\operatorname{Ar}\left(\mathrm{Q}_{2} \mathrm{~m}\right)$					
$\Phi_{(2,2)}$												
!												
$\Phi_{(l, 2)}$												
$\Phi_{(l+1,2)}$												
$\Phi_{(l+2,2)}$												

Table (6)

Proof :

Let $\mathrm{g} \in\left(\mathrm{Q}_{2 \mathrm{~m}} \times \mathrm{C}_{3}\right) ; \mathrm{g}=(\mathrm{q}, \mathrm{I})$ or $\mathrm{g}=(\mathrm{q}, \mathrm{z})$ or $\mathrm{g}=\left(\mathrm{q}, \mathrm{z}^{2}\right), \mathrm{q} \in \mathrm{Q}_{2 \mathrm{~m}}, \mathrm{I}, \mathrm{z}, \mathrm{z}^{2} \in \mathrm{C}_{3}$
Case (I):
If H is a cyclic subgroup of $\left(\mathrm{Q}_{2 \mathrm{~m}} \times\{\mathrm{I}\}\right)$,then:
$1-\mathrm{H}=\langle(\mathrm{x}, \mathrm{I})\rangle \quad 2-\mathrm{H}=\langle(\mathrm{y}, \mathrm{I})\rangle \quad 3-\mathrm{H}=\langle(\mathrm{xy}, \mathrm{I})\rangle$
And φ the principal character of $\mathrm{H}, \Phi_{\mathrm{j}}$ Artin characters of $\mathrm{Q}_{2 \mathrm{~m}}$ where $1 \leq j \leq l+2$ then by using Theorem (1.7)

$$
\Phi_{j}(\mathrm{~g})=
$$

$$
1-\quad \mathrm{H}=\langle(\mathrm{x}, \mathrm{I})\rangle
$$

(i) If $\mathrm{g}=(1, \mathrm{I})$ and $\mathrm{g} \in \mathrm{H}$
$\Phi_{(j, 1)}((1, I))=\frac{\left|C_{Q_{2 m} \times C_{3}}(g)\right|}{\left|C_{H}(g)\right|} \cdot \varphi(g)=\frac{12 m}{\left|C_{H}(I, 1)\right|} \cdot 1=\frac{3.4 m}{\left|C_{H}(I, 1)\right|} \cdot 1=\frac{3\left|C_{Q_{2 m}}(1)\right|}{\left|C_{\langle x\rangle}(1)\right|} \cdot \varphi(1)=3 \cdot \Phi_{j}(1)$ since
$\mathrm{H} \cap \mathrm{CL}(1, \mathrm{I})=\{(1, \mathrm{I})\}$
(ii) if $\mathrm{g}=\left(x^{m}, I\right)$ and $\mathrm{g} \in \mathrm{H}$
$\Phi_{(j, 1)}(g)=\frac{\left|C_{Q_{2 m} \times C_{3}}(g)\right|}{\left|C_{H}(g)\right|} \cdot \varphi(g)=\frac{12 m}{\left|C_{H}(g)\right|} \cdot 1=\frac{3.4 m}{\left|C_{H}(g)\right|} \cdot 1=\frac{3\left|C_{Q_{2 m}}\left(x^{m}\right)\right|}{\left|C_{\langle x\rangle}\left(x^{m}\right)\right|} \cdot \varphi(g)=3 \cdot \Phi_{j}\left(x^{m}\right)$
since $\mathrm{H} \cap \mathrm{CL}(\mathrm{g})=\{\mathrm{g}\}, \varphi(\mathrm{g})=1$

$$
\begin{gathered}
\text { (iii) if } \mathrm{g}=\left(x^{i}, I\right), i \neq m_{\text {and } i \neq 2 m \text { and } \mathrm{g} \in \mathrm{H}} \\
\Phi_{(j, 1)}(g)=\frac{\left|C_{Q_{2 m} \times C_{3}}(g)\right|}{\left|C_{H}(g)\right|} \cdot\left(\varphi(g)+\varphi\left(g^{-1}\right)\right)=\frac{6 m}{\left|C_{H}(g)\right|}(1+1)= \\
\frac{3.2 m}{\left|C_{H}(g)\right|} \cdot(1+1)=\frac{3\left|C_{Q_{2} m}(q)\right|}{\left|C_{\langle x\rangle}(q)\right|} \cdot\left(\varphi(g)+\varphi\left(g^{-1}\right)\right)=3 . \Phi_{j}(q)
\end{gathered}
$$

