On Three – Monotone Approximation

Mayada Ali Kareem

Mathematics Department University of Babylon Hilla, Babylon, Iraq <u>pure.meyada.ali@uobabylon.edu.iq</u>

Abstract: This paper is review about three monotone approximation. We recall some general properties with important propositions.

1. Introduction

A mapping \mathfrak{H} which is defined on $\mathcal{I} := [\mathfrak{d}, \mathfrak{v}]$, is real-valued and \mathfrak{C} is belong to \mathbb{N} . Denote by

$$\mathfrak{H} \left[\mathfrak{z}_0,\ldots,\mathfrak{z}_{\mathfrak{C}}\right] := \sum_{i=0}^{\mathfrak{C}} \frac{\mathfrak{H}\left(\mathfrak{z}_i\right)}{\prod_{j=0, j\neq i}^{\mathfrak{C}} (\mathfrak{z}_i - x_j)}$$

the $\mathfrak{C}th$ size divided of \mathfrak{H} at the points $\mathfrak{z}_0, \ldots, \mathfrak{z}_{\mathfrak{C}}$. The mapping \mathfrak{H} is called \mathfrak{C} -monotone *in* $[\mathfrak{d}, \mathfrak{v}]$, if \mathfrak{H} $[\mathfrak{z}_0, \ldots, \mathfrak{z}_{\mathfrak{C}}] \ge 0$ for all $\mathfrak{C} + 1$ distinct points $\mathfrak{z}_0, \ldots, \mathfrak{z}_{\mathfrak{C}} \in [\mathfrak{d}, \mathfrak{v}]$. The set of all \mathfrak{C} -monotone mapping in $[\mathfrak{d}, \mathfrak{v}]$ is denote by $\Delta_{[\mathfrak{d},\mathfrak{v}]}^{\mathfrak{C}}$, hence in particular, the sets of nondecreasing and convex mappings in $[\mathfrak{d}, \mathfrak{v}]$ are $\Delta_{[\mathfrak{d},\mathfrak{v}]}^1$ and $\Delta_{[\mathfrak{d},\mathfrak{v}]}^2$ respectively. The set of all bounded mapping which is having a convex derivative on $(\mathfrak{d}, \mathfrak{v})$ is $\Delta_{[\mathfrak{d},\mathfrak{v}]}^3$. Note that if $\mathfrak{H} \in \Delta_{[\mathfrak{d},\mathfrak{v}]}^{\mathfrak{C}}$, $\mathfrak{C} \ge 2$, then \mathfrak{H} is continuous on $(\mathfrak{d},\mathfrak{v})$ and \mathfrak{H} $(\mathfrak{d}+),\mathfrak{H}$ $(\mathfrak{v}-)$ exist and are finite.

For $\mathfrak{H} \in \mathcal{C}_{[\mathfrak{d},\mathfrak{v}]}$, and an interval $\mathcal{I} \subset [\mathfrak{d},\mathfrak{v}]$, the symbol $\|\mathfrak{H}\|_{I}$ is denoted to the usual supnorm of \mathfrak{H} on \mathcal{I} , and for $\mathfrak{h} > 0$ the $\mathfrak{v}th$ modulus of smoothness of \mathfrak{H} is denoted by $\omega_{\kappa}(\mathfrak{H},\mathfrak{h};\mathcal{I})$, with the step \mathfrak{h} on \mathcal{I} . For the interval $[\mathfrak{d},\mathfrak{v}]$ itself we write $\|\mathfrak{H}\| := \|\mathfrak{H}\|_{[\mathfrak{d},\mathfrak{v}]}$ and $\omega_{\kappa}(\mathfrak{H},\mathfrak{h}) := \omega_{\kappa}(\mathfrak{H},\mathfrak{h};\mathfrak{d},\mathfrak{v}]$).

