On Three - Monotone Approximation

Mayada Ali Kareem
Mathematics Department
University of Babylon
Hilla, Babylon, Iraq
pure.meyada.ali@uobabylon.edu.iq

Abstract

This paper is review about three monotone approximation. We recall some general properties with important propositions.

1. Introduction

A mapping \mathfrak{H} which is defined on $\mathcal{J}:=[\mathfrak{D}, \mathfrak{p}]$, is real-valued and \mathfrak{C} is belong to \mathbb{N}. Denote by

$$
\mathfrak{S}\left[z_{0}, \ldots, \mathfrak{z}_{\mathbb{C}}\right]:=\sum_{i=0}^{\mathbb{C}} \frac{\mathfrak{S}\left(z_{\imath}\right)}{\prod_{j=0, j \neq i}^{\mathbb{C}}\left(z_{l}-x_{j}\right)},
$$

the \mathfrak{C} th size divided of \mathfrak{H} at the points $\mathfrak{z}_{0}, \ldots, \mathfrak{Z}_{\mathfrak{C}}$. The mapping \mathfrak{H} is called \mathfrak{C}-monotone in $[\mathfrak{D}, \mathfrak{v}]$, if $\mathfrak{H}\left[3_{0}, \ldots, \mathfrak{Z}_{\mathfrak{C}}\right] \geq 0$ for all $\mathfrak{C}+1$ distinct points $z_{0}, \ldots, \mathfrak{z}_{\mathfrak{C}} \in[\mathfrak{d}, \mathfrak{v}]$. The set of all \mathfrak{C}-monotone mapping in $[\mathfrak{d}, \mathfrak{v}]$ is denote by $\Delta_{[\mathfrak{b}, \mathfrak{v}]}^{\mathbb{C}}$, hence in particular, the sets of nondecreasing and convex mappings in $[\mathrm{D}, \mathfrak{v}]$ are $\Delta_{[\mathrm{p}, \mathfrak{v}]}^{1}$ and $\Delta_{[\mathrm{D}, \mathfrak{v}]}^{2}$ respectively. The set of all bounded mapping which is having a convex derivative on $(\mathfrak{D}, \mathfrak{p})$ is $\Delta_{[\mathfrak{D}, \mathfrak{p}]}^{3}$. Note that if $\mathfrak{Y} \in \Delta_{[\mathfrak{p}, \mathfrak{b}]}^{\mathbb{C}}, \mathfrak{C} \geq 2$, then \mathfrak{H} is continuous on $(\mathfrak{D}, \mathfrak{p})$ and $\mathfrak{H}(\mathfrak{D}+), \mathfrak{H}(\mathfrak{p}-)$ exist and are finite.

For $\mathfrak{G} \in \mathcal{C}_{[\mathfrak{D}, \mathfrak{v}]}$, and an interval $\mathcal{J} \subset[\mathfrak{D}, \mathfrak{p}]$, the symbol $\|\mathfrak{H}\|_{I}$ is denoted to the usual supnorm of \mathfrak{H} on \mathcal{J}, and for $h>0$ the $\mathfrak{v} t h$ modulus of smoothness of \mathfrak{H} is denoted by $\omega_{\kappa}(\mathfrak{H}, h ; \mathcal{J})$, with the step h on \mathcal{J}. For the interval $[\mathfrak{D}, \mathfrak{v}]$ itself we write $\|\mathfrak{V}\|:=$ $\|\mathfrak{H}\|_{[\mathfrak{D}, \mathfrak{v}]}$ and $\omega_{k}(\mathfrak{H}, \mathfrak{h}):=\omega_{k}(\mathfrak{H}, h ;[\mathfrak{D}, \mathfrak{v}])$.

