The Rational Characters table of the group $(Q_{2m\times}C_3)$ When m= $3^h \cdot p_1^{r_1} \cdot p_2^{r_2} \cdot \dots \cdot p_n^{r_n}$, h,r $\in \mathbb{Z}^+$ and p is prime Number

Rajaa Hasan Abbas

University of Kufa, College of Education for Girls, Department of Mathematics

Email: rajaah.alabidy@uokufa.edu.iq

Abstract— The main purpose of this paper is to find the general form of the rational valued characters table $\equiv (Q_{2m} \times C_3)$ When $m = 3^h \cdot p_1^{r_1} \cdot p_2^{r_2} \dots \cdot p_n^{r_n}$, $h, r \in Z^+$ and p is prime Number where Q_{2m} is the Quaternion group of order 4m and C_3 is the Cyclic group of order3 this table depends on Artin's characters table of a quaternion group of order 4m when m = $3^h \cdot p_1^{r_1} \cdot p_2^{r_2} \dots \cdot p_n^{r_n}$, which is denoted by $\equiv (Q_{2m} \times C_3)$.

Keywords— Group; Quaternion group; Rational; Rational's characters table.

INTRODUCTION

Let G be a finite group, two elements of G are said to be r-conjugate if the cyclic subgroups they generate are conjugate in G. This process defines an equivalence relation on G; its classes are called r-classes.

Let $\equiv^*(G)$ denotes the r×r matrix which the rows corresponds to the θ_i 's and the columns correspond to the r-classes of *G*. The matrix expressing $\overline{R}(G)$ basis in terms of the cf(G,Z) basis is $\equiv^*(G)$. In 1959, M.J. Hall[6] is found" The rational valued characters table of finite group" In 1981 C.W. Curits and I. Reiner[2] studied Methods of Representation Theory with Application to Finite Groups. The aim of this paper is to find the general from of The rational valued characters table $\stackrel{*}{=}(Q_{2m}\times C_3)$ when m is an odd number and finding the cyclic decomposition of Artin cokernel AC($Q_{2m}\times C_3$) when m is an odd number

1 Preliminaries

In this section studied some important definitions and basic concepts of a rational valued characters and a rational valued characters table.

Definition (2.1):[3]A rational valued character θ of G is a character whose values are in Z, which is $\theta(g) \in Z$, for all $g \in G$.

Corollary (2.2):[4] The rational valued characters $\theta_i = \sum_{\sigma \in Gal} \sigma(\chi_i)$ form the basis for \overline{R} (G), where χ_i

are the irreducible characters of G and their numbers are equal to the number of conjugacy classes of cyclic subgroup of G

Theorem (2.3):[1] Let $T_1: G_1 \rightarrow GL(n,F)$ and $T_2: G_2 \rightarrow GL(m,F)$ be two irreducible representations of the groups G_1 and G_2 with characters χ_1 and χ_2 respectively then: $T_1 \otimes T_2$ is irreducible representation of the group $G_1 \times G_2$ with the character $\chi_1 \cdot \chi_2$.

Proposition (2.4):[2]The number of all rational valued characters of a finite group G is equal to the number of all distinct Γ -classes on G.

Definition (2.5): [4] The complete information about rational valued characters of a finite group G is displayed in a table called **rational valued characters table of G**. We refer to it by $\stackrel{*}{=}$ (G) which is n×n matrix whose columns are Γ -classes and rows which are the values of all rational valued characters of G, where n is the number of Γ -classes.