2. Review

Proposition 2.1: [4]

Let $\mathfrak{K} \in \Delta^3_{[\mathfrak{b},\mathfrak{v}]}$ and $\mathfrak{H}(\mathfrak{z}):=\mathfrak{K}'(\mathfrak{z}), \mathfrak{z} \in (\mathfrak{d},\mathfrak{v})$. Given an integer $\kappa \geq 2$, a partition $\mathfrak{d}=:\mathfrak{z}_0 < \mathfrak{z}_1 < \cdots < \mathfrak{z}_{\mathfrak{C}}:=\mathfrak{v}$, and a piecewise polynomial $\delta \in \Delta^2_{[\mathfrak{b},\mathfrak{v}]}$ of degree $\leq \kappa - 1$, with k-nots \mathfrak{z}_i , $i = 1, \dots, \mathfrak{C} - 1$, such that

 $\delta(\mathfrak{z}_{\iota}) = \mathfrak{H}(\mathfrak{z}_{\iota}), \iota = 1, \dots, \mathfrak{C} - 1,$ there exists a piecewise polynomial $\xi \in \Delta^3_{[\mathfrak{d},\mathfrak{v}]}$ of degree $\leq \kappa$ with k-nots $\mathfrak{z}_{\iota}, \iota = 1, \dots, \mathfrak{C} - 1$, for which

$$\|\mathfrak{K} - \xi\| \le \epsilon \max_{1 \le \iota \le \mathfrak{C}} \|\mathfrak{H} - \xi\|_{L_{1[2\iota-1,2\iota]}},$$

where ϵ is an absolute constant, and $\|\cdot\|_{L_{1[\mathfrak{z}_{t-1},\mathfrak{z}_{t}]}}$ denotes the L_{1} -norm on $[\mathfrak{z}_{t-1},\mathfrak{z}_{t}]$. In fact $\epsilon \leq 25$.

Proposition 2.2 : [4]

Suppose $\mathfrak{H} \in \Delta^2_{[\mathfrak{b},\mathfrak{v}]}, \kappa \ge 2$, and $\mathfrak{z}_{-1} := \mathfrak{d} =: \mathfrak{z}_0 < \mathfrak{z}_1 < \ldots < \mathfrak{z}_{\mathfrak{C}} := \mathfrak{v} =: \mathfrak{z}_{\mathfrak{C}+1}$. Then for each piecewise polynomial $\delta \in \Delta^2_{[\mathfrak{b},\mathfrak{v}]}$ of degree $\le \kappa - 1$ with k-nots $\mathfrak{z}_{\iota}, \iota = 1, \ldots, \mathfrak{C} - 1$, there is a piecewise polynomial $\delta_1 \in \Delta^2_{[\mathfrak{b},\mathfrak{v}]}$ of degree $\le \kappa - 1$, with the same k-nots such that

- $\mathfrak{H}(\mathfrak{z}_{\iota}) = \delta_1(\mathfrak{z}_{\iota_i}), \iota = 0, \ldots, \mathfrak{C},$
- $\|\mathfrak{H} \delta_1\|_{[\mathfrak{Z}_{l-1},\mathfrak{Z}_l]} \le \epsilon(\mathfrak{r}) \|\mathfrak{H} \delta\|_{[\mathfrak{Z}_{l-2},\mathfrak{Z}_l+1]}, \iota = 1, \dots, \mathfrak{C},$

where $\epsilon(r)$ is depending only on r, ($\epsilon(r)$ is constant), the scale of the partition $\mathfrak{z}_0, \dots, \mathfrak{z}_{\mathfrak{C}}$, i.e.,

 $\mathscr{V} := \max_{1 \le \iota \le \mathbb{C}-1} \left\{ \frac{\mathfrak{z}_{\iota+1} - \mathfrak{z}_{\iota}}{\mathfrak{z}_{\iota} - \mathfrak{z}_{\iota-1}}; \frac{\mathfrak{z}_{\iota} - \mathfrak{z}_{\iota-1}}{\mathfrak{z}_{\iota+1} - \mathfrak{z}_{\iota}} \right\}.$

Proposition 2.3 : [4]