2. Review

Proposition 2.1: [4]

Let $\mathfrak{K} \in \Delta_{[\mathfrak{D}, \mathfrak{p}]}^{3}$ and $\mathfrak{H}(\mathfrak{Z}):=\mathfrak{K}^{\prime}(\mathfrak{z}), \mathfrak{z} \in(\mathfrak{D}, \mathfrak{p})$. Given an integer $\kappa \geq 2$, a partition $\mathfrak{D}=: \mathfrak{z}_{0}<\mathfrak{z}_{1}<\cdots<\mathfrak{Z}_{\mathbb{C}}:=\mathfrak{v}$, and a piecewise polynomial $\delta \in \Delta_{[\mathfrak{d}, \mathfrak{v}]}^{2}$ of degree $\leq \kappa-1$, with k-nots $3_{\iota}, i=1, \ldots, \mathfrak{C}-1$, such that

$$
\delta\left(\mathfrak{z}_{l}\right)=\mathfrak{H}\left(\mathfrak{z}_{l}\right), \iota=1, \ldots, \mathfrak{c}-1,
$$

there exists a piecewise polynomial $\xi \in \Delta_{[0,0]}^{3}$ of degree $\leq \kappa$ with k-nots $\beta_{\iota}, \iota=1, \ldots, \mathfrak{C}-1$,
for which

$$
\|\mathfrak{K}-\xi\| \leq \epsilon \max _{1 \leq \iota \leq \mathbb{C}}\|\mathfrak{H}-\xi\|_{\left.L_{1[3 \iota-1,3 \iota}\right]},
$$

where ϵ is an absolute constant, and $\|\cdot\|_{\left.L_{1[3 l-1,3 l}\right]}$ denotes the L_{1}-norm on $\left[3_{l-1}, z_{l}\right]$. In fact $\epsilon \leq 25$.

Proposition 2.2: [4]
Suppose $\mathfrak{H} \in \Delta_{[\mathfrak{D}, \mathfrak{p}]}^{2}, \kappa \geq 2$, and $\mathfrak{\mathfrak { b }}_{-1}:=\mathfrak{D}=: \mathfrak{z}_{0}<\mathfrak{3}_{1}<\ldots<\mathfrak{z}_{\mathfrak{C}}:=\mathfrak{v}=: \mathfrak{b}_{\mathfrak{C}+1}$. Then for each piecewise polynomial $\delta \in$ $\Delta_{[\mathfrak{D}, \mathfrak{v}]}^{2}$ of degree $\leq \kappa-1$ with k-nots $3_{\iota}, \iota=1, \ldots, \mathfrak{C}-1$, there is a piecewise polynomial $\delta_{1} \in \Delta_{[\mathfrak{j}, \mathfrak{v}]}^{2}$ of degree $\leq \kappa-1$, with the same k-nots such that

- $\mathfrak{H}\left(3_{\imath}\right)=\delta_{1}\left(3_{\iota_{i}}\right), \iota=0, \ldots, \mathfrak{C}$,
- $\left\|\mathfrak{H}-\delta_{1}\right\|_{[\mathfrak{3} \iota-1, \mathfrak{3} \downarrow]} \leq \epsilon(\mathfrak{r})\|\mathfrak{H}-\delta\|_{[\{\mathfrak{\imath}-2, \mathfrak{3} \iota+1]}, \iota=1, \ldots, \mathfrak{C}$, where $\epsilon(r)$ is depending only on $r,(\epsilon(r)$ is constant $)$, the scale of the partition $3_{0}, \ldots, \mathfrak{z}_{\mathfrak{C}}$, i.e.,

$$
r:=\max _{1 \leq \iota \leq \mathbb{C}-1}\left\{\frac{3 \iota+1-3 l}{3 \iota-3 \iota-1} ; \frac{3 t-3 l-1}{3 \iota+1-3 l}\right\} .
$$

Proposition 2.3: [4]

Let $\mathfrak{K} \in \Delta_{[\mathfrak{D}, \mathfrak{p}]}^{3}$ and $\mathfrak{H}(\mathfrak{z}):=\mathfrak{K}^{\prime}(\mathfrak{3}), \mathfrak{z} \in(\mathfrak{d}, \mathfrak{v})$. Given an integer $\kappa \geq 2$, a partition $\mathfrak{z}_{-1}:=a=: \mathfrak{z}_{0}<\mathfrak{z}_{1}<\ldots<\mathfrak{z}_{\mathbb{C}}:=$ $\mathfrak{v}=: \mathfrak{b}_{\mathfrak{C}+1}$, and a piecewise polynomial $\delta \in \Delta_{[\mathfrak{b}, \mathfrak{v}]}^{2}$ of degree $\leq \kappa-1$, with k-nots $3_{\iota}, \iota=1, \ldots, \mathfrak{C}-1$, there is a piecewise polynomial $\xi \in \Delta_{[\mathrm{d}, \mathfrak{v}]}^{3}$ of degree $\leq \kappa$ with k-nots $\mathcal{3}_{\iota}, \iota=1, \ldots, \mathfrak{c}-1$, for which