Proposition (2.6):[5]The rational valued characters table of cyclic group C_{p^s} of rank s+1 where p is prime number which is

denoted by (\equiv (C $_{p^s}$)), is given by:

TABLE1 RATIONALCHARACTERS TABLE OF CYCLIC GROUP C							
Г	[1]	$[x^{p^{s-1}}]$	$[x^{p^{s-2}}]$	$[\chi^{p^{s-3}}]$	$[x^{p^2}]$ [$[x^p]^{[}$	x]
clas ses							
$ heta_1$	$p^{s-1}(p-1)$	p^{s-1} -	0	0	0	0	0
θ_{2}	$p^{s-2}(p-1)$	$p^{s-2}(p-1)$	$-p^{s-2}$	0	0	0	0
$\theta_{_3}$	$p^{s-3}(p-1)$	$p^{s-3}(p-1)$	$p^{s-2}(p-1)$	$-p^{s-3}$	0	0	0
$ heta_{s-1}$: p (p-1)	: p (p-1)	: p (p-1)	: p (p−1)	: p (p−1)	: - p	: 0
θ_{s}	p-1	p-1	p-1	p-1	p-1	p-1	-
$ heta_{\scriptscriptstyle s+1}$	1	1	1	1	1	1	1

Where its rank s+1 which represents the number of all distinct Γ -classes.

Lemma (2.7):[6] The rational valued characters table of Q_{2m} when m is $3^h \cdot p_1^{r_1} \cdot p_2^{r_2} \cdot \dots \cdot p_n^{r_n}$ is given as follows: * $(Q_{2m})=$

		Γ-classe	es of C _{2m}	
		x ^{2r}	x ^{2r+1}	[y]
θ_1		$\equiv *(C_m)$	$\equiv *(C_m)$	0
$ \begin{array}{c} \vdots\\ \theta_{(1/2)-1}\\ \theta_{(1/2)} \end{array} $		1 1 … 1	1 1 … 1	: 0 1
$\theta_{(l/2)+1}$		$\equiv *(C_m)$	Н	0
$\begin{array}{c} \vdots \\ \theta_{l-1} \\ \theta_1 \end{array}$		1 1 … 1	1 1 … 1	: 0 -1
θ_{l+1}	2	2	2	0
			2 2	

 $TABLE2 \\ RATIONAL CHARACTERS TABLE OF GROUP Q_{2m}$

Where $0 \le r \le m-1$, I is the number of Γ -classes of C_{2m} , θ_j such that $1 \le j \le I+1$ are the rational valued characters of the group Q_{2m} and if we denoted C_{ij} the elements of $\equiv (C_m)$ and h_{ij} the elements of H as defined by:

$$h_{ij} = \begin{cases} C_{ij} & if & i = 1 \\ C_{ij} & if & i \neq 1 \end{cases}$$

And where I is the number of Γ -classes of C_{2m} .

2 THE MAIN RESULTS

In this section we find the rational valued character table of the group $(Q_{2m} X C_3)$ and $AC(Q_{2m} X C_3)$ when m is an odd number.

Proposition(3.1): The rational valued characters table of the group $(Q_{2m} \times C_3)$ when m is $3^h \cdot p_1^{r_1} \cdot p_2^{r_2} \cdot \dots \cdot p_n^{r_n}$ is given as follows:

$$\stackrel{*}{\equiv} (Q_{2m} \times C_3) = \stackrel{*}{\equiv} (Q_{2m}) \otimes \stackrel{*}{\equiv} (C_3) .$$
Proof:-

Since

TABLE3 CHARACTERS TABLE OF THE GROUP C₃

	h_1'	h_2'
γ'_{i}	3-1	-1
<i>n</i>	1	1
χ_2		

*
=
$$(C_3) = \frac{h'_1 \quad h'_2}{\theta'_1 \quad 3-1 \quad -1 \\ \theta'_2 \quad 1 \quad 1$$

_

Then,

$$\begin{split} \chi_1'(h_1') &= \theta_1'(h_1') = 3\text{-}1\\ \chi_1'(h_2') &= \theta_1'(h_2') = -1\\ \chi_2'(h_1') &= \chi_2'(h_2') = \theta_2'(h_1') = \theta_2'(h_2') = 1\\ \text{From the definition of } Q_{2m} \times C_3,\\ \text{and Theorem}(2.3) \text{ we have} \\ &\equiv (Q_{2m} \times C_p) = (\equiv Q_{2m}) \otimes (\equiv C_3)\\ \text{Each element in} Q_{2m} \times C_3\\ h_{ng} &= h_n \cdot h_g' \quad \forall h_n \in Q_{2m}, h_g' \in C_3,\\ n &= 1,2,3,...,4m, g=1,2\\ \text{And each irreducible character of } Q_{2m} \times C_3 \text{ is } \end{split}$$