Let $\mathfrak{K} \in \Delta^3_{[\mathfrak{b},\mathfrak{v}]}$ and $\mathfrak{H}(\mathfrak{z}) := \mathfrak{K}'(\mathfrak{z}), \mathfrak{z} \in (\mathfrak{b},\mathfrak{v})$. Given an integer $\kappa \ge 2$, a partition $\mathfrak{z}_{-1} := a =: \mathfrak{z}_0 < \mathfrak{z}_1 < ... < \mathfrak{z}_{\mathfrak{C}} := \mathfrak{v} =: \mathfrak{z}_{\mathfrak{C}+1}$, and a piecewise polynomial $\delta \in \Delta^2_{[\mathfrak{b},\mathfrak{v}]}$ of degree $\le \kappa - 1$, with k-nots $\mathfrak{z}_\iota, \iota = 1, ..., \mathfrak{C} - 1$, there is a piecewise polynomial $\xi \in \Delta^3_{[\mathfrak{b},\mathfrak{v}]}$ of degree $\le \kappa$ with k-nots $\mathfrak{z}_\iota, \iota = 1, ..., \mathfrak{C}$.

 $\|\mathfrak{K} - \xi\| \le \epsilon(\mathscr{M}) \max_{1 \le i \le \mathfrak{C}} (\mathfrak{z}_{\iota} - \mathfrak{z}_{\iota-1}) \|\mathfrak{H} - \delta\|_{[\mathfrak{z}_{\iota-2}, \mathfrak{z}_{\iota+1}]},$

where *m* is the scale, and $\epsilon(r) \leq \epsilon r$ for some absolute constant ϵ .

Proposition 2.4 : [4]

Let $\kappa \ge 1$ and $\mathfrak{D} \ge 0$, be integers such that either $\mathfrak{D} \ge 2$ or $2 \le \kappa + \mathfrak{D} \le 3$. Then for each $\mathfrak{H} \in \mathcal{C}_{[-1,1]}^{(\mathfrak{D})} \cap \Delta_{[-1,1]}^2$ there exist piecewise polynomials $\delta_1, \delta_2 \in \Delta_{[-1,1]}^2$ of degree $\le \kappa + \mathfrak{D} - 1$ such that δ_1 has \mathfrak{C} equidistant k-nots, satisfying

$$\|\mathfrak{H} - \delta_1\|_{[-1,1]} \leq \frac{c(\kappa,\omega)}{\mathfrak{D}^{\mathfrak{C}}} \omega_{\kappa}(\mathfrak{H}^{(\mathfrak{D})}, 1/\mathfrak{C}; [-1,1]),$$

and δ_2 has k-nots on the Chebyshev partition, satisfying

$$\|\mathfrak{H} - \delta_2\|_{[-1,1]} \leq \frac{\epsilon(\kappa,\mathfrak{O})}{\mathfrak{O}^{\complement}} \ \omega_{\kappa}^{\varphi}(\mathfrak{H}^{(\mathfrak{O})}, 1/\mathfrak{C}; \ [-1,1]).$$

Proposition 2.5 : [4]

Let $\kappa \ge 1$ and $\mathfrak{D} \ge 0$, be integers such that either $\mathfrak{D} \ge 3$ or $3 \le \kappa + \mathfrak{D} \le 4$, $(\kappa, \mathfrak{D}) \ne (4, 0)$. Then for each $\mathfrak{K} \in \mathcal{C}_{[-1,1]}^{(\mathfrak{D})} \cap \Delta_{[-1,1]}^3$ there exist piecewise polynomials $\xi_1, \xi_2 \in \Delta_{[-1,1]}^3$ of degree $\le \kappa + \mathfrak{D} - 1$, such that ξ_1 has \mathfrak{C} equidistant k-nots, satisfying

$$\|\mathfrak{K} - \xi_1\|_{[-1,1]} \leq \frac{\epsilon(\kappa,\mathfrak{D})}{\mathfrak{D}^{\mathfrak{C}}} \,\,\omega_{\kappa}(\mathfrak{K}^{(\mathfrak{D})}, 1/\mathfrak{C}; \, [-1,1]),$$