$$
\|\mathfrak{K}-\xi\| \leq \epsilon(r) \max _{1 \leq i \leq \mathbb{C}}\left(\mathfrak{z}_{\imath}-\mathfrak{z}_{\imath-1}\right)\|\mathfrak{H}-\delta\|_{\left[\mathfrak{z} l-2, \mathfrak{z}_{\imath+1}\right]},
$$

where m is the scale, and $\epsilon(r) \leq \epsilon r$ for some absolute constant ϵ.

Proposition 2.4 : [4]

Let $\kappa \geq 1$ and $\mathfrak{D} \geq 0$, be integers such that either $\mathfrak{D} \geq 2$ or $2 \leq \kappa+\mathfrak{D} \leq 3$. Then for each $\mathfrak{H} \in \mathcal{C}_{[-1,1]}^{(\mathfrak{D})} \cap \Delta_{[-1,1]}^{2}$ there exist piecewise polynomials $\delta_{1}, \delta_{2} \in \Delta_{[-1,1]}^{2}$ of degree $\leq \kappa+\mathfrak{D}-1$ such that δ_{1} has \mathfrak{C} equidistant k-nots, satisfying

$$
\left\|\mathfrak{H}-\delta_{1}\right\|_{[-1,1]} \leq \frac{\epsilon(\kappa, \mathfrak{D})}{\mathfrak{D}^{\mathfrak{C}}} \omega_{\kappa}\left(\mathfrak{H}^{(\mathfrak{D})}, 1 / \mathfrak{C} ;[-1,1]\right)
$$

and δ_{2} has k-nots on the Chebyshev partition, satisfying

$$
\left\|\mathfrak{H}-\delta_{2}\right\|_{[-1,1]} \leq \frac{\epsilon(\kappa, \mathfrak{D})}{\mathfrak{D}^{\mathbb{C}}} \omega_{\kappa}^{\varphi}\left(\mathfrak{H}^{(\mathfrak{D})}, 1 / \mathfrak{C} ;[-1,1]\right)
$$

Proposition 2.5 : [4]

Let $\kappa \geq 1$ and $\mathfrak{D} \geq 0$, be integers such that either $\mathfrak{D} \geq 3$ or $3 \leq \kappa+\mathfrak{D} \leq 4,(\kappa, \mathfrak{D}) \neq(4,0)$. Then for each $\mathfrak{K} \in$ $\mathcal{C}_{[-1,1]}^{(\mathcal{D})} \cap \Delta_{[-1,1]}^{3}$ there exist piecewise polynomials $\xi_{1}, \xi_{2} \in \Delta_{[-1,1]}^{3}$ of degree $\leq \kappa+\mathfrak{D}-1$, such that ξ_{1} has \mathfrak{C} equidistant k nots, satisfying

$$
\left\|\mathfrak{K}-\xi_{1}\right\|_{[-1,1]} \leq \frac{\epsilon(\kappa, \mathfrak{D})}{\mathfrak{D}^{\mathbb{C}}} \omega_{\kappa}\left(\mathfrak{K}^{(\mathfrak{D})}, 1 / \mathfrak{C} ;[-1,1]\right)
$$

And ξ_{2} has k-nots on the Chebyshev partition, satisfying

$$
\left\|\mathfrak{K}-\xi_{2}\right\|_{[-1,1]} \leq \frac{\epsilon(\kappa, \mathfrak{D})}{\mathfrak{D}^{\mathbb{C}}} \omega_{\kappa}^{\varphi}\left(\mathfrak{K}^{(\mathfrak{D})}, 1 / \mathfrak{C} ;[-1,1]\right) .
$$

