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Abstract: This paper is review about three monotone approximation. We recall some general properties with important
propositions.

1. Introduction
A mapping $ which is defined on 7 := [b, v], is real-valued and € is belong to N. Denote by

P L CTD
9 [30,--+136] i=0 M G- )

the Cth size divided of § at the points 3, ..., 3¢. The mapping £ is called € —monotone in [d,v], if H [39,...,3c] = 0 forall €+ 1
distinct points 3,...,3c € [b,]. The set of all € —monotone mapping in [d, v] is denote by A%,,D] , hence in particular, the sets of
nondecreasing and convex mappings in [d, o] are A%D,U] and Afb‘n] respectively. The set of all bounded mapping which is having a
convex derivative on(b, o) is A[Sb,u]' Note that if § € A%,_D], € > 2,then $ is continuous on (b,0) and $ (d+),$H (v—)

exist and are finite.

For$ € Cp.p and aninterval 7 < [b,v], the symbol ||$ [, is denoted to the usual supnorm of § on 7, and for 4 > 0
the oth modulus of smoothness of § is denoted by w,.($ , h; 7), with the step h on J. For the interval [b, o] itself we write||$ || :=
1 I and @i (9, 4) = wi(H,4; [b,0]).

2. Review

Proposition 2.1: [ 4]
Let R € Afbm] and H (3):= K'(3),3 € (b,v).Given an integer k > 2, a partitiond =:3, < 3; << 3g:=vp,anda
piecewise polynomial § € Afb,n] of degree < k — 1, withk-nots3,,i = 1,...,€ — 1, such that
6G)=9G)rt=1..¢-1,
there exists a piecewise polynomial ¢ € Afh‘n] of degree < k with k-nots3,,t = 1,...,6—1,
for which
I =&l < emaxiz <o 19 - Ellyy,
wheree is an absolute constant, and ||-||L1[3L_1'3L] denotes the L,-norm on [3,_4,3, ]. In fact € < 25.

Proposition 2.2 : [4]
Suppose $ € Afn,n], K=>2,and3_q =D =:3,< 34 < ..< 3¢ = D =:3g4¢. 1 henforeach piecewise polynomial § €

Afn,o] of degree <k — 1 withk-nots3,,t = 1,...,€ — 1, there is a piecewise polynomial § ; € A[Zbln] of degree < k — 1, with
the same k-nots such that

© $5G) =86, =06

® ”5 ) 1”[5L_1,5L] < E(/I"') ”S) -6 ||[3L_2,3L+1]’l = 1;---:(&
where () is depending only on # ,( e(#) is constant ), the scale of the partition 3, ... , 3¢, i.€.,
34173, 3L_SL—1} .

7= max _ {
=e=C-1 3"3—-1 ’ J+173
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Proposition 2.3:[ 4]

Let & € Afb,v] and  (3) := K'(3),3 € (b,v). Given an integer k¥ > 2, a partition 3_; := a =:3, < 3; < .. < 3¢ =
D =:3¢4+1, and a piecewise polynomial § € Afb‘n] of degree <k — 1, with k-nots 3,, ¢t = 1,...,€ — 1, there is a piecewise
polynomial ¢ € Aﬁw] of degree < k with k-nots3,,¢t = 1,...,€ — 1, for which

IR — &Il < e(r) maxicice B —3-D 19 — 6 ||[3L_2,3H_1] )
where m is the scale, and e(#) < e~ for some absolute constant €.

Proposition 2.4 : [ 4]
Letk = 1and O > 0, be integers such that either O > 2 or 2 < x + © < 3. Thenforeach $ € C’[(_Dl)'l] n A%, ,; there

exist piecewise polynomials 6 ,6 , € Af_l‘l]of degree <k + O — 1suchthat§ , has € equidistant k-nots, satisfying

0
19 = 81l <52 09 @, 1/6 [-1,1]),

and & , has k-nots on the Chebyshev partition, satisfying
15 = 82llay <2 0f(5®,1/6 [-1,1]).

Proposition 2.5:[4 ]
Let k > 1 and O > 0, be integers such that either D >3 0r3 <k + 90 <4,(x,O) # (4,0). Thenforeach & €

C'[(Pl)‘l] n Af-m] there exist piecewise polynomials &;,¢&, € Af_m] of degree < k + O — 1, such that &; has € equidistant k-

nots, satisfying
0
1% = &llmry <52 08D, 1/6 [-1,1]),
And &, has k-nots on the Chebyshev partition, satisfying
€(x,D)

I8 — fz”[—l,l] =< o€ w,‘f(ﬁ@),l/@; [—1,1]).

Proposition 2.6 : [4 ]
Suppose ¢ € Afm] is a piecewise polynomial of degree < x, k > 3, with k-nots on the partition 3= D =13, <
31 < ..< 3¢ =D =:3g41. Thenthere is a piecewise polynomial &; of degree < k with the same k-nots, such that
2)
& € A%, N C[(D_D],
and
€ — &Il < e(x,7,¢) maxi<j<g—1 Wis1($ 301 — 3t-1); [Bt+1,3t-11)
where €(k, 7, ¢)depends only on k, 7, ¢, where #~is given and

(-0 Gt+1—3t-1)
¢ = MaXp<i<e .