And ξ_2 has k-nots on the Chebyshev partition, satisfying

$$\|\mathfrak{K} - \xi_2\|_{[-1,1]} \leq \frac{\epsilon(\kappa,\mathfrak{D})}{\mathfrak{D}^{\complement}} \ \omega_{\kappa}^{\varphi}(\mathfrak{K}^{(\mathfrak{D})}, 1/\mathfrak{C}; \ [-1,1]).$$

Proposition 2.6 : [4]

Suppose $\xi \in \Delta^3_{[b,v]}$ is a piecewise polynomial of degree $\leq \kappa, \kappa \geq 3$, with k-nots on the partition $\mathfrak{z}_{-1} := \mathfrak{d} =: \mathfrak{z}_0 < \mathfrak{z}_1 < \ldots < \mathfrak{z}_{\mathfrak{C}} := \mathfrak{v} =: \mathfrak{z}_{\mathfrak{C}+1}$. Then there is a piecewise polynomial ξ_1 of degree $\leq \kappa$ with the same k-nots, such that $\xi_1 \in \Delta^3_{[b,v]} \cap \mathcal{C}^{(2)}_{[b,v]}$,

and

 $\begin{aligned} \|\xi - \xi_1\| &\leq \epsilon(\kappa, \mathscr{V}, \varsigma) \max_{1 \leq j \leq \mathfrak{C}-1} \omega_{k+1}(\xi, \mathfrak{z}_{i+1} - \mathfrak{z}_{i-1}); \ [\mathfrak{z}_{i+1}, \mathfrak{z}_{i-1}]), \end{aligned}$ where $\epsilon(\kappa, \mathscr{V}, \varsigma)$ depends only on $\kappa, \mathscr{V}, \varsigma$, where \mathscr{V} is given and $\varsigma = \max_{0 \leq t \leq \mathfrak{C}} \frac{(t-\iota)(\mathfrak{z}_{i+1} - \mathfrak{z}_{i-1})}{\mathfrak{z}_{i-1}}. \end{aligned}$

Properties 2.7 : [4]

Let $\kappa \ge 1$ and $\mathfrak{D} \ge 0$, be integers such that either $\mathfrak{D} \ge 3$ or $\kappa + \mathfrak{D} = 4$, $(\kappa, \mathfrak{D}) \ne (4, 0)$. Then for each $\mathfrak{K} \in \mathcal{C}_{[-1,1]}^{(\mathfrak{D})} \cap \Delta^3_{[-1,1]}$ there exist piecewise polynomials $\xi_1, \xi_2 \in \Delta^3_{[-1,1]} \cap \mathcal{C}_{[\mathfrak{d}, \mathfrak{v}]}^{(2)}$ of degree $\le \kappa + \mathfrak{D} - 1$, such that ξ_1 has \mathfrak{C} equidistant k-nots, satisfying

$$\|\mathfrak{K} - \xi_1\|_{[-1,1]} \leq \frac{\epsilon(\kappa,\mathfrak{D})}{\mathfrak{D}^{\complement}} \ \omega_{\kappa}(\mathfrak{K}^{(\mathfrak{D})}, 1/\mathfrak{C}; \ [-1,1]),$$

and ξ_2 has k-nots on the Chebyshev partition, satisfying

$$\|\mathfrak{K} - \xi_2\|_{[-1,1]} \leq \frac{\epsilon(\kappa,\mathfrak{D})}{\mathfrak{D}^{\mathfrak{C}}} \omega_{\kappa}^{\varphi}(\mathfrak{K}^{(\mathfrak{D})}, 1/\mathfrak{C}; [-1,1]).$$

Proposition 2.8 : [4]

