Compactness on $(T_{\tilde{p}VS})$ -Spaces

AL-Nafie Z. D, Azal Mera

University of Babylon, College of education for pure science, Iraq. pure.zahir.dobeas@uobabylon.edu.iq, azal.mera@uobabylon.edu.iq

Abstract: In the present work, we introduce some result about the compactness properties in new type of convergence topological spaces $T_{\tilde{p}VS}$.

Introduction

Many researchers studied the topological properties, including the property of compactness, and after expanding the topological spaces to the convergence spaces, it was necessary to study those topological properties.

1- Preliminaries

Definition 1.1. [1, 3]

A filter F on a vector space K is a collection of a non-empty subsets of Ξ , such that: 1- Don't contain \emptyset ; $2 - A \in F$ and $A \subset B \Rightarrow B \in F$;

 $3-A, B \in F \Rightarrow A \cap B \in F.$

Definition 1.2. [1, 3]

A filter-basis in Ξ is a collection β of non-empty subset of Ξ which satisfies:

1- Don't contain \emptyset ; 2- For all $A_1, A_2 \in \beta$ there exists $A_3 \in \beta$ such that $A_1 \cap A_2 \supset A_3$.

Definition 1.3.[3]

Let $F(\mathcal{E})$ denote the system of all filters on \mathcal{E} . A pseudo-topology (or a limit structure) τ on \mathcal{E} is a map $m \mapsto \tau(m)$. If F converges to m in τ , we write $F \in \tau(m)$ (or $F \downarrow_m$).

Definition 1.4. [4]

 $T_{\tilde{\nu}VS}$ space is a locally convex pseudo metrizable pseudo topological vector space.

Definition 1.5.[2, 3]

 $\mathbb{N}_{\tau}(m)$ is neighborhood filter of $m \in \Xi$, it is defined as: $\mathbb{N}_{\tau}(m) = \bigcap \{F: F \in \tau(m)\}.$ We call a set $N \in \mathbb{N}_{\tau}(m)$ a neighborhood of m. **Definition 1.6.**[3]

Let (Ξ_1, τ_1) and (Ξ_2, τ_2) be a two $T_{\tilde{p}VS}$. The all filters $F(\Xi)$ on Ξ is partially ordered by the (included relation) $F_1 \leq F_2$ iff $F_1 \supseteq F_2$. Also if $\tau_1 \geq \tau_2$ that mean $\tau_1(m) \subseteq \tau_2(m) \forall m \in \Xi_1$.

Definition 1.7.[2,6]

Ultrafilter F on a set Ξ is a maximal filter on Ξ . And also if a filter F satisfies the condition (for any $A \subset \Xi$ either $A \in f$ or $(\Xi \setminus A) \in F$,

then F is ultrafilter on Ξ). The filter [x], for any $x \in \Xi$ is an ultrafilter.

Example 1.8.:

Let Ξ = {a, b, c, d},

 $F = \{\{a, d\}, \{a, b, d\}, \{a, c, d\}, \Xi\}$ is ultrafilter on Ξ .

 $K = \{\Xi, \{a\}, \{a, b\}, \{a, c\}, \{a, b, c\}\}$ is ultrafilter on Ξ .

Proposition 1.9 [6]:

Any filter in is $\varXi\,$ contained in an ultrafilter.

Definition 1.10.[5]:

International Journal of Engineering and Information Systems (IJEAIS) ISSN: 2643-640X Vol. 5 Issue 8, August - 2021, Pages: 5-9

A $T_{\tilde{p}VS} \Xi$ is said to be separated iff there exists a filter F in $\Xi, F \in \tau(m)$ and $F \in \tau(n)$, then m = n.

Definition 1.11. [2, 6]:

Let (Ξ, τ) be a $T_{\overline{p}VS}$ and $A \subseteq \Xi$, then the closure of $A = (CLA) = \{m \in \Xi \mid \exists F \in \tau(m) \text{ and } A \in F\}$. If A = CLA we call A is τ closed set (for easily closed set).