$$\chi_{(i,j)} = \chi_i \cdot \chi'_j$$

where χ_i is an irreducible character of Q_{2m} and χ'_i is the irreducible character of C_3 , then

$$\chi_{(i,j)}(h_{ng}) = \begin{cases} (3-1)\chi_i(h_n) & \text{if } j = 1 \text{ and } g = 1 \\ -\chi_i(h_n) & \text{if } j = 1 \text{ and } g = 2 \\ \chi_i(h_n) & \text{if } j = 2 \text{ and } g = 2 \end{cases}$$

From Corollary (2.2)

$$\theta_{(i,j)} = \sum_{\sigma \in Gal \ (Q(\chi_{(i,j)})/Q)} \sigma(\chi_{(i,j)})$$

where $\theta_{(i,j)}$ is the rational valued character of $Q_{2m} \times C_3$ Then,

$$\theta_{(i,j)}(h_{ng}) = \sum_{\sigma \in Gal (Q(\chi_{(i,j)}(h_{ng}))/Q)} \sigma(\chi_{(i,j)}(h_{ng}))$$

(I) (a) If j=1 and g=1 $\theta_{(i,j)}(h_{ng}) = \sum_{\sigma \in Gal(Q(\chi_{i(h_{n})})/Q)} \sigma(\chi_{i}(h_{n})) = \theta_{i}(h_{n}).(3-1) =$ $= \theta_{i}(h_{n}) \cdot \theta_{j}'(h_{g}')$ (b) If j=1 and g=2 $\theta_{(i,j)}(h_{ng}) = \sum_{\sigma \in Gal(Q(\chi_{i(h_{n})})/Q)} \sigma(-\chi_{i}(h_{n})) = -\sum_{\sigma \in Gal(Q(\chi_{i(h_{n})})/Q)} \sigma(\chi_{i}(h_{n})) = \sum_{\sigma \in Gal(Q(\chi_{i(h_{n})})/Q)} \sigma(\chi_{i}(h_{n})) = -1 = \theta_{i}(h_{n}) \cdot \theta_{j}'(\pi)$

 h'_{g})

(II) if j=2 and g=2

$$\theta_{(i,j)}(h_{ng}) = \sum_{\sigma \in Gal(\mathcal{Q}(\chi_{i(h_n)})/\mathcal{Q})} \sigma(\chi_i(h_n)) = \sum_{\sigma \in Gal(\mathcal{Q}(\chi_i(h_n))/\mathcal{Q})} \sigma(\chi_i(h_n)) = \sum_$$

where θ_i is the rational valued character of Q_{2m} .

From [I] and [II] we have

$$\theta_{(i,j)} = \theta_i \cdot \theta'_j$$
.

Then $\equiv^* (Q_{2m} \times C_3) = \equiv^* (Q_{2m}) \otimes \equiv^* (C_3)$.

3. REFERENCES

- [1] C.Curits and I. Reiner, " Methods of Representation Theory with Application Finite Groups and Order ", John wily & sons, New York, 1981.
- [2] J. P. Serre, "Linear Representation of Finite Groups", Springer- Verlage, 1977.
- [3] K.Knwabusz, "Some Definitions of Artin's Exponent of Finit Group ", USA.National foundation Math.GR.1996.
- [4] K. Sekigvchi, " Extensions and the Irreducibilities of The Induced Characters of Cyclic p-Group ", Hiroshima math Journal, p165-178 ,2002.
- [5] L. E. Sigler, " Algebra ", Springer- verlage, 1976.
- [6] S.J. Mahmood "On Artin cokernel of the Quaternion Group Q_{2m} when m is an Even Number" M.Sc. thesis, University of Kufa,2009.