Proposition 2.6 : [4]

Suppose $\xi \in \Delta_{[\mathfrak{D}, \mathfrak{v}]}^{3}$ is a piecewise polynomial of degree $\leq \kappa, \kappa \geq 3$, with k-nots on the partition $\quad \mathcal{Z}_{-1}:=\mathfrak{D}=: 3_{0}<$ $\mathfrak{b}_{1}<\ldots<\mathfrak{b}_{\mathfrak{c}}:=\mathfrak{v}=: \mathfrak{b}_{\mathfrak{c}+1}$. Then there is a piecewise polynomial ξ_{1} of degree $\leq \kappa$ with the same k-nots, such that

$$
\xi_{1} \in \Delta_{[\mathrm{D}, \mathrm{v}]}^{3} \cap \mathcal{C}_{[\mathrm{p}, \mathrm{v}]}^{(2)}
$$

and

$$
\left.\left\|\xi-\xi_{1}\right\| \leq \epsilon(\kappa, r, \varsigma) \max _{1 \leq j \leq \mathbb{C}-1} \omega_{k+1}\left(\xi, \jmath_{\mathrm{t}+1}-3_{\mathrm{t}-1}\right) ;[3 \mathrm{t}+1,3 \mathrm{t}-1]\right),
$$

where $\epsilon(\kappa, r, \varsigma)$ depends only on κ, r, ς, where r is given and

$$
\varsigma=\max _{0 \leq t \leq \mathbb{C}} \frac{(t-t)(3 t+1-3 t-1)}{3 t-3 t} .
$$

Properties 2.7 : [4]

Let $\kappa \geq 1$ and $\mathfrak{D} \geq 0$, be integers such that either $\mathfrak{D} \geq 3$ or $\kappa+\mathfrak{D}=4,(\kappa, \mathfrak{D}) \neq(4,0)$. Then for each $\mathfrak{K} \in \mathcal{C}_{[-1,1]}^{(D)} \cap$ $\Delta_{[-1,1]}^{3}$ there exist piecewise polynomials $\xi_{1}, \xi_{2} \in \Delta_{[-1,1]}^{3} \cap \mathcal{C}_{[\mathfrak{D}, \mathrm{p}]}^{(2)}$ of degree $\leq \kappa+\mathfrak{D}-1$, such that ξ_{1} has \mathfrak{C} equidistant k-nots, satisfying

$$
\left\|\mathfrak{K}-\xi_{1}\right\|_{[-1,1]} \leq \frac{\epsilon(\kappa, \mathfrak{D})}{\mathfrak{D}^{\mathbb{C}}} \omega_{\kappa}\left(\mathfrak{\Re}^{(\mathfrak{D})}, 1 / \mathfrak{C} ;[-1,1]\right),
$$

and ξ_{2} has k-nots on the Chebyshev partition, satisfying

$$
\left\|\mathfrak{K}-\xi_{2}\right\|_{[-1,1]} \leq \frac{\epsilon(\kappa, \mathfrak{D})}{\mathfrak{D}^{\mathbb{C}}} \omega_{\kappa}^{\varphi}\left(\mathfrak{G}^{(\mathfrak{D})}, 1 / \mathfrak{C} ;[-1,1]\right) .
$$

Proposition 2. 8 : [4]

Let $\mathfrak{z}_{\mathbb{C}}<\cdots<3_{1}<3_{0}$ be given and let $\mathfrak{K} \in \Delta^{3}\left[\mathfrak{Z}_{\mathfrak{E}}, \mathfrak{z}_{0}\right]$ be a mapping with a derivative $\mathfrak{H}:=\mathfrak{K}^{\prime} \in \Delta^{2}\left(\mathfrak{\jmath}_{\mathfrak{E}}, \mathfrak{z}_{0}\right)$. Suppose, that $s \in \Delta^{2}\left(\mathfrak{Z}_{\mathfrak{c}}, \mathfrak{z}_{0}\right)$ is a piecewise polynomial of size κ (degree $\kappa-1$) with nodes $\mathfrak{z}_{\mathbb{C}}, \ldots, \mathfrak{z}_{0}$, satisfying

- $\delta\left(3_{\imath}\right)=\mathfrak{H}\left(3_{\imath}\right), \iota=0, \ldots, \mathfrak{c}$,
- $\delta^{\prime}\left(\mathfrak{\jmath}_{\iota}+\right) \geq \mathfrak{H}^{\prime}\left(\mathfrak{z}_{\imath}+\right), \iota=1, \ldots, \mathfrak{C}$,
- $\mathfrak{H}^{\prime}\left(3_{\imath}-\right) \geq \delta^{\prime}\left(3_{\imath}-\right), \iota=0, \ldots, \mathfrak{C}-1$.

