The Rational Characters table of the group $\left(\mathrm{Q}_{2 \mathrm{~m} \times} \mathrm{C}_{3}\right)$ When $\mathrm{m}=$ $3^{h} \cdot p_{1}^{r} \cdot p_{2}^{r_{2}^{2}} \ldots . p_{n}^{r_{n}^{n}}, \mathrm{~h}, \mathrm{r} \in \mathrm{Z}^{+}$and p is prime Number

Rajaa Hasan Abbas
University of Kufa, College of Education for Girls, Department of Mathematics
Email: rajaah.alabidy@uokufa.edu.iq

Abstract

The main purpose of this paper is to find the general form of the rational valued characters table $\stackrel{*}{\equiv}\left(Q_{2 m} \times C_{3}\right)$ When $m=3^{h} \cdot p_{1}^{r_{1}} \cdot p_{2}^{r_{2}} \ldots \ldots p_{n}^{r_{n}}, h, r \in Z^{+}$and p is prime Number where $Q_{2 m}$ is the Quaternion group of order $4 m$ and C_{3} is the Cyclic group of order3 this table depends on Artin's characters table of a quaternion group of order $4 m$ when $m=$ $3^{h} \cdot \boldsymbol{p}_{1}^{r_{1}} \cdot \boldsymbol{p}_{2}^{r_{2}} \ldots \ldots \boldsymbol{p}_{n}^{r_{n}}$. which is denoted by $\stackrel{*}{\equiv}\left(Q_{2 m} \times C_{3}\right)$.

Keywords- Group; Quaternion group; Rational; Rational's characters table.

INTRODUCTION

Let G be a finite group, two elements of G are said to be Γ-conjugate if the cyclic subgroups they generate are conjugate in G. This process defines an equivalence relation on G ; its classes are called Γ-classes.
Let $\equiv^{*}(G)$ denotes the $r \times r$ matrix which the rows corresponds to the θ_{i} 's and the columns correspond to the Γ-classes of G. The matrix expressing $\overline{\boldsymbol{R}}(\boldsymbol{G})$ basis in terms of the $c f(G, Z)$ basis is $\equiv^{*}(G)$.In 1959, M.J. Hall[6] is found" The rational valued characters table of finite group" In 1981 C.W. Curits and I. Reiner[2] studied Methods of Representation Theory with Application to Finite Groups. The aim of this paper is to find the general from of The rational valued characters table $\stackrel{*}{\equiv}\left(\mathrm{Q}_{2 \mathrm{~m}} \times \mathrm{C}_{3}\right)$ when m is an odd number and finding the cyclic decomposition of Artin cokernel $\mathrm{AC}\left(\mathrm{Q}_{2 \mathrm{~m}} \times \mathrm{C}_{3}\right)$ when m is an odd number

1 Preliminaries

In this section studied some important definitions and basic concepts of a rational valued characters and a rational valued characters table.

Definition (2.1):[3]A rational valued character θ of G is a character whose values are in Z, which is $\theta(g) \in Z$, for all $g \in G$.

are the irreducible characters of G and their numbers are equal to the number of conjugacy classes of cyclic subgroup of G

Theorem (2.3):[1] Let $\mathrm{T}_{1}: \mathrm{G}_{1} \rightarrow \mathrm{GL}(n, \mathrm{~F})$ and $\mathrm{T}_{2}: \mathrm{G}_{2} \rightarrow \mathrm{GL}(m, \mathrm{~F})$ be two irreducible representations of the groups G_{1} and G_{2} with characters χ_{1} and χ_{2} respectively then: $T_{1} \otimes T_{2}$ is irreducible representation of the group $G_{1} \times G_{2}$ with the character $\chi_{1} \cdot \chi_{2}$.

Proposition (2.4):[2]The number of all rational valued characters of a finite group G is equal to the number of all distinct Γ classes on G.

Definition (2.5): [4] The complete information about rational valued characters of a finite group G is displayed in a table called rational valued characters table of \mathbf{G}. We refer to it by $\stackrel{*}{\equiv}(\mathrm{G})$ which is $\mathrm{n} \times \mathrm{n}$ matrix whose columns are Γ-classes and rows which are the values of all rational valued characters of G, where n is the number of Γ-classes.