Definition 1.12. [5]

Let (Ξ_1, τ_1) and (Ξ_2, τ_2) be two $T_{\overline{p}VS}$ and $f: \Xi_1 \to \Xi_2$ a map. Then we say that a mapping $f: (\Xi_1, \tau_1) \to (\Xi_2, \tau_2)$ is continuous at a point $m \in \Xi_1$ if for all filter $F \in \tau_1(m)$ the filter $f(F) \in \tau_2(f(m))$. The mapping f is called continuous on Ξ_1 if it is continuous at each point of Ξ_1 .

Definition 1.13. [5]:

Let (Ξ, τ) be a $T_{\beta VS}$ and $A \subseteq \Xi$. The subspace pseudo structure τ_A on A is the initial pseudo structure with respect to the inclusion mapping $in: A \to \Xi$. Let $E \subseteq E(A)$ and $m \in A$. We say that $E \subseteq \pi$ (m) if and any if

Let $F \in \mathcal{F}(A)$ and $m \in A$. We say that $F \in \tau_A(m)$ if and only if $[F]_{\mathcal{Z}} \in \tau(m)$.

2-Theorems

We introduced the notion of compactness on $T_{\tilde{p}VS}$, and some results about this notion.

Definition 2.1.[2]

Let (\varXi, τ) be a $T_{\widetilde{p}VS}$ over R , and F any filter on \varXi , then define

 $F = \{m \in \Xi : F \in \tau(m)\}.$

Definition 2.2.[2]

Let (Ξ, τ) be a $T_{\tilde{p}VS}$. The point $m \in \Xi$ is called adherent to the filter F if \exists a filter $J, J \leq F, J \in \tau(m)$. $A_{\tau}(F) = \{m \in \Xi : m \text{ is adherent to } F\}, A_{\tau}(F)$ is called the adherence of Ξ .

Definition 2.3.

Let (Ξ, τ) be a $T_{\tilde{p}VS}$ space, it is called compact space if every ultrafilter on Ξ converges in Ξ .

Definition 2.4.

A covering system S of a $T_{\tilde{p}VS} \Xi$ is a non-empty subset of Ξ such that if each covering filter on Ξ contain some elements of S. **Theorem 2.5:**

Let (Ξ, τ_1) and (Ξ, τ_2) be two $T_{\tilde{p}VS}$ spaces, such that $\tau_1 \ge \tau_2$ then for all filter F on Ξ we have $A_{\tau_1}(F) \subseteq A_{\tau_2}(F)$ Proof:

Let $m \in A_{\tau_1}(F)$, then there exists a filter J such that $F \leq J$ and $J \in \tau_1(m)$. Since $\tau_1(m) \subseteq \tau_2(m)$, then we get that $J \in \tau_2(m)$. Hence,

 $m \in A_{\tau_2}(F).$

Theorem 2.6:

Let (\mathcal{Z}, τ) be a $T_{\tilde{p}VS}$ space. The following statements are equivalent:

- 1- The space (Ξ, τ) is compact.
- 2- Any filter *F* on Ξ has member of $A_{\tau}(F)$.
- 3- There are finitely many elements of which the union is Ξ , in every S covering system.

Proof: $(1 \Rightarrow 2)$ Since for every filter *F* on *E* there is an ultrafilter *J* on *E* such that $J \leq F$, then *J* is an adherent to *F*.

 $(2 \Rightarrow 3)$ Let S be a covering system, such that there is no finite subcover, hence $\{\Xi - A : A \in S\}$ generates a filter as F on Ξ . By hypothesis, F has an adherence point as m. Therefore, there exists a filter J such that $J \leq F$ and

 $J \in \tau(m)$ for some $m \in \Xi$. By definition of covering system there exists $A \in S$ such that $A \in J.A \cap (\Xi - A) = \emptyset$, but it is contradiction, then, there are finitely many elements of which their union is Ξ in every covering system.