Then, there are at most \mathfrak{C} additional nodes $\theta_{\mathbb{C}}, \ldots, \theta_{1}$, such that

$$
3_{\mathfrak{C}}<\theta_{\mathfrak{C}}<3 \mathfrak{C}-1<\theta_{\mathfrak{C}-1}<3 \mathfrak{C}-2<\cdots<\theta_{1}<3_{0},
$$

and a piecewise polynomial $\xi \in \Delta 3\left[\mathfrak{z}_{\mathfrak{C}}, \mathfrak{z}_{0}\right]$ of size $\kappa+1$ with the nodes $\mathfrak{\jmath}_{\mathfrak{c}}, \theta_{\mathbb{C}}, \mathfrak{\jmath}_{\mathfrak{C}-1}, \ldots, \theta_{1}, \mathfrak{\beta}_{0}$, satisfying

$$
\|\mathfrak{K}-\xi\|_{\epsilon[\mathfrak{z} \imath \mathfrak{\jmath} \iota-1]} \leq 2\left\|\int_{\mathfrak{z} \iota}^{(\cdot)}(\mathfrak{H}(\mathfrak{z})-\delta(\mathfrak{z})) d \mathfrak{\}}\right\|_{\epsilon[\mathfrak{\jmath} \imath \mathfrak{\jmath} \iota-1]}, \iota=1, \ldots, \mathfrak{C}
$$

and such that $\mathfrak{K}\left(\mathcal{z}_{\imath}\right)=\xi\left(\mathcal{3}_{\imath}\right), \iota=0, \ldots, \mathfrak{c}$.

Proposition 2.9: [1]

For each mapping $\mathfrak{K} \in \Delta^{3}$ and every $\mathfrak{C} \geq 1$, there is a quadratic spline $\xi \in \Delta^{3}$ on the Chebyshev partition $-1=\mathfrak{Z}_{\mathbb{C}}<$ $\cdots<3_{1}<3_{0}=1$, satisfying

$$
|\mathfrak{K}(\mathfrak{\jmath})-\xi(\mathfrak{\jmath})| \leq \epsilon \omega_{3}\left(\mathfrak{K}, \rho_{\mathbb{C}}(\mathfrak{\jmath})\right), \mathfrak{z} \in[-1,1],
$$

where ϵ is a constant in an absolute value.

Proposition 2.10 : [1]

For each mapping $\mathfrak{G} \in \Delta^{3}$ and every $\mathfrak{C} \geq 2$, there exists a polynomial $P_{\mathbb{C}} \in \Delta^{3}$ of degree $\leq \mathfrak{C}$, satisfying

$$
\left|\mathfrak{K}(\mathfrak{\jmath})-P_{\mathbb{C}}(\mathfrak{\jmath})\right| \leq \epsilon \omega_{3}\left(\mathfrak{K}, \rho_{\mathbb{C}}(\mathfrak{\jmath})\right), \mathfrak{z} \in[-1,1],
$$

where ϵ is a constant in an absolute value.
Proposition 2.11: [2]
For every $\eta \geq 1$, there exists a constant $\epsilon_{1}(\eta)>0$ so that the following statement is valid. Let $\mathfrak{H} \in \Delta^{3} \cap L_{p}, 0<p \leq$ ∞, and let $\mathfrak{z e}$ be a partition of $[-1,1]$ such that $\eta(\mathfrak{Z}) \leq \eta$. Then there exist a partition λ_{r} of $[-1,1], r \leq 20 \mathfrak{C}$, and a cubic ppf $\delta \in \xi_{3}\left(\lambda_{r}\right) \cap \Delta 3$ such that, for each $0 \leq \kappa \leq r-1$, there exists $1 \leq \mathrm{t} \leq \mathfrak{C}-1$ such that