Proposition (2.6):[5]The rational valued characters table of cyclic group $C_{p^{s}}$ of rank s+1 where p is prime number which is denoted by $\left(\stackrel{*}{\equiv}\left(\mathrm{C}_{p^{s}}\right)\right)$, is given by:

TABLE1							
RATIONALCHARACTERS TABLE OF CYCLIC GROUP C							
	[1]	$\left[x^{p^{p+1}}\right]$	$\left[x^{p^{p-2}}\right]$	$\left[x^{1 r^{\prime 3}}\right]$	$\left[x^{2}\right]$	$\left[x^{p}\right]^{[x}$	
clas ses							
θ_{1}	$p^{\text {p-1 }}(p-1)$	p^{s-1}.	0	0	0	0	0
θ_{2}	$p^{p-2}(p-1)$	$p^{1-2}(p-1)$	$-p^{s-2}$	0	0	0	0
θ_{3}	$p^{1 / 3}(p-1)$	$p^{1-3}(p-1)$	$p^{\text {p-2 }}(p-1)$	$-p^{s-3}$	0	0	0
!	:	:	:	:	:	:	
θ_{s-1}	$p(p-1)$	$p(p-1)$	$p(p-1)$	$p(p-1)$	$p(p-1)$	-p	
θ s	p-1	p-1	p-1	p-1		${ }^{p-1} 1$	
θ_{s+1}	1	1	1	1	1	1	1

Where its rank $\mathrm{s}+1$ which represents the number of all distinct Γ-classes.
Lemma (2.7):[6] The rational valued characters table of $\mathrm{Q}_{2 \mathrm{~m}}$ when m is $3^{h} \cdot \boldsymbol{p}_{1}^{r_{1}} \cdot \boldsymbol{p}_{2}^{r_{2}} \ldots \ldots \boldsymbol{p}_{n}^{r_{n}}$ is given as follows: $\equiv\left(\mathrm{Q}_{2 \mathrm{~m}}\right)=$

TABLE2
RATIONALCHARACTERS TABLE OF GROUP $\mathrm{Q}_{2 \mathrm{~m}}$

Γ-classes of $\mathrm{C}_{2} \mathrm{~m}$							
	$\mathrm{x}^{2 \mathrm{r}}$			$\mathrm{x}^{2 \mathrm{r}+1}$			[y]
θ_{1}	$\equiv *\left(\mathrm{C}_{\mathrm{m}}\right)$			$\equiv *\left(\mathrm{C}_{\mathrm{m}}\right)$			0
:							:
$\theta_{(1 / 2)-1}$		$11 \cdots 1$			$11 \cdots 1$		0
$\theta_{(1 / 2)}$							1
$\theta_{(1 / 2)+1}$		$\equiv *\left(\mathrm{C}_{\mathrm{m}}\right)$				H	0
\vdots							:
θ_{1-1}		$11 \cdots 1$			$11 \cdots 1$		0
θ_{1}							-1
θ_{1+1}	2	... 2	-	-2	\ldots	-	0
			2				

Where $0 \leq \mathrm{r} \leq \mathrm{m}-1$, I is the number of Γ-classes of $\mathrm{C}_{2 \mathrm{~m}}, \theta_{\mathrm{j}}$ such that $1 \leq \mathrm{j} \leq \mathrm{I}+1$ are the rational valued characters of the group $\mathrm{Q}_{2 \mathrm{~m}}$ and if we denoted C_{ij} the elements of $\stackrel{*}{\equiv}\left(\mathrm{C}_{\mathrm{m}}\right)$ and h_{ij} the elements of H as defined by:

$$
h_{i j}=\left\{\begin{array}{lll}
C_{i j} & \text { if } & i=1 \\
C_{i j} & \text { if } & i \neq 1
\end{array}\right.
$$

And where I is the number of Γ-classes of $\mathrm{C}_{2 \mathrm{~m}}$.