 $(3 \Rightarrow 1)$ Let p be some ultrafilter J on Ξ such that does not converge in Ξ , then J can not be finer than any convergent filter F. For any $A \subseteq \Xi$ either A or $\Xi - A \in J$. Then, we find in any convergent filter F a member $A_F \in F$ for which $\Xi - A_F$ belongs to p the system $\{A_F | F \text{ is converge in } \Xi\}$ is a covering system of Ξ . Then there exists finitely many elements of this system that covers Ξ , then J would have to contain \emptyset . Hence, every ultrifilter on Ξ is a convergent filter. Therefore, (Ξ, τ) is compact.

Theorem 2.7:

Let (Ξ, τ_1) and (Ξ, τ_2) be two $T_{\tilde{p}VS}$ spaces, and $\tau_1 \ge \tau_2$. Then, if (Ξ, τ_2) is compact, then (Ξ, τ_1) is compact.

Proof:

Since, $\tau_1 \ge \tau_2$, $A_{\tau_2}(F) \subseteq A_{\tau_1}(F)$ for all $F \in F(\Xi)$ and (Ξ, τ_2) is compact, then $A_{\tau_2}(F) \ne \emptyset$. Hence, $A_{\tau_2}(F) \ne \emptyset$, by theorem 2.6.we obtain that (Ξ, τ_1) is compact.

Theorem 2.8:

Let (Ξ, τ) be a separated and compact $T_{\tilde{\nu}VS}$ space, a filter F converges in Ξ iff $A_{\tau}(F)$ is a singleton set.

Proof:

Since (Ξ, τ) is separated and let $F \in \tau(m)$ then, $m \in A_{\tau}(F)$. Assume that $m \neq n$ and $m \in A_{\tau}(F)$ then there exists $J \in \tau(n)$ such that $J \leq F$.

Hence, $J \in \tau(m) \cap \tau(n)$ this is contradiction with hypothesis. Then,

$$A_{\tau}(F) = \{m\}.$$

A Conversely, let $A_{\tau}(F) = \{m\}$ and $F \notin \tau(m)$. Define τ_1 on Ξ as follows:

 $J \in \tau_1(m)$ iff $J \leq q \cap F$ where $q \in \tau(m)$ and $J \in \tau_1(n)$ iff $J \in \tau(m)$ where $m \neq n$. It is clear that τ_1 is a limit structure.

To proof that au_1 is separated, let $m \neq n \neq k$ then

 $\tau_1(n) \cap \tau_1(k) = \tau(n) \cap \tau(k) = \emptyset$ as τ is separated.

Let $J \in \tau_1(m) \cap \tau_1(n)$ where, $m \neq n$. Then, there exists a filter q such that $J \leq q \cap F$ where $q \in \tau(m)$ and $J \in \tau(n)$. We can take, J to be an ultrafilter, so there exists $F \in F$ such that $\Xi - F \in J$ can not be finer than J is separated, so there exists $g \in J$ such that $\Xi - g \in J$.

Since $J \leq q \cap F$ and

 $\{A \cup B : A \in F, B \in q\}$ is a filter base generating $q \cap F$ we have

 $(F \cup g) \in J$. But $(\Xi - F) \cap (\Xi - g) \in J$.

Then, $(F \cup g) \cap [(\Xi - F) \cap (\Xi - g)] = \emptyset \in J$ which is contradiction. Then, (Ξ, τ_1) is separated space and since, $\tau_1 \ge \tau$ we get a contradiction as (Ξ, τ) is separated space.

Hence, $F \in \tau(m)$.

Theorem 2.9.

Let (Ξ, τ) be a $T_{\tilde{p}VS}$ space is compact separated space and (Ξ, τ_1) be a $T_{\tilde{p}VS}$ separated space. If $\tau_1 \ge \tau$ then $\tau_1 = \tau$. Proof: Since (Ξ, τ) is separated and $\tau_1 \ge \tau$, $A_{\tau}(F) \subseteq A_{\tau_1}(F)$ for all filter F.

Let $F \in \tau_1(m) \Longrightarrow A_{\tau_1}(F) = \{m\}$ by theorem...

Since τ is compact and $A_{\tau}(F) \subseteq A_{\tau_1}(F) = \{m\}$ we have, $A_{\tau}(F) = \{m\}$.