since $\mathrm{H} \cap \mathrm{CL}(\mathrm{g})=\left\{\mathrm{g}, \mathrm{g}^{-1}\right\}$ and $\varphi(\mathrm{g})=\varphi_{\left(\mathrm{g}^{-1}\right)=1, \mathrm{~g}=(\mathrm{q}, \mathrm{I}), \mathrm{q} \in \mathrm{Q}_{2 \mathrm{~m}} \text { and } \mathrm{q} \neq x^{m}{ }_{, \mathrm{q} \neq 1}{ }^{2} .}$

$$
\text { (iv) if } \mathrm{g} \notin \mathrm{H}
$$

$\Phi_{(j, 1)}(g)=3.0=3 . \Phi_{j}(q) \quad$ Since $\mathrm{H} \cap \mathrm{CL}(\mathrm{g})=\phi$
2- $\mathrm{H}=\langle(\mathrm{y}, \mathrm{I})\rangle=\left\{(1, \mathrm{I}),(\mathrm{y}, \mathrm{I}),\left(\mathrm{y}^{2}, \mathrm{I}\right),\left(\mathrm{y}^{3}, \mathrm{I}\right)\right\}$
(i) If $\mathrm{g}=(1, \mathrm{I}) \quad \mathrm{H} \cap \mathrm{CL}(1, \mathrm{I})=\{(1, \mathrm{I})\}$

$$
\Phi_{(l+1,1)}(g)=\frac{\left|C_{Q_{2 m} \times C_{3}}(g)\right|}{\left|C_{H}(g)\right|} \cdot \varphi(g)=\frac{12 m}{4} \cdot 1=3 m=3 \cdot \Phi_{l+1}(1)
$$

(ii) If $\mathrm{g}=\left(x^{m}, I\right)=\left(\mathrm{y}^{2}, \mathrm{I}\right)$ and $\mathrm{g} \in \mathrm{H}$

$$
\Phi_{(l+1,1)}(g)=\frac{\left|C_{Q_{2 m} \times C_{3}}(g)\right|}{\left|C_{H}(g)\right|} \cdot \varphi(g)=\frac{12 m}{4} \cdot 1=3 m=3 \cdot \Phi_{l+1}\left(x^{m}\right)
$$

Since $\mathrm{H} \cap \mathrm{CL}(\mathrm{g})=\{\mathrm{g}\}, \varphi(\mathrm{g})=1$
(iii) $\mathrm{g}=(\mathrm{y}, \mathrm{I})$ or $\mathrm{g}=\left(\mathrm{y}^{3}, \mathrm{I}\right)$ and $\mathrm{g} \in \mathrm{H}$

$$
\Phi_{(l+1,1)}(g)=\frac{\left|C_{Q_{2 m} \times C_{3}}(g)\right|}{\left|C_{H}(g)\right|} \cdot\left(\varphi(g)+\varphi\left(g^{-1}\right)\right)=\frac{12}{4} .(1+1)=3.2=3 . \Phi_{l+1}(y)
$$

since $\mathrm{H} \cap \mathrm{CL}(\mathrm{g})=\left\{\mathrm{g}, \mathrm{g}^{-1}\right\}$ and $\varphi(\mathrm{g})=\varphi\left(\mathrm{g}^{-1}\right)=1$
Otherwise

$$
\Phi_{(l+1,1)}(g)=0 \quad \text { since } \mathrm{H} \cap C L(\mathrm{~g})=\varnothing
$$

3- $\mathrm{H}=\langle(\mathrm{xy}, \mathrm{I})\rangle=\left\{(1, \mathrm{I}),(\mathrm{xy}, \mathrm{I}),\left((\mathrm{xy})^{2}, \mathrm{I}\right),\left((\mathrm{xy})^{3}, \mathrm{I}\right)\right\}$

$$
\Phi_{(l+2,1)}(g)=\frac{\left|C_{Q_{2 m} \times C_{3}}(g)\right|}{\left|C_{H}(g)\right|} \cdot \varphi(g)=\frac{12 m}{4} \cdot 1=3 m=3 \cdot \Phi_{l+2}(1)
$$