3t— 3

Properties 2.7 : [4]

Let xk > 1 and © > 0, be integers such that either © >3 or k + O = 4, (x,O) # (4,0). Then for each & € C[(?l),l] n
Af_m] there exist piecewise polynomials &;,&, € A[3_1_1] n c{;g] of degree < k + O — 1, such that &, has € equidistant k-nots,
satisfying

0
IR = &l <52 0 (&D,1/6 [-1,1]),

and &, has k-nots on the Chebyshev partition, satisfying
0
IR = &llcy <52 02 (], 1/6; [-1,1]),

Proposition2.8:[ 4 ]
Let3e <+ < 3 < 30begivenandlet & € 43[3¢,30] be a mapping with a derivative § := &' € 4%(3s, 30)- SUppOSE,
that s € A%(3,30) is a piecewise polynomial of sizex (degree k — 1) with nodes 3¢, ..., 30, Satisfying

b 6(3L) =9 (SL)'l =0,..,¢C
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e 3'GH) =29 'GH)t = 1.6,
e $'G~) 286Gt =0,...,6 - 1.
Then, there are at most Cadditional nodes 6, ..., 8;, such that
3c < 05 < 361 < Og-1 <3g-2 << 01 <3,
and a piecewise polynomial ¢ € A3[3, 3] 0f size k + 1 with the nodes 3¢, 8¢, 36_1 , ---, 01, 30, Satisfying

O
f (5®-6@®)d;
3

”% - f ||€[3L‘3L_1]S 2 , L = 1,...,@

€[3u31-1]

and such that 8(3,) = £€@),t = 0,...,C.

Proposition2.9:[1 ]
For each mapping & € A% and every € > 1, there is a quadratic spline £ € A3 on the Chebyshev partition —1 = 35 <
- < 3 < 30 = 1,satisfying
IRG) — $B) < €ws(K,ps(3))3 € [-1,1],
where € is a constant in an absolute value.

Proposition 2.10: [ 1]
For each mapping & € 43 and every € > 2, there exists a polynomial P; € A30of degree < G, satisfying

IRGB) — Ps )] < ews(R,p6(3)) 3 € [-1,1],
where € is a constant in an absolute value.

Proposition 2.11: [2 ]

Foreveryn > 1, there exists a constant €;() > 0 so that the following statement is valid. Let § € 4° nL,,0 < p <
oo, and let 3¢ be a partition of [—1, 1] such that n(3z) < 1. Then there exist a partition 4,. of [—1,1],7 < 20€, and a cubic ppf
6 € &(4,) n A3 suchthat, foreach 0 < k < #— 1, thereexists1 <t < € — 1 such that

(A s A1) S [Bi-1,3t41]
and
Merr — Ae = €101 Bar — 3t-1)-
Also, foreach0 <t < € — 1,
15 = 6l sy < €0 PI@ACS, i1, 3i52Dpe

Proposition 2.12: [2]
Letk > 1landr = 3.Forany $ € 4% n C and every partition 3¢ of [—1, 1] such that k(3¢) < k, there exists a
spline § € &5 (3¢) N 43 of minimal defect such that

19 = O, = €O, 6) Maxicice-1 ©@a(H, [Bi-1,3t41 Deo-

Proposition 2.13: [2]
LetO > 3andC € N.Forany $ € 43 N C, there exists aspline § € &, (ug) N 4° of minimal defect such that

19 =6l < €wa(H,C[-1,1])o.

Proposition 2.14 : [2]
LetO > 3andC € N.Forany $ € 43 N C, there exists a spline § € &g (tz) N A3of minimal defect such that

195 — & llL, < €@y ($,C Mo,
where wf ($,C1),, is the Ditzian-Totik modulus of smoothness of size 4.

Proposition 2.15 : [3]
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Letk, D € Nk = 2,9 2k — 1,0 < p < 0,9 € 4f(d,v) N Ly[d,v], and let sbe such that either s € 15 N
A* (d,v) or (—=8) € (llp \ I1,) N 4% (d,v). Then there exists s such that
6 € fc(x),D [b, D] n a* [g) ](b: D)

and
19 = iy < €@OOND = Sl

Proposition 2.16 : [ 2]
Let ,© € Nk 2 2,9 2k — 1,0 < p < 0,9 € 4 (d,0) N Ly, 3¢ be apartition of [—1, 1], and let o be any ppf

from &5 (3¢). Then there exist a constant e, = €,(x,©) € Nandappf € &, ¢o N 4", such that
e § has < e, pieces in each interval [3;,3i41],0 <t < € — 1,and
o NS = bllyy,,y S €nS = ol . ,0st<C-1

Proposition 2.17 : [2]
Foranyk € N,A > 0,0 < p < 00,0 € N,€ € Nand0 < € < 2 there exists a mapping § € C n A* such that

1D = 80 llyp sy > AWis2(H,[=1,1]Dy
for any 8o € Il satisfying 5;“) (1) = 0.

Proposition 2.18 : [ 2]
Foranyk > 4,0 € N,0 < p < o and A > 0, there is € € N such that, for any partition o of [-1,1] (into €
subintervals), there exists a mapping $ € 4% n C* 2 such that
19 = 6l > Aws(9,C74[-1,1]),,
forany 8§ € &g (o) N 4°.
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