Hence, $F \in \tau(m)$. Thus for all $m \in \Xi$ we have $\tau_1(m) \subseteq \tau(m)$ which mean $\tau \leq \tau_1$. Therefore, $\tau_1 = \tau$.

Corollary 2.10.:

Let (Ξ, τ) be compact topological space and τ_1 be a separated limit structure on Ξ such that $\tau_1 \ge \tau$, then $\tau_1 = \tau$. Proof: From theorem 2.9.

Definition 2.11.:

A subset of a pseudo space is compact if it is compact with respect to the subspace limit structure.

Theorem 2.12:

Let (Ξ, τ) be a $T_{\hat{v}VS}$ space, and $A \subseteq \Xi$ be a subspace. Then, the following is true:

- 1- If E is compact and A is closed $\Rightarrow A$ is compact.
 - 2- If Ξ is separated and A is compact $\implies A$ is closed. Proof:

1) Since a filter $F \downarrow_a$, $a \in A$ if and only if $[F]_{\mathcal{Z}} \downarrow_a$ (definition 1.13)

Let F be an ultrafilter in A therefore, $[F]_{\Xi}$ is an ultrafilter in Ξ

And it converges in \varXi and \varXi is compact .

Assume that $A_{\tau}([F]_{\Xi}) \cap A = \emptyset$ so $A_{\tau}([F]_{\Xi}) \subseteq (\Xi - A)$.

Therefore, $(\mathcal{Z} - A) \in [F]_{\mathcal{Z}}$ as $(\mathcal{Z} - A)$ is open

and also $[F]_{\varXi} = A_{\tau}([F]_{\varXi}) \neq \emptyset$. But $\in [F]_{\varXi}$,

so $(\mathcal{Z} - A) \cap A = \emptyset \in [F]_{\mathcal{Z}}$, which is contradiction.

This implies that there exists $m \in A$ such that $[F]_{\mathcal{Z}} \downarrow_m$.

Hence, $F \downarrow_m$. Therefore, A is compact.

2) Let $m \in Cl(A)$ then, there exists $F \in \tau(m)$ such that $A \in F$.

$$F_A = \{A \cap F/F \in F\}$$
 is a filter in A.

Let *J* be the ultrafilter in *A* containing F_A . Then, $J \in \tau_A(n)$ for some $n \in A$. But, $[J]_{\Xi}$ is an ultrafilter converges to *n* and $[J]_{\Xi} \leq F$. Therefore, $[J]_{\Xi} \downarrow_m$. Hence, m - n, and also Ξ is separated space.

Thus, $m \in A$. Hence, Cl(A) = A, this mean A is closed set in Ξ .

Corollary 2.13:

A subspace (A, τ_A) of a compact separated (Ξ, τ) space is compact if and only if A is closed.

Proof:

Follows by theorem 2.12.

Theorem 2.14:

Let (Ξ_1, τ_1) and (Ξ_2, τ_2) be two $T_{\tilde{p}VS}$ such that the mapping

 $f : (\varXi_1, \tau_1) \rightarrow (\varXi_2, \tau_2)$ is continuous surjective mapping from a compact

 (Ξ_1, τ_1) onto (Ξ_2, τ_2) . Then, (Ξ_2, τ_2) is compact.

Proof:

Let *F* be an ultrafilter on \mathbb{Z}_2 , then $\{f^{-1}(F)/F \in F\}$ is a basis of a filter *F* on \mathbb{Z}_1 . Choose a finer ultrafilter $\leq F$.

Then *H* converges and $f(H) \leq F$. Since *F* is an ultrafilter we get

F = f(H). Since f is continuous map, then F converges in Ξ_2 .

Therefore, Ξ_2 is compact.

Corollary 2.15:

Let (Ξ_1, τ_1) and (Ξ_2, τ_2) be two $T_{\tilde{p}VS}$. If $f: (\Xi_1, \tau_1) \rightarrow (\Xi_2, \tau_2)$ is a continuous mapping, then the image of a compact subset of (Ξ_1, τ_1) is compact in (Ξ_2, τ_2) Proof:

Let $A \subseteq \Xi_1$ be a compact set .The restriction mapping $f_A: A \to f(A) \subseteq \Xi_2$ is continuous map. Hence, by above theorem 2.14, f(A) is compact.