$$
\left[\lambda_{\kappa}, \lambda_{\kappa+1}\right] \subseteq[3 \mathrm{t}-1,3 \mathrm{t}+1]
$$

and
Also, for each $0 \leq \mathrm{t} \leq \mathfrak{C}-1$,

$$
\lambda_{\kappa+1}-\lambda_{\kappa} \geq \epsilon_{1}(\eta)\left(\partial_{t+1}-3_{t-1}\right)
$$

$$
\|\mathfrak{G}-\delta\|_{\left.L_{p[3 \mathrm{t}, \mathrm{z} \mathrm{t}+1}\right]} \leq \epsilon(\eta, p) \omega_{4}\left(f,\left[\mathrm{z}_{\mathrm{t}-1}, 3 \mathrm{t}+2\right]\right)_{p} .
$$

Proposition 2.12: [2]
Let $\kappa \geq 1$ and $r \geq 3$. For any $\mathfrak{G} \in \Delta^{3} \cap \mathcal{C}$ and every partition $\mathfrak{J C \mathscr { C }}$ of $[-1,1]$ such that $\kappa\left(\mathcal{Z}_{\mathbb{C}}\right) \leq \kappa$, there exists a spline $\delta \in \xi_{\mathfrak{O}}\left(\mathfrak{Z}_{\mathbb{C}}\right) \cap \Delta^{3}$ of minimal defect such that

$$
\|\mathfrak{H}-\delta\|_{L_{\infty}} \leq \epsilon(\mathfrak{D}, \kappa) \max _{1 \leq t \leq \mathbb{C}-1} \omega_{4}(\mathfrak{H},[3 \mathrm{t}-1,3 \mathrm{ht+1}])_{\infty} .
$$

Proposition 2.13: [2]
Let $\mathfrak{D} \geq 3$ and $\mathfrak{C} \in N$. For any $\mathfrak{G} \in \Delta^{3} \cap \mathcal{C}$, there exists a spline $\delta \in \xi_{r}\left(u_{\mathscr{C}}\right) \cap \Delta^{3}$ of minimal defect such that $\|\mathfrak{H}-\delta\|_{L_{\infty}} \leq \epsilon(r) \omega_{4}\left(\mathfrak{H}, \mathfrak{C}^{-1},[-1,1]\right)_{\infty}$.

Proposition 2.14: [2]
Let $\mathfrak{D} \geq 3$ and $\mathfrak{C} \in N$. For any $\mathfrak{G} \in \Delta^{3} \cap \mathcal{C}$, there exists a spline $\delta \in \xi_{\mathfrak{O}}\left(t_{\mathbb{C}}\right) \cap \Delta^{3}$ of minimal defect such that $\|\mathfrak{H}-\delta\|_{L_{\infty}} \leq \epsilon(\mathfrak{D}) \omega_{4}^{\varphi}\left(\mathfrak{H}, \mathfrak{C}^{-1}\right)_{\infty}$,
where $\omega_{4}^{\varphi}\left(\mathfrak{H}, \mathfrak{C}^{-1}\right)_{\infty}$ is the Ditzian-Totik modulus of smoothness of size 4 .

Proposition 2.15 : [3]

Let $\kappa, \mathfrak{D} \in N, \kappa \geq 2, \mathfrak{D} \geq \kappa-1,0<p \leq \infty, \mathfrak{F} \in \Delta_{*}^{\kappa}(\mathfrak{D}, \mathfrak{v}) \cap L_{p}[\mathfrak{D}, \mathfrak{p}]$, and let s be such that either $\mathcal{s} \in \Pi_{\mathfrak{D}} \cap$ $\Delta^{\kappa}(\mathrm{D}, \mathfrak{v})$ or $(-\mathcal{s}) \in\left(\Pi_{\mathfrak{D}} \backslash \Pi_{\kappa}\right) \cap \Delta^{\kappa}(\mathrm{D}, \mathfrak{v})$. Then there exists s such that

$$
\delta \in \xi_{c(\kappa), \mathfrak{D}}[\mathfrak{D}, \mathfrak{v}] \cap \Delta^{\kappa}[\mathfrak{H}](\mathfrak{D}, \mathfrak{v})
$$

and

$$
\|\mathfrak{H}-\delta\|_{L_{p[\mathrm{j}, \mathrm{v}]}} \leq \epsilon(p, \mathfrak{D}, \kappa)\|\mathfrak{H}-s\|_{\left.L_{p[\mathfrak{D},]}\right]}
$$