(ii) If $\mathrm{g}=\left(x^{m}, I\right)=\left((\mathrm{xy})^{2}, \mathrm{I}\right)=\left(\mathrm{y}^{2}, \mathrm{I}\right)$ and $\mathrm{g} \in \mathrm{H}$

$$
\Phi_{(l+2,1)}(g)=\frac{\left|C_{Q_{2_{m} \times C_{3}}}(g)\right|}{\left|C_{H}(g)\right|} \cdot \varphi(g)=\frac{12 m}{4} \cdot 1=3 m=3 . \Phi_{l+2}\left(x^{m}\right)
$$

Since $\mathrm{H} \cap \mathrm{CL}(\mathrm{g})=\{\mathrm{g}\}, \varphi(\mathrm{g})=1$
(iii) If $\mathrm{g}=(\mathrm{xy}, \mathrm{I})$ or $\mathrm{g}=\left((\mathrm{xy})^{3}, \mathrm{I}\right)=\left(\mathrm{xy}^{3}, \mathrm{I}\right)$ and $\mathrm{g} \in \mathrm{H}$

$$
\Phi_{(l+2,1)}(g)=\frac{\left|C_{Q_{2 m} \times C_{3}}(g)\right|}{\left|C_{H}(g)\right|} \cdot\left(\varphi(g)+\varphi\left(g^{-1}\right)\right)=\frac{12}{4} \cdot(1+1)=3.2=3 \cdot \Phi_{l+2}(x y)
$$

since $\mathrm{H} \cap C L(\mathrm{~g})=\left\{\mathrm{g}, \mathrm{g}^{-1}\right\}$ and $\varphi(\mathrm{g})=\boldsymbol{\varphi}\left(\mathrm{g}^{-1}\right)=1$
Otherwise

$$
\Phi_{(l+2,1)}(g)=0 \quad \text { since } \mathrm{H} \cap \mathrm{CL}(\mathrm{~g})=\varnothing
$$

Case (II):

If H is a cyclic subgroup of $\left(Q_{2 m} \times\{z\}\right)$,then:

$$
1-H=\langle(x, z)\rangle=\left\langle\left(x, z^{2}\right)\right\rangle 2-H=\langle(y, z)\rangle=\left\langle\left(y, z^{2}\right)\right\rangle \quad \text { 3- } H=\langle(x y, z)\rangle=\left\langle\left(x y, z^{2}\right)\right\rangle
$$

And φ the principal character of $\mathrm{H}, \Phi_{\mathrm{j}}$ Artin characters of $\mathrm{Q}_{2 \mathrm{~m}}$ where $1 \leq j \leq l+2$ then by using Theorem (1.7)

$$
\begin{aligned}
& \Phi_{j}(\mathrm{~g})=\left\{\begin{array}{ccc}
\frac{\left|C_{G}(g)\right|}{\left|C_{H}(g)\right|} \sum_{i=1}^{m} \varphi\left(h_{i}\right) & \text { if } & h_{i} \in H \cap C L(g) \\
0 & \text { if } & H \cap C L(g)=\phi
\end{array}\right. \\
& 1-H=\langle(x, z)\rangle=\left\langle\left(x, z^{2}\right)\right\rangle
\end{aligned}
$$