Let $\mathfrak{z}_{\mathbb{C}} < \cdots < \mathfrak{z}_1 < \mathfrak{z}_0$ be given and let $\mathfrak{K} \in \Delta^3[\mathfrak{z}_{\mathbb{C}}, \mathfrak{z}_0]$ be a mapping with a derivative $\mathfrak{H} := \mathfrak{K}' \in \Delta^2(\mathfrak{z}_{\mathbb{C}}, \mathfrak{z}_0)$. Suppose, that $s \in \Delta^2(\mathfrak{z}_{\mathbb{C}}, \mathfrak{z}_0)$ is a piecewise polynomial of size κ (degree $\kappa - 1$) with nodes $\mathfrak{z}_{\mathbb{C}}, \ldots, \mathfrak{z}_0$, satisfying • $\delta(\mathfrak{z}_t) = \mathfrak{H}(\mathfrak{z}_t), \iota = 0, \ldots, \mathfrak{C}$, International Journal of Engineering and Information Systems (IJEAIS) ISSN: 2643-640X Vol. 5 Issue 8, August - 2021, Pages: 1-4

 $\delta'(\mathfrak{z}_{\iota}+\mathfrak{z}) \geq \mathfrak{H}'(\mathfrak{z}_{\iota}+\mathfrak{z}), \iota = 1, \ldots, \mathfrak{C},$

• $\mathfrak{H}'(\mathfrak{z}_{\iota}-\mathfrak{z}) \geq \delta'(\mathfrak{z}_{\iota}-\mathfrak{z}), \iota = 0, \dots, \mathfrak{C} - 1.$ Then, there are at most Cadditional nodes $\theta_{\mathfrak{C}}, \dots, \theta_{1}$, such that

 $\mathfrak{z}_{\mathbb{C}} < \theta_{\mathbb{C}} < \mathfrak{z}_{\mathbb{C}-1} < \theta_{\mathbb{C}-1} < \mathfrak{z}_{\mathbb{C}-2} < \cdots < \theta_1 < \mathfrak{z}_0,$

and a piecewise polynomial
$$\xi \in \Delta 3[\mathfrak{z}_{\mathfrak{C}},\mathfrak{z}_0]$$
 of size $\kappa + 1$ with the nodes $\mathfrak{z}_{\mathfrak{C}}, \mathfrak{\theta}_{\mathfrak{C}}, \mathfrak{z}_{\mathfrak{C}-1}, \dots, \mathfrak{\theta}_1, \mathfrak{z}_0$, satisfying

$$\|\mathfrak{K} - \xi\|_{\epsilon[\mathfrak{z}_{\iota},\mathfrak{z}_{\iota-1}]} \leq 2 \left\| \int_{\mathfrak{z}_{\iota}}^{\mathfrak{T}} (\mathfrak{H}(\mathfrak{z}) - \delta(\mathfrak{z})) d\mathfrak{z} \right\|_{\epsilon[\mathfrak{z}_{\iota},\mathfrak{z}_{\iota-1}]}, \iota = 1, \dots, \mathfrak{C}$$

and such that $\Re(\mathfrak{z}_{\iota}) = \xi(\mathfrak{z}_{\iota}), \iota = 0, \ldots, \mathfrak{C}$.

Proposition 2.9 : [1]

For each mapping $\Re \in \Delta^3$ and every $\Im \geq 1$, there is a quadratic spline $\xi \in \Delta^3$ on the Chebyshev partition $-1 = \Im_{\Im} < 2$ $\cdots < \mathfrak{z}_1 < \mathfrak{z}_0 = 1$, satisfying

$$|\mathfrak{K}(\mathfrak{z}) - \xi(\mathfrak{z})| \leq \epsilon \,\omega_{\mathfrak{z}}(\mathfrak{K}, \rho_{\mathfrak{C}}(\mathfrak{z})), \mathfrak{z} \in [-1, 1],$$

where ϵ is a constant in an absolute value.

Proposition 2.10 : [1]

For each mapping $\Re \in \Delta^3$ and every $\mathfrak{C} \geq 2$, there exists a polynomial $P_{\mathfrak{C}} \in \Delta^3$ of degree $\leq \mathfrak{C}$, satisfying $|\mathfrak{K}(\mathfrak{z}) - P_{\mathfrak{C}}(\mathfrak{z})| \leq \epsilon \omega_{\mathfrak{z}}(\mathfrak{K}, \rho_{\mathfrak{C}}(\mathfrak{z})), \mathfrak{z} \in [-1, 1],$

where ϵ is a constant in an absolute value.