2 THE MAIN RESULTS

In this section we find the rational valued character table of the group $\left(\mathrm{Q}_{2 \mathrm{~m}} \mathrm{XC}_{3}\right)$ and $\mathrm{AC}\left(\mathrm{Q}_{2 \mathrm{~m}} \mathrm{XC}_{3}\right)$ when m is an odd number.

Proposition(3.1):The rational valued characters table of the group $\left(\mathrm{Q}_{2 \mathrm{~m}} \times \mathrm{C}_{3}\right)$ when m is $3^{h} \cdot \boldsymbol{p}_{1}^{r_{1}} \cdot \boldsymbol{p}_{2}^{r_{2}} \ldots \ldots \boldsymbol{p}_{n}^{r_{n}}$ is given as follows:
$\stackrel{*}{\equiv}\left(Q_{2 m} \times C_{3}\right)=\stackrel{*}{\equiv}\left(Q_{2 m}\right) \otimes \stackrel{*}{\equiv}\left(C_{3}\right)$.
Proof:-
Since
TABLE3
CHARACTERS TABLE OF THE GROUP C 3

	h_{1}^{\prime}	h_{2}^{\prime}
χ_{1}^{\prime}	$\mathbf{3 - 1}$	$\mathbf{- 1}$
χ_{2}^{\prime}	$\mathbf{1}$	$\mathbf{1}$

TABLE4
RATIONALCHARACTERS TABLE OF GROUP C C_{p}

$$
\stackrel{*}{\equiv}\left(C_{3}\right)=
$$

	h_{1}^{\prime}	h_{2}^{\prime}
θ_{1}^{\prime}	$\mathbf{3 - 1}$	$\mathbf{- 1}$
θ_{2}^{\prime}	$\mathbf{1}$	$\mathbf{1}$

Then,
$\chi_{1}^{\prime}\left(h_{1}^{\prime}\right)=\theta_{1}^{\prime}\left(h_{1}^{\prime}\right)=3-1$
$\chi_{1}^{\prime}\left(h_{2}^{\prime}\right)=\theta_{1}^{\prime}\left(h_{2}^{\prime}\right)=-1$
$\chi_{2}^{\prime}\left(h_{1}^{\prime}\right)=\chi_{2}^{\prime}\left(h_{2}^{\prime}\right)=\theta_{2}^{\prime}\left(h_{1}^{\prime}\right)=\theta_{2}^{\prime}\left(h_{2}^{\prime}\right)=1$
From the definition of $\mathrm{Q}_{2 \mathrm{~m}} \times \mathrm{C}_{3}$,
and Theorem(2.3) we have
$\equiv\left(\mathrm{Q}_{2 \mathrm{~m}} \times \mathrm{C}_{\mathrm{p}}\right)=\left(\equiv \mathrm{Q}_{2 \mathrm{~m}}\right) \otimes\left(\equiv \mathrm{C}_{3}\right)$
Each element inQ ${ }_{2 m} \times \mathrm{C}_{3}$
$h_{n g}=h_{n} \cdot h_{g}^{\prime} \forall h_{n} \in \mathrm{Q}_{2 \mathrm{~m}}, h_{g}^{\prime} \in \mathrm{C}_{3}$,
$n=1,2,3, \ldots, 4 \mathrm{~m}, \mathrm{~g}=1,2$
And each irreducible character of $\mathrm{Q}_{2 \mathrm{~m}} \times \mathrm{C}_{3}$ is
$\chi_{(i, j)=} \chi_{i} \cdot \chi_{j}^{\prime}$
where χ_{i} is an irreducible character of $\mathrm{Q}_{2 \mathrm{~m}}$ and χ_{j}^{\prime} is the irreducible character of C_{3}, then

$$
\chi_{(i, j)}\left(h_{n g}\right)=\left\{\begin{array}{l}
(3-1) \chi_{i}\left(h_{n}\right) \quad \text { if } j=1 \text { and } g=1 \\
-\chi_{i}\left(h_{n}\right) \quad \text { if } j=1 \text { and } g=2 \\
\chi_{i}\left(h_{n}\right) \quad \text { if } j=2 \text { and } g=2
\end{array}\right.
$$