Proposition 2.16: [2]

Let $\kappa, \mathfrak{D} \in N, \kappa \geq 2, \mathfrak{D} \geq \kappa-1,0<p \leq \infty, \mathfrak{H} \in \Delta_{*}^{\kappa}(\mathfrak{D}, \mathfrak{v}) \cap L_{p}$, $\mathfrak{G C}$ be a partition of $[-1,1]$, and let σ be any ppf from $\xi_{\mathfrak{D}}(\mathfrak{\mathfrak { c }})$. Then there exist a constant $\epsilon_{2}=\epsilon_{2}(\kappa, \mathfrak{D}) \in N$ and a ppf $\in \xi_{\epsilon_{2} \mathfrak{C}, \mathfrak{D}} \cap \Delta^{\kappa}$, such that

- δ has $\leq \epsilon_{2}$ pieces in each interval $\left[3 \mathrm{t}, 3_{\mathrm{t}+1}\right], 0 \leq \mathrm{t} \leq \mathbb{C}-1$, and
- $\|\mathfrak{H}-\delta\|_{\left.L_{p[3 \mathrm{t}, 3 \mathrm{t}+1}\right]} \leq \epsilon(\kappa, r, p)\|\mathfrak{H}-\sigma\|_{L_{p[35,3 \mathrm{t}+1]}}, 0 \leq \mathrm{t} \leq \mathfrak{C}-1$.

Proposition 2.17: [2]

For any $\kappa \in N, A>0,0<p \leq \infty, \mathfrak{D} \in N, \mathfrak{C} \in N$ and $0<\epsilon<2$ there exists a mapping $\mathfrak{H} \in \mathcal{C} \cap \Delta^{\kappa}$ such that $\left\|\mathfrak{H}-s_{\mathfrak{O}}\right\|_{L_{p[1-\epsilon, 1]}}>A \omega_{\kappa+2}(\mathfrak{H},[-1,1])_{p}$
for any $s_{\mathfrak{O}} \in \Pi_{\mathfrak{D}}$ satisfying $s_{\mathfrak{O}}^{(\kappa)}(1) \geq 0$.

Proposition 2.18: [2]

For any $\kappa \geq 4, \mathfrak{D} \in N, 0<p \leq \infty$ and $A>0$, there is $\mathfrak{C} \in N$ such that, for any partition $\sigma_{\mathbb{C}}$ of [-1,1] (into \mathfrak{C} subintervals), there exists a mapping $\mathfrak{y} \in \Delta^{\kappa} \cap C^{\kappa-2}$ such that

$$
\|\mathfrak{H}-\delta\|_{L_{p}}>A \omega_{3}\left(\mathfrak{H}, \mathfrak{C}^{-1},[-1,1]\right)_{p}
$$

for any $\delta \in \xi_{\mathcal{D}}\left(\sigma_{\mathbb{C}}\right) \cap \Delta^{\kappa}$.

References

[1] A. Bondarenko, D. Leviatanc, A. P., Pointwise estimates for 3-monotone approximation, Journal of Approximation Theory 164 (2012) 1205-1232
[2] G.A. Dzyubenko, K.A. Kopotunb, A.V. Prymak, Three-monotone spline approximation, Journal of approximation Theory 162 (2010) 2168-2183
[3] K. Kopotun, A. Shadrin, On k-monotone approximation by free k-not splines, SIAM J. Math. Anal. 34 (4) (2003) 901-924
[4] D. Leviatana, A.V. Prymak, On 3-monotone approximation by piecewise Polynomials, Journal of Approximation Theory 133 (2005) 147 - 172