Proposition 2.11 : [2]

For every $\eta \ge 1$, there exists a constant $\epsilon_1(\eta) > 0$ so that the following statement is valid. Let $\mathfrak{H} \in \Delta^3 \cap L_p, 0$ ∞ , and let $\mathfrak{z}_{\mathbb{C}}$ be a partition of [-1, 1] such that $\eta(\mathfrak{z}_{\mathbb{C}}) \leq \eta$. Then there exist a partition λ_{r} of [-1, 1], $r \leq 20\mathbb{C}$, and a cubic ppf $\delta \in \xi_3(\lambda_r) \cap \Delta 3$ such that, for each $0 \le \kappa \le r - 1$, there exists $1 \le t \le \mathfrak{C} - 1$ such that $[\lambda_{\kappa}, \lambda_{\kappa+1}] \subseteq [\mathfrak{z}_{t-1}, \mathfrak{z}_{t+1}]$

and

Also, for each
$$0 \le t \le \mathfrak{C} - 1$$
,
$$\begin{aligned} \lambda_{\kappa+1} - \lambda_{\kappa} \ge \epsilon_1(\eta)(\mathfrak{z}_{t+1} - \mathfrak{z}_{t-1}).\\ \|\mathfrak{H} - \delta\|_{L_{p[\mathfrak{z}_t,\mathfrak{z}_{t+1}]}} \le \epsilon(\eta, p)\omega_4(f, [\mathfrak{z}_{t-1}, \mathfrak{z}_{t+2}])_p. \end{aligned}$$

Proposition 2.12: [2]

Let $\kappa \ge 1$ and $r \ge 3$. For any $\mathfrak{H} \in \Delta^3 \cap \mathcal{C}$ and every partition $\mathfrak{z}_{\mathfrak{C}}$ of [-1, 1] such that $\kappa(\mathfrak{z}_{\mathfrak{C}}) \le \kappa$, there exists a spline $\delta \in \xi_{\mathfrak{D}}(\mathfrak{z}) \cap \Delta^3$ of minimal defect such that

 $\|\mathfrak{H} - \delta\|_{L_{\infty}} \leq \epsilon(\mathfrak{O}, \kappa) \max_{1 \leq t \leq \mathfrak{C}-1} \omega_4(\mathfrak{H}, [\mathfrak{Z}_{t-1}, \mathfrak{Z}_{t+1}])_{\infty}.$

Proposition 2.13 : [2]

Let $\mathfrak{D} \geq 3$ and $\mathfrak{C} \in N$. For any $\mathfrak{H} \in \Delta^3 \cap \mathcal{C}$, there exists a spline $\delta \in \xi_r(u_{\mathfrak{C}}) \cap \Delta^3$ of minimal defect such that $\|\mathfrak{H} - \delta\|_{L_{\infty}} \leq \epsilon(r)\omega_4(\mathfrak{H}, \mathfrak{G}^{-1}, [-1, 1])_{\infty}.$

Proposition 2.14 : [2]

Let $\mathfrak{O} \geq 3$ and $\mathfrak{C} \in N$. For any $\mathfrak{H} \in \Delta^3 \cap \mathcal{C}$, there exists a spline $\delta \in \xi_{\mathfrak{O}}(t_{\mathfrak{C}}) \cap \Delta^3$ of minimal defect such that $\|\mathfrak{H} - \delta\|_{L_{\infty}} \leq \epsilon(\mathfrak{O})\omega_4^{\varphi}(\mathfrak{H}, \mathfrak{C}^{-1})_{\infty},$

where $\omega_4^{\varphi}(\mathfrak{H}, \mathfrak{C}^{-1})_{\infty}$ is the Ditzian–Totik modulus of smoothness of size 4.