Theorem 2.16:

Let (\mathcal{Z}_1, τ_1) and (\mathcal{Z}_2, τ_2) be two $T_{\widetilde{p}VS}$, and the mapping

 $f \colon (\varXi_1 \text{ , } \tau_1) {\rightarrow} (\varXi_2 \text{ , } \tau_2)$ is continuous mapping from a compact

 (Ξ_1, τ_1) onto separated space (Ξ_2, τ_2) . Then, if A is a closed set in Ξ_1 , then, f(A) is a closed set in Ξ_2 . Proof:

A closed subset A of Ξ_1 is compact by theorem 2.12 (1), f(A) is

International Journal of Engineering and Information Systems (IJEAIS) ISSN: 2643-640X Vol. 5 Issue 8, August - 2021, Pages: 5-9

compact by corollary 2.15 therefore, f(A) is closed by theorem 2.12(2).

Theorem 2.17:

Let (Ξ_1, τ_1) and (Ξ_2, τ_2) be two $T_{\hat{p}VS}$, and the mapping

 $f: (\Xi_1, \tau_1) \rightarrow (\Xi_2, \tau_2)$ is continuous mapping from a compact

 (\mathcal{E}_1, τ_1) onto separated space (\mathcal{E}_2, τ_2) . If $B \subseteq \mathcal{E}_2$ is compact, then $f^{-1}(B)$ is compact.

Proof:

Let $B \subseteq \Xi_2$ be compact then B is closed set in If Ξ_2 by theorem 2.12 (2).

 $f^{-1}(B)$ is closed because f is continuous. $f^{-1}(B)$ is compact by theorem 2.12(1).

Theorem 2.18:

If τ_1 and τ_2 are limit structures on the set Ξ , with τ_2 is separated, τ_1 is compact and $\tau_2 \leq \tau_1$. Then, $\tau_2(m) \cap UF(\Xi) = \tau_1(m) \cap UF(\Xi)$. where $UF(\Xi)$ is the set of ultrafilters on Ξ .

 $\tau_1(m) \subseteq \tau_2(m)$ as $\tau_2 \leq \tau_1$. Hence, $\tau_1(m) \cap UF(\Xi) \subseteq \tau_2(m) \cap UF(\Xi)$.

Let $F \in \tau_2(m) \cap UF(\Xi)$ so that F is an ultrafilter converges to m.

Since τ_2 is separated then, $F = A_{\tau_2}(F) = \{m\}$ by theorem 2.8. τ_1 is compact therefore, $A_{\tau_1}(F) \neq \emptyset$, and since

 $A_{\tau_1}(F) \subseteq A_{\tau_2}(F) = \{m\}$ by theorem 2.5, we get:

 $F = A_{\tau_1}(F) = \{m\}$. Hence, $F \in \tau_1(m)$.

Therefore, $\tau_2(m) \cap UF(\Xi) \subseteq \tau_1(m) \cap UF(\Xi)$.

Hence, $\tau_2(m) \cap UF(\Xi) = \tau_1(m) \cap UF(\Xi)$.

REFRENCES

- 1- Averbuch, V. (2000). On Boundedly-Convex Functions on Pseudo-Topological Vector Spaces. International Journal of Mathematics and Mathematical Sciences, Vol. 23(2), pp.141-151.
- 2- Dasser, Abdellatif (2004). The Use of Filters in Topology. University of Central Florida. (Thesis).
- 3- Frölicher, A. and Walter B. (1966). Calculus in Vector Spaces Without Norm. Springer, Vol. 30. 158 p.
- 4- Harbi, Intesar and AL-Nafie Z. D (2020). Metrizability of pseudo topological vector spaces. (Forthcoming). Accepted in the 6th conference of Iraqi Al-Khwarizmi Society.
- 5- Shqair, Raed Juma Hassan (2015). On The Theory of Convergence Spaces. An-Najah National University. Nablus, Palestine. (Thesis).
- 6- Taylor, J. L. (1995). Notes on Locally Convex Topological Vector Spaces. University of Utah.