(i) If $\mathrm{g}=(1, \mathrm{I})$ or $\mathrm{g}=(1, \mathrm{z})$ or $\mathrm{g}=\left(1, \mathrm{z}^{2}\right)$ and $\mathrm{g} \in \mathrm{H}$
$\Phi_{(j, 2)}(g)=\frac{\left|C_{Q_{2 m} \times C_{3}}(g)\right|}{\left|C_{H}(1, I)\right|} \cdot \varphi(g)=\frac{12 m}{\left|C_{H}(1, I)\right|} \cdot 1=\frac{3.4 m}{\left|C_{\langle(x, z)\rangle}(1, I)\right|} \cdot 1=\frac{3\left|C_{Q_{2 m}}(1)\right|}{3\left|C_{\langle x\rangle}(1)\right|} \cdot \varphi(1)=\Phi_{j}(1)$
since $\mathrm{H} \cap \mathrm{CL}(\mathrm{g})=\left\{(1, \mathrm{I}),(1, \mathrm{z}),\left(1, \mathrm{z}^{2}\right)\right\}$
(i) If $\mathrm{g}=(1, \mathrm{I})$ or $\mathrm{g}=\left(\mathrm{x}^{\mathrm{m}}, \mathrm{I}\right)$ or $\mathrm{g}=\left(\mathrm{x}^{\mathrm{m}}, \mathrm{z}\right)$ or $\mathrm{g}=(1, \mathrm{z})$ or $\mathrm{g}=\left(\mathrm{x}^{\mathrm{m}}, \mathrm{z}^{2}\right)$ or $\mathrm{g}=\left(1, \mathrm{z}^{2}\right)$ and $\mathrm{g} \in \mathrm{H}$
(a) if $\mathrm{g}=(1, \mathrm{I})$ or $\mathrm{g}=(1, \mathrm{z})$ or $\mathrm{g}=\left(1, \mathrm{z}^{2}\right)$ and $\mathrm{g} \in \mathrm{H}$.
$\Phi_{(j, 2)}(g)=\frac{\left|C_{Q_{2 m} \times C_{3}}(g)\right|}{\left|C_{H}(g)\right|} \cdot \varphi(g)$
$=\frac{12 m}{\left|C_{H}(g)\right|} \cdot 1=\frac{3.4 m}{\left|C_{\langle(x, z)\rangle}(g)\right|} \cdot 1=\frac{3\left|C_{Q_{2 m}}(1)\right|}{3\left|C_{\langle x\rangle}(1)\right|} \cdot \varphi(1)=\Phi_{j}(1)$ since $\mathrm{H} \cap \operatorname{CL}(\mathrm{g})=\{\mathrm{g}\}, \varphi(\mathrm{g})=1$
(b) if $\mathrm{g}=\left(\mathrm{x}^{\mathrm{m}}, \mathrm{I}\right)$ or $\mathrm{g}=\left(\mathrm{x}^{\mathrm{m}}, \mathrm{z}\right)$ or $\mathrm{g}=\left(\mathrm{x}^{\mathrm{m}}, \mathrm{z}^{2}\right)$ and $\mathrm{g} \in \mathrm{H}$
$\Phi_{(j, 2)}(g)=\frac{\left|C_{Q_{2 m} \times C_{3}}(g)\right|}{\left|C_{H}(g)\right|} \cdot \varphi(g)=\frac{12 m}{\left|C_{H}(g)\right|} \cdot 1=\frac{3.4 m}{\left|C_{H}(g)\right|} \cdot 1=\frac{3\left|C_{Q_{2} m}\left(x^{m}\right)\right|}{3\left|C_{\langle x\rangle}\left(x^{m}\right)\right|} \cdot \varphi\left(x^{m}\right)=\Phi_{j}\left(x^{m}\right)$
since $\mathrm{H} \cap \mathrm{CL}(\mathrm{g})=\{\mathrm{g}\}, \varphi(\mathrm{g})=1$
(i) if $\mathrm{g}=\left\{\left(x^{i}, I\right),\left(x^{i}, z\right),\left(x^{i}, z^{2}\right\}, i \neq m, i \neq 2 m\right.$ and $\mathrm{g} \in \mathrm{H}$
$\Phi_{(j, 2)}(g)=\frac{\left|C_{Q_{2 m} \times C_{3}}(g)\right|}{\left|C_{H}(g)\right|} \cdot\left(\varphi(g)+\varphi\left(g^{-1}\right)\right)=\frac{6 m}{\left|C_{H}(g)\right|}(1+1)$
$\frac{3.2 m}{\left|C_{H}(g)\right|} .(1+1)=\frac{3\left|C_{Q_{2} m}(q)\right|}{3\left|C_{\langle x\rangle}(q)\right|} \cdot\left(\varphi(g)+\varphi\left(g^{-1}\right)\right)=\Phi_{j}(q)$
since $\mathrm{H} \cap \mathrm{CL}(\mathrm{g})=\left\{\mathrm{g}, \mathrm{g}^{-1}\right\}$ and $\left.\varphi(\mathrm{g})=\varphi_{(\mathrm{g}} \mathrm{g}^{-1}\right)=1, \mathrm{~g}=(\mathrm{q}, \mathrm{z})=\left(\mathrm{q}, \mathrm{z}^{2}\right), \mathrm{q} \in \mathrm{Q}_{2 \mathrm{~m}}$ and $\mathrm{q} \neq x^{m}, \mathrm{q} \neq 1$
(ii) if $g \notin \mathrm{H}$
$\Phi_{(j, 2)}(g)=0 \quad$ Since $\mathrm{H} \cap \mathrm{CL}(\mathrm{g})=\phi$
$2-\mathrm{H}=\langle(y, z)\rangle=\left\{(1, \mathrm{I}),(\mathrm{y}, \mathrm{I}),\left(\mathrm{y}^{2}, \mathrm{I}\right),\left(\mathrm{y}^{3}, \mathrm{I}\right),(1, \mathrm{z}),(\mathrm{y}, \mathrm{z}),\left(\mathrm{y}^{2}, \mathrm{z}\right),\left(\mathrm{y}^{3}, \mathrm{z}\right),\left(1, \mathrm{z}^{2}\right),\left(\mathrm{y}, \mathrm{z}^{2}\right),\left(\mathrm{y}^{2}, \mathrm{z}^{2}\right),\left(\mathrm{y}^{3}, \mathrm{z}^{2}\right)\right\}$