Proposition 2.15 : [3]

Let $\kappa, \mathfrak{O} \in N, \kappa \geq 2, \mathfrak{O} \geq \kappa - 1, 0 , and let$ *s* $be such that either <math>s \in \Pi_{\mathfrak{O}} \cap \Delta^{\kappa}(\mathfrak{d}, \mathfrak{v})$ or $(-s) \in (\Pi_{\mathfrak{O}} \setminus \Pi_{\kappa}) \cap \Delta^{\kappa}(\mathfrak{d}, \mathfrak{v})$. Then there exists *s* such that $\delta \in \xi_{c(\kappa), \mathfrak{O}}[\mathfrak{d}, \mathfrak{v}] \cap \Delta^{\kappa}[\mathfrak{H}](\mathfrak{d}, \mathfrak{v})$

and

$$\| \mathfrak{H} - \delta \|_{L_{p[\mathfrak{d}, v]}} \leq \epsilon(p, \mathfrak{O}, \kappa) \| \mathfrak{H} - s \|_{L_{p[\mathfrak{d}, v]}}.$$

Proposition 2.16 : [2]

Let $\kappa, \mathfrak{O} \in N, \kappa \ge 2, \mathfrak{O} \ge \kappa - 1, 0 be a partition of <math>[-1, 1]$, and let σ be any ppf from $\xi_{\mathfrak{O}}(\mathfrak{g}_{\mathbb{C}})$. Then there exist a constant $\epsilon_2 = \epsilon_2(\kappa, \mathfrak{O}) \in N$ and a ppf $\in \xi_{\epsilon_2 \mathfrak{C}, \mathfrak{O}} \cap \Delta^{\kappa}$, such that

- δ has $\leq \epsilon_2$ pieces in each interval $[\mathfrak{z}_t, \mathfrak{z}_{t+1}], 0 \leq t \leq \mathfrak{C} 1$, and
- $\| \mathfrak{H} \delta \|_{L_{p[\mathfrak{H},\mathfrak{H}+1]}} \le \epsilon(\kappa, r, p) \| \mathfrak{H} \sigma \|_{L_{p[\mathfrak{H},\mathfrak{H}+1]}}, 0 \le \mathfrak{t} \le \mathfrak{C} 1.$

Proposition 2.17 : [2]

For any $\kappa \in N, A > 0, 0 and <math>0 < \epsilon < 2$ there exists a mapping $\mathfrak{H} \in \mathcal{C} \cap \Delta^{\kappa}$ such that $\|\mathfrak{H} - \mathfrak{s}_{\mathfrak{O}}\|_{L_{p[1-\epsilon,1]}} > A\omega_{\kappa+2}(\mathfrak{H}, [-1,1])_p$

for any $s_{\mathcal{D}} \in \Pi_{\mathcal{D}}$ satisfying $s_{\mathcal{D}}^{(\kappa)}(1) \geq 0$.

Proposition 2.18 : [2]

For any $\kappa \ge 4$, $\mathfrak{D} \in N$, 0 and <math>A > 0, there is $\mathfrak{C} \in N$ such that, for any partition $\sigma_{\mathfrak{C}}$ of [-1, 1] (into \mathfrak{C} subintervals), there exists a mapping $\mathfrak{H} \in \Delta^{\kappa} \cap C^{\kappa-2}$ such that

$$\| \mathfrak{H} - \delta \|_{L_p} > A\omega_3(\mathfrak{H}, \mathfrak{C}^{-1}, [-1, 1])_p,$$

for any $\delta \in \xi_{\mathfrak{D}}(\sigma_{\mathfrak{C}}) \cap \Delta^{\kappa}$.

References

[1] A. Bondarenko, D. Leviatanc, A. P., Pointwise estimates for 3-monotone approximation, Journal of Approximation Theory 164 (2012) 1205–1232

[2] G.A. Dzyubenko, K.A. Kopotunb, A.V. Prymak, Three-monotone spline approximation, Journal of approximation Theory 162 (2010) 2168–2183

[3] K. Kopotun, A. Shadrin, On k-monotone approximation by free k-not splines, SIAM J. Math. Anal. 34 (4) (2003) 901–924

[4] D. Leviatana, A.V. Prymak , On 3-monotone approximation by piecewise Polynomials, Journal of Approximation Theory 133 (2005) 147 – 172