From Corollary (2.2)

$$
\theta_{(i, j)}=\sum_{\sigma \in \operatorname{Gal}\left(Q\left(\chi_{(i, j)}\right) / Q\right)} \sigma\left(\chi_{(i, j)}\right)
$$

where $\theta_{(i, j)}$ is the rational valued character of $\mathrm{Q}_{2 \mathrm{~m}} \times \mathrm{C}_{3}$
Then,

$$
\theta_{(i, j)}\left(h_{n g}\right)=\sum_{\sigma \in \operatorname{Gal}\left(Q\left(\chi_{(i, j)}\left(h_{n g}\right)\right) / Q\right)} \sigma\left(\chi_{(i, j)}\left(h_{n g}\right)\right)
$$

(I) (a) If $\mathrm{j}=1$ and $\mathrm{g}=1$

$$
\begin{aligned}
& \theta_{(i, j)}\left(h_{n g}\right)=\sum_{\sigma \in \operatorname{Gal}\left(Q\left(\chi_{\left.i\left(h_{n}\right)\right)}\right) / Q\right)} \sigma\left(\chi_{i}\left(h_{n}\right)\right)=\theta_{i}\left(h_{n}\right) \cdot(3-1)= \\
& =\theta_{i}\left(h_{n}\right) \cdot \theta_{j}^{\prime}\left(h_{g}^{\prime}\right)
\end{aligned}
$$

(b) If $j=1$ and $g=2$

$$
\begin{aligned}
& \theta_{(i, j)}\left(h_{n g}\right)=\sum_{\left.\sigma \in \operatorname{Gal}\left(Q\left(\chi_{i\left(t_{n}\right)}\right)\right) / Q\right)} \sigma\left(-\chi_{i}\left(h_{n}\right)\right)=-\sum_{\left.\sigma \in \operatorname{Gal}\left(Q\left(\chi_{i\left(h_{n}\right)}\right)\right) / Q\right)} \sigma\left(\chi_{i}\left(h_{n}\right)\right)=\sum_{\sigma \in \operatorname{Gal}\left(Q\left(\chi_{i\left(h_{n}\right)}\right) / Q\right)} \sigma\left(\chi_{i}\left(h_{n}\right)\right) \cdot-1=\theta_{i}\left(h_{n}\right) \cdot-1=\theta_{i}\left(h_{n}\right) \cdot \theta_{j}^{\prime}(\\
& \left.h_{g}^{\prime}\right)
\end{aligned}
$$

(II) if $\mathrm{j}=2$ and $\mathrm{g}=2$
where θ_{i} is the rational valued character of $\mathrm{Q}_{2 \mathrm{~m}}$.
From [I] and [II] we have
$\theta_{(i, j)}=\theta_{i} . \theta_{j}^{\prime}$.
Then $\equiv^{*}\left(\mathrm{Q}_{2 \mathrm{~m}} \times \mathrm{C}_{3}\right)=\equiv^{*}\left(\mathrm{Q}_{2 \mathrm{~m}}\right) \otimes \equiv^{*}\left(\mathrm{C}_{3}\right)$.

3. References

[1] C.Curits and I. Reiner, " Methods of Representation Theory with Application Finite Groups and Order ", John wily \& sons, New York, 1981.
[2] J. P. Serre, "Linear Representation of Finite Groups", Springer- Verlage, 1977.
[3] K.Knwabusz, " Some Definitions of Artin's Exponent of Finit Group ", USA.National foundation Math.GR. 1996.
[4] K. Sekigvchi, " Extensions and the Irreducibilities of The Induced Characters of Cyclic p-Group ", Hiroshima math Journal, p165-178, 2002.
[5] L. E. Sigler, " Algebra ", Springer- verlage, 1976.
[6] S.J. Mahmood "On Artin cokernel of the Quaternion Group $Q_{2 m}$ when m is an Even Number" M.Sc. thesis, University of Kufa,2009.