$$
\begin{aligned}
& \text { (i) } \mathrm{g}=(1, \mathrm{I}) \text { or } \mathrm{g}=(1, \mathrm{z}) \text { or } \mathrm{g}=\left(1, \mathrm{z}^{2}\right) \text { and } \mathrm{g} \in \mathrm{H} \quad \mathrm{H} \cap \mathrm{CL}(\mathrm{~g})=\left\{(1, \mathrm{I}),(1, \mathrm{z}),\left(1, \mathrm{z}^{2}\right)\right\} \\
& \Phi_{(l+1,2)}(g)=\frac{\left|C_{Q_{2 m} \times C_{3}}(g)\right|}{\left|C_{H}(g)\right|} \cdot \varphi(g)=\frac{12 m}{12} \cdot 1=m=. \Phi_{l+1}(1)
\end{aligned}
$$

$$
\begin{array}{r}
\text { (ii) If } \mathrm{g}=\left(x^{m}, I\right)=\left(\mathrm{y}^{2}, \mathrm{I}\right) \text { or } \mathrm{g}=\left(\mathrm{y}^{2}, \mathrm{z}\right) \text { or } \mathrm{g}=\left(\mathrm{y}^{2}, \mathrm{z}^{2}\right) \text { and } \mathrm{g} \in \mathrm{H} \\
\Phi_{(l+1,2)}(g)=\frac{\left|C_{Q_{2 m} \times C_{3}}(g)\right|}{\left|C_{H}(g)\right|} \cdot \varphi(g)=\frac{12 m}{12} \cdot 1=m=\Phi_{l+1}\left(x^{m}\right)
\end{array}
$$

Since $\mathrm{H} \cap \mathrm{CL}(\mathrm{g})=\{\mathrm{g}\}, \varphi(\mathrm{g})=1$
(iii) $\quad \mathrm{g}=(\mathrm{y}, \mathrm{I})$ or $\mathrm{g}=(\mathrm{y}, \mathrm{z})$ or $\mathrm{g}=\left(\mathrm{y}, \mathrm{z}^{2}\right)$ or $\mathrm{g}=\left(\mathrm{y}^{3}, \mathrm{I}_{2}\right)$ or $\mathrm{g}=\left(\mathrm{y}^{3}, \mathrm{z}\right)$ or $\mathrm{g}=\left(\mathrm{y}^{3}, \mathrm{z}^{2}\right)$ and $\mathrm{g} \in \mathrm{H}$

$$
\Phi_{(l+1,2)}(g)=\frac{\left|C_{Q_{2 m} \times C_{3}}(g)\right|}{\left|C_{H}(g)\right|} \cdot\left(\varphi(g)+\varphi\left(g^{-1}\right)\right)=\frac{12}{12} .(1+1)=2=\Phi_{l+1}(y)
$$

since $\mathrm{H} \cap \mathrm{CL}(\mathrm{g})=\left\{\mathrm{g}, \mathrm{g}^{-1}\right\}$ and $\varphi(\mathrm{g})=\varphi\left(\mathrm{g}^{-1}\right)=1$
Otherwise

$$
\Phi_{(l+1,2)}(g)=0 \quad \text { since } \mathrm{H} \cap \mathrm{CL}(\mathrm{~g})=\varnothing
$$

3. $\mathrm{H}=\langle(x y, z)\rangle=\left\{(1, \mathrm{I}),(\mathrm{xy}, \mathrm{I}),\left((\mathrm{xy})^{2}, \mathrm{I}\right)=\left(\mathrm{y}^{2}, \mathrm{I}\right),\left((\mathrm{xy})^{3}, \mathrm{I}\right)=\left(\mathrm{xy}^{3}, \mathrm{I}\right),(1, \mathrm{z}),(\mathrm{xy}, \mathrm{z})\right.$,
$\left.\left.\left.\left((x y)^{2}, z\right)\right),\left((x y)^{3}, z\right),\left(1, z^{2}\right),\left(x y, z^{2}\right),\left((x y)^{2}, z^{2}\right)\right),\left((x y)^{3}, z^{2}\right)\right\}$
(i) If $\mathrm{g}=(1, \mathrm{I})$ or $\mathrm{g}=(1, \mathrm{z})$ or $\mathrm{g}=\left(1, \mathrm{z}^{2}\right) \quad \mathrm{H} \cap \mathrm{CL}(\mathrm{g})=\{\mathrm{g}\}$
$\Phi_{(l+2,2)}(g)=\frac{\left|C_{Q_{2 m} \times C_{3}}(g)\right|}{\left|C_{H}(g)\right|} \cdot \varphi(g)=\frac{12 m}{12} \cdot 1=m=\Phi_{l+2}(1)$
(ii) If $\mathrm{g}=\left(x^{m}, I\right)=\left((\mathrm{xy})^{2}, \mathrm{I}\right)=\left(\mathrm{y}^{2}, \mathrm{I}\right)$ or $\mathrm{g}=\left((\mathrm{xy})^{2}, \mathrm{z}\right)=\left(\mathrm{y}^{2}, \mathrm{z}\right)$ or $\mathrm{g}=\left((\mathrm{xy})^{2}, \mathrm{z}^{2}\right)=\left(\mathrm{y}^{2}, \mathrm{z}^{2}\right)$ and $\mathrm{g} \in \mathrm{H}$

$$
\Phi_{(l+2,2)}(g)=\frac{\left|C_{Q_{2 m} \times C_{3}}(g)\right|}{\left|C_{H}(g)\right|} \cdot \varphi(g)=\frac{12 m}{12} \cdot 1=m=\Phi_{l+2}\left(x^{m}\right)
$$

Since $\mathrm{H} \cap \mathrm{CL}(\mathrm{g})=\{\mathrm{g}\}, \varphi(\mathrm{g})=1$
(iii) If $g=(x y, I)$ or $g=\left((x y)^{3}, I\right)$ or $g=(x y, z)$ or $g=\left((x y)^{3}, z\right)$ or $g=\left(x y, z^{2}\right)$ or $\mathrm{g}=\left((\mathrm{xy})^{3}, \mathrm{z}^{2}\right)$ and $\mathrm{g} \in \mathrm{H}$

$$
\Phi_{(l+2,2)}(g)=\frac{\left|C_{Q_{2 m} \times C_{3}}(g)\right|}{\left|C_{H}(g)\right|} \cdot\left(\varphi(g)+\varphi\left(g^{-1}\right)\right)=\frac{12}{12} .(1+1)=2=\Phi_{l+2}(x y)
$$

since $\mathrm{H} \cap \mathrm{CL}(\mathrm{g})=\left\{\mathrm{g}, \mathrm{g}^{-1}\right\}$ and $\varphi(\mathrm{g})=\varphi\left(\mathrm{g}^{-1}\right)=1$
Otherwise

$$
\Phi_{(l+2,2)}(g)=0 \quad \text { since } \mathrm{H} \cap \mathrm{CL}(\mathrm{~g})=\varnothing
$$

2.2Example:

To construct $\operatorname{Ar}\left(\mathrm{Q}_{8} \times \mathrm{C}_{3}\right)$ by using the theorem (2.1) we get the following table:
$\operatorname{Ar}\left(\mathrm{Q}_{2}{ }^{3} \times \mathrm{C}_{3}\right)=$

International Journal of Academic Multidisciplinary Research (IJAMR)
ISSN: 2643-9670
Vol. 5 Issue 8, August - 2021, Pages: 226-235

Γ - classes	[1,I]	$\begin{aligned} & {\left[\mathrm{x}^{4}\right.} \\ & \mathrm{I}] \\ & \hline \end{aligned}$	$\begin{aligned} & {\left[\mathrm{x}^{2}\right.} \\ & \mathrm{I}] \end{aligned}$	[x,I]	[y,I]	[xy,I]	[1,z]	$\begin{aligned} & {\left[\mathrm{x}^{4}\right.} \\ & \mathrm{z}] \end{aligned}$	$\begin{aligned} & {\left[\mathrm{x}^{2}\right.} \\ & \mathrm{z}] \end{aligned}$	[x,z]	[y,z]	[xy,z]
$\left\|C L_{\alpha}\right\|$	1	1	2	2	4	4	1	1	2	2	4	4
$\left\|C_{Q_{2^{3} \times C_{3}}}\left(C L_{\alpha}\right)\right\|$	48	48	24	24	12	12	48	48	24	24	12	12
$\Phi_{(1,1)}$	48	0	0	0	0	0	0	0	0	0	0	0
$\Phi_{(2,1)}$	24	24	0	0	0	0	0	0	0	0	0	0
$\Phi_{(3,1)}$	12	12	12	0	0	0	0	0	0	0	0	0
$\Phi_{(4,1)}$	6	6	6	6	0	0	0	0	0	0	0	0
$\Phi_{(5,1)}$	12	12	0	0	6	0	0	0	0	0	0	0
$\Phi_{(6,1)}$	12	12	0	0	0	6	0	0	0	0	0	0
$\Phi_{(1,2)}$	16	0	0	0	0	0	16	0	0	0	0	0
$\Phi_{(2,2)}$	8	8	0	0	0	0	8	8	0	0	0	0
$\Phi_{(3,2)}$	4	4	4	0	0	0	4	4	4	0	0	0
$\Phi_{(4,2)}$	2	2	2	2	0	0	2	2	2	2	0	0
$\Phi_{(5,2)}$	4	4	0	0	2	0	4	4	0	0	2	0
$\Phi_{(6,2)}$	4	4	0	0	0	2	4	4	0	0	0	2

Table (7)

3. REFERENCES

[1] A.S.Abid, "Artin's Characters Table of Dihedral Group for Odd Number ", M.Sc. thesis, University of kufa,2006.
[2] C.Curits and I. Reiner, " Methods of Representation Theory with Application Finite Groups and Order ", John wily \& sons, New York, 1981.
[3] I. M.Isaacs, "on Character Theory of Finite Groups ",Academic press, New York, 1976.
[4] J. P. Serre, "Linear Representation of Finite Groups", Springer- Verlage, 1977.
[5] K.Knwabusz, " Some Definitions of Artin's Exponent of Finit Group ", USA.National foundation Math.GR.1996.
[6] K. Sekigvchi, " Extensions and the Irreducibilities of The Induced Characters of Cyclic p-Group ", Hiroshima math Journal, p165-178, 2002.
[7] L. E. Sigler, " Algebra ", Springer- verlage, 1976.
[8] S.J. Mahmood "On Artin cokernel of the Quaternion Group $Q_{2 m}$ when m is an Even Number" M.Sc. thesis, University of Kufa, 2009.
[9] T.Y. Lam," Artin Exponent of Finite Groups ", Columbia University, New York, 